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1. Motivation TECHNISCHE
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the phenomenon of , i.e., that more search has not to lead to
better predicitve accuracy, was first shown by Quinlan and Cameron-Jones
(1995)

but they only used one heuristic and no true Exhaustive Search
we extend their work to 9 different heuristics and a true Exhaustive Search

no experimental results about the connection between the search heuristic
and the search strategy

we want to answer the question whether Separate-and-conquer (SECO)
algorithms can improve from Exhaustive Search or bigger beams both in
terms of theory size and accuracy or not
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In the experiments we used a simple SECO Rule Learner with the following
properties:

allows the usage of different heuristics and search strategies (Top-Down
Beam Search)

employs ordered class binarization
classification is done by a decision list of rules

does not perform pruning

but implements (important for the runtime)

create a virtual rule that covers the same number of positive examples but no
negative instances

if the evaluation of this rule is lower than that of the best rule — stop refining
this rule
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3. Search Strategies TECHNISCHE
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It is possible that a naive Beam search for b — oo generates more rules than the
Exhaustive Search
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3. Search Strategies TECHNISCHE
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Note that the implemented procedure follows OPUS® (Webb, 1995), i.e., does not
generate duplicates
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4. Rule Learning Heuristics TECHNISCHE
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heuristic formula
Precision p
A
p
Laplace s
Simple heuristics : Accura';cy p—n
Weighted Relative Accuracy %(/\7 ﬁ)
- S N=n
Odds ratio ,Vi(P_p)'"P
Correlation p(N—n)—n{P—p)
\/P-N-(p+n)-(P—p+N—n)
Relative Cost Measure c-5—-(1-¢) &
Complex heuristics m-estimate pEmP7(PN)
ptn+m
Meta-learned learned f(p,n,P,N)

as suggested in (Janssen and Fiirnkranz, 2008) the parameters were set to
¢ = 0.342 and m = 22.466
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22 datasets from UCI Repository

only nominal attributes in data (Exhaustive Search cannot handle numeric
attributes at the moment)

only small to medium size datasets (runtime of ES grows strongly with
#attributes, #classes, #instances)

Performance measure: macro average accuracy on many datasets estimated
with 10-fold stratified CV

runtime increases with increased beam sizes and positive effect
of Exhaustive Search are
best visible when datasets are hard to learn
or when the Hill-climbing Search gets stuck in a local optimum
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Example for consistent improvement/degradation
Odds Ratio RCM
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legend: blue dotted line = # conditions, red solid line = macro-average accuracy of CV, beam

size 10000 = Exhaustive Search Algorithm, # conditions = conds. of all rules summed up
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Example for strong fluctuations

Laplace
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Note that the final minor jump is due to different implementations of the
Hill-climbing Search and the Exhaustive Search
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5. Results
Plot for individual dataset (autos-d)
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5. Results

Plot for individual dataset (breast-w-d)
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interestingly the performance with one rule per class plus a default class is
very good (about 10% less than the complete models)
examples:
Precision: Hill-climbing Search 64.67% with 6.82 conditions, Exhaustive
Search 68.55% with 9.59 conditions
WRA: Hill-climbing Search 68.14% with 3.23 conditions, Exhaustive Search
68.81% with 3.5 conditions
Precision and Laplace have significantly smaller theories (about 7 times
smaller) than the full size model

all heuristics gain performance from Exhaustive Search except for the
Meta-learned one
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the over-searching phenomenon depends on the heuristic
Odds Ratio and Precision gain performance
more complex heuristics lose performance

heuristics that work well in Hill-climbing Search usually do not profit from
Exhaustive Search or Beam search with bigger beam sizes

experiments show that there are different requirements for heuristics used in
Hill-climbing Search and Exhaustive Search

separate the search heuristic (potential of a rule of beeing refined into a high
quality rule) und the rule evaluation function (isolated measurement of the
predictive quality of a rule)
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