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1. Motivation

I the phenomenon of over-searching, i.e., that more search has not to lead to

better predicitve accuracy, was first shown by Quinlan and Cameron-Jones

(1995)

I but they only used one heuristic and no true Exhaustive Search

I we extend their work to 9 different heuristics and a true Exhaustive Search

I no experimental results about the connection between the search heuristic

and the search strategy

I we want to answer the question whether Separate-and-conquer (SeCo)

algorithms can improve from Exhaustive Search or bigger beams both in

terms of theory size and accuracy or not

October 6, 2008 | KDML 2008 | Janssen & Fürnkranz | 3 KE



2. Separate-and-Conquer Rule Learning

In the experiments we used a simple SeCo Rule Learner with the following

properties:

I allows the usage of different heuristics and search strategies (Top-Down

Beam Search)

I employs ordered class binarization

I classification is done by a decision list of rules

I does not perform pruning

I but implements Forward Pruning (important for the runtime)
I create a virtual rule that covers the same number of positive examples but no

negative instances
I if the evaluation of this rule is lower than that of the best rule → stop refining

this rule
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3. Search Strategies

Hill-Climbing and Beam search
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It is possible that a naive Beam search for b →∞ generates more rules than the

Exhaustive Search
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3. Search Strategies

Exhaustive search
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Note that the implemented procedure follows OPUSo (Webb, 1995), i.e., does not

generate duplicates
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4. Rule Learning Heuristics

heuristic formula

Simple heuristics

Precision p
p+n

Laplace p+1
p+n+2

Accuracy p − n

Weighted Relative Accuracy p
P −

n
N

Odds ratio p·(N−n)
(P−p)·n

Correlation p·(N−n)−n·(P−p)√
P·N·(p+n)·(P−p+N−n)

Complex heuristics

Relative Cost Measure c · p
P − (1− c) · n

N

m-estimate p+m·P/(P+N)

p+n+m

Meta-learned learned f(p,n,P,N)

as suggested in (Janssen and Fürnkranz, 2008) the parameters were set to

c = 0.342 and m = 22.466
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5. Results

Experimental Setup

I 22 datasets from UCI Repository

I only nominal attributes in data (Exhaustive Search cannot handle numeric

attributes at the moment)

I only small to medium size datasets (runtime of ES grows strongly with

#attributes, #classes, #instances)

I Performance measure: macro average accuracy on many datasets estimated

with 10-fold stratified CV

I expectation: runtime increases with increased beam sizes and positive effect
of Exhaustive Search are

I best visible when datasets are hard to learn
I or when the Hill-climbing Search gets stuck in a local optimum
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5. Results

Varying the beam size

Example for consistent improvement/degradation

Odds Ratio RCM

 77

 77.2

 77.4

 77.6

 77.8

 78

 78.2

 78.4

 78.6

 78.8

 1  10  100  1000  10000
 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

ac
cu

ra
cy

#
 c

o
n

d
it

io
n

s

beam size

 80.4

 80.6

 80.8

 81

 81.2

 81.4

 81.6

 1  10  100  1000  10000
 13

 14

 15

 16

 17

ac
cu

ra
cy

#
 c

o
n

d
it

io
n

s

beam size

legend: blue dotted line = # conditions, red solid line = macro-average accuracy of CV, beam

size 10000 = Exhaustive Search Algorithm, # conditions = conds. of all rules summed up
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5. Results

Varying the beam size

Example for strong fluctuations
Laplace

 78.1

 78.2

 78.3

 78.4

 78.5

 78.6

 78.7

 78.8

 78.9

 79

 79.1

 1  10  100  1000  10000
 62

 62.5

 63

 63.5

 64

 64.5

 65

 65.5
ac

cu
ra

cy

#
 c

o
n
d
it

io
n
s

beam size

Note that the final minor jump is due to different implementations of the

Hill-climbing Search and the Exhaustive Search
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5. Results

Plot for individual dataset (autos-d)
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legend: macro-averaged accuracy of CV
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5. Results

Plot for individual dataset (breast-w-d)
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5. Results

Searching for single rules

I interestingly the performance with one rule per class plus a default class is

very good (about 10% less than the complete models)

I examples:
I Precision: Hill-climbing Search 64.67% with 6.82 conditions, Exhaustive

Search 68.55% with 9.59 conditions
I WRA: Hill-climbing Search 68.14% with 3.23 conditions, Exhaustive Search

68.81% with 3.5 conditions

I Precision and Laplace have significantly smaller theories (about 7 times

smaller) than the full size model

I all heuristics gain performance from Exhaustive Search except for the

Meta-learned one
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6. Discussion

I the over-searching phenomenon depends on the heuristic
I Odds Ratio and Precision gain performance
I more complex heuristics lose performance

I heuristics that work well in Hill-climbing Search usually do not profit from

Exhaustive Search or Beam search with bigger beam sizes

I experiments show that there are different requirements for heuristics used in

Hill-climbing Search and Exhaustive Search

I mandatory next step:
I separate the search heuristic (potential of a rule of beeing refined into a high

quality rule) und the rule evaluation function (isolated measurement of the

predictive quality of a rule)
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