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Rule Learning

Separate-and-Conquer Rule Learning

we used a standard Separate-and-Conquer algorithm for
our experiments

TopDownHillClimbing
no pruning

Problems of SECO learners:

1 Problem of unreliable estimates (measured on the training
set)

different variances
low coverage rules: high variance
high coverage rules: low variance

2 Problem of evaluation of candidate rules
current heuristics of SECO-algorithms do not differentiate
between evaluating a candidate or a final rule

⇒ Search Heuristics merge these two problems
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Rule Learning

Addressing the problem of unreliable estimates
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Rule Learning

Addressing the problem of evaluation of candidate
rules
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Research goals

Goals

try to solve the two above-mentioned problems:
we try to correct overly optimistic measurements
we evaluate candidate rules and final rules differently

find:
an optimal search heuristic which is learned without a bias
towards existing measures and
two functions that are able to predict true positive/negative
coverage values of a rule
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What we have done

Our approach

to create the meta data let the SECO algorithm run several
times with different settings
for each run:

divide the training set into a training and a test set of equal
size (stratified for nominal class values)
record statistics of all rules on the training set
(P, N, P/(P+N), p, n, p/P, n/N, p/(p+n), length)
record the positive/negative coverage and the precision of
these rules on the test set (pTest , nTest , pTest/(pTest+nTest))

perform a regression on this meta data
use the resulting function as a heuristic inside the rule
learner
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The meta data

The meta data set

Parameters of the meta data generation algorithm:
27 UCI datasets with varying characteristics
5x2 Cross-Validation (to keep the training and test set of
equal size)
one-against-all class binarization
5 standard heuristics employing different biases

precision, accuracy, weighted relative accuracy, laplace,
correlation

Statistics of the data:
87,380 examples in total
ignore rules that cover no example
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Regression algorithms and Evaluation methods

Regression algorithms
a linear regression

directly interpretable
concept

neural network (MLP)
1,5,10 (sigmoid) node(s)
in the hidden layer,
backpropagation run for
1 epoch

Evaluation methods
Mean Absolute Error

MAE(f , f̂ ) =
1
m

m∑
i=0

|̂f (i)− f (i)|

Main method: macro
average accuracy of a
1x10 CV when using the
regression model as
heuristic

27 UCI datasets were used for the meta data generation
30 other UCI datasets were used for testing
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Predictions

Predicting Test Set Precision

Coefficients learned by the linear regression
P N P/(P+N) p n p/P n/N p/(p+n) constant

0.0001 0.0001 0.7485 −0.0001 −0.0009 0.165 0.0 0.3863 0.0267

Performance on the 30 ”Test Sets” (macro average accuracy):
linear regression: 77.43 %
MLP with 1 node: 77.81 %
MLP with 5 nodes: 77.37 %
MLP with 10 nodes: 77.53 %
correlation (for comparison): 77.57 %

note that including the length does not increase the
accuracy
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Predictions

Final rule vs. immediate rule prediction

immediate rule prediction: use the actual value of the
incomplete rule

h(F) = 0.85h(R’) = 0.73h(R) = 0.7

R: A=a -> T R’: A=a AND B=b -> T F: A=a AND B=b AND C=c -> T

final rule prediction: for all incomplete rules use the value
of the final rule they will be refined to

R: A=a -> T R’: A=a AND B=b -> T F: A=a AND B=b AND C=c -> T

h(R) = 0.85 h(R’) = 0.85 h(F) = 0.85

Results (when using final rule prediction as target):
method avg. accuracy avg. # conditions

linear regression 77.95 % 95.63
MLP 78.37 % 53.97



Introduction Meta Learning Scenario Results Conclusion/Further research

Predictions

Predicting positive/negative coverage

repeating the experiments with all other heuristics is too
expensive
thus, predict the out-of-sample coverages directly (with the
best MLP)

args Precision Laplace Accuracy WRA Correlation
(p, n) 76.22% 76.89% 75.60% 75.8% 77.57%
(p̂, n̂) 76.53% 76.80% 75.39% 69.89% 58.09%

the predictions are not good enough to yield true
coverages

coverage values that are below 0
too optimistic values in regions of low coverage

only the overfitting problem of precision could be corrected
(129.17 vs. 30 conditions in average and a higher
accuracy)
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Conclusion and further research

it is possible to learn a heuristic from experience that
outperforms standard rule learning heuristics
it is not that simple to predict true coverage values of rules
adjust the out-of-range features (P, N, p, n)
address a third problem in SECO-Rule learning: the
problem of local evaluation



Introduction Meta Learning Scenario Results Conclusion/Further research

The End

Thank you for your attention!
Questions?
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