Introduction	Meta Learning Scenario	Results	Conclusion/Further research

Meta-Learning Rule Learning Heuristics

Frederik Janssen and Johannes Fürnkranz

Technische Universität Darmstadt Fachbereich Informatik Fachgebiet Knowledge Engineering {janssen,juffi}@ke.informatik.tu-darmstadt.de

Introduction	Meta Learning Scenario	Results 000	Conclusion/Further research
Outline			

ntroduction	Meta Learning Scenario	Results	Conclusion/Further research
000	000	000	00

Rule Learning

Separate-and-Conquer Rule Learning

- we used a standard Separate-and-Conquer algorithm for our experiments
 - TopDownHillClimbing
 - no pruning
- Problems of SECO learners:
- Problem of unreliable estimates (measured on the training set)
 - different variances
 - low coverage rules: high variance
 - high coverage rules: low variance
- Problem of evaluation of candidate rules
 - current heuristics of SECO-algorithms do not differentiate between evaluating a candidate or a final rule
- \Rightarrow Search Heuristics merge these two problems

Introduction	Meta Learning Scenario	Results	Conclusion/Further researc
000	000	000	00
000	000	000	00

Rule Learning

Addressing the problem of unreliable estimates

Introduction	Meta Learning Scenario	Results	Conclusion/Further research
000	000	000	00

Rule Learning

Addressing the problem of evaluation of candidate rules

Introduction	Meta Learning Scenario	Results 000	Conclusion/Further research
Research goals			
Goals			

- try to solve the two above-mentioned problems:
 - we try to correct overly optimistic measurements
 - we evaluate candidate rules and final rules differently

find:

- an optimal search heuristic which is learned without a bias towards existing measures and
- two functions that are able to predict true positive/negative coverage values of a rule

Introduction	Meta Learning Scenario	Results	Conclusion/Further research	
000	000	000	00	

2 Meta Learning Scenario

- to create the meta data let the SECO algorithm run several times with different settings
- for each run:
 - divide the training set into a training and a test set of equal size (stratified for nominal class values)
 - record statistics of all rules on the training set (P, N, P/(P+N), p, n, P/P, n/N, P/(p+n), length)
 - record the positive/negative coverage and the precision of these rules on the test set (*pTest*, *nTest*, *pTest*/(*pTest*+*nTest*))
- perform a regression on this meta data
- use the resulting function as a heuristic inside the rule learner

Introduction	Meta Learning Scenario	Results 000	Conclusion/Further research
The meta data			
The meta	a data set		

Parameters of the meta data generation algorithm:

- 27 UCI datasets with varying characteristics
- 5x2 Cross-Validation (to keep the training and test set of equal size)
- one-against-all class binarization
- 5 standard heuristics employing different biases
 - precision, accuracy, weighted relative accuracy, laplace, correlation

Statistics of the data:

- 87,380 examples in total
- ignore rules that cover no example

Results

Conclusion/Further research

Regression algorithms and Evaluation methods

Regression algorithms

- a linear regression
 - directly interpretable concept
- neural network (MLP)
 - 1,5,10 (sigmoid) node(s) in the hidden layer, backpropagation run for 1 epoch

Evaluation methods

Mean Absolute Error

$$MAE(f, \hat{f}) = \frac{1}{m} \sum_{i=0}^{m} |\hat{f}(i) - f(i)|$$

- Main method: macro average accuracy of a 1x10 CV when using the regression model as heuristic
- 27 UCI datasets were used for the meta data generation
- 30 other UCI datasets were used for testing

Introduction 000	Meta Learning Scenario	Results	Conclusion/Further research	

ntroduction	Meta Learning Scenario	Results	Conclusion/Further research
000	000	● ○ ○	00

Predictions

Predicting Test Set Precision

Coefficients learned by the linear regression

Ρ	N	P/(P+N)	р	n	P/P	n/N	P/(p+n)	constant
0.0001	0.0001	0.7485	-0.0001	-0.0009	0.165	0.0	0.3863	0.0267

Performance on the 30 "Test Sets" (macro average accuracy):

- Inear regression: 77.43 %
- MLP with 1 node: 77.81 %
- MLP with 5 nodes: 77.37 %
- MLP with 10 nodes: 77.53 %
- correlation (for comparison): 77.57 %
- note that including the length does not increase the accuracy

luction	Meta Learning Scenario	Results	Conclusion/Further research
	000	000	00

Predictions

Final rule vs. immediate rule prediction

immediate rule prediction: use the actual value of the incomplete rule

 final rule prediction: for all incomplete rules use the value of the final rule they will be refined to

Introduction	Meta Learning Scenario	Results	Conclusion/Further research
000	000	00●	00

Predictions

Predicting positive/negative coverage

- repeating the experiments with all other heuristics is too expensive
- thus, predict the out-of-sample coverages directly (with the best MLP)

args	Precision	Laplace	Accuracy	WRA	Correlation
(<i>p</i> , <i>n</i>)	76.22%	76.89%	75.60%	75.8%	77.57%
(\hat{p}, \hat{n})	76.53%	76.80%	75.39%	69.89%	58.09%

- the predictions are not good enough to yield true coverages
 - coverage values that are below 0
 - too optimistic values in regions of low coverage
- only the overfitting problem of precision could be corrected (129.17 vs. 30 conditions in average and a higher accuracy)

Introduction 000	Meta Learning Scenario	Results 000	Conclusion/Further research

2 Meta Learning Scenario

Introduction

Meta Learning Scenario

Results

Conclusion/Further research $_{\bullet \circ}$

Conclusion and further research

- it is possible to learn a heuristic from experience that outperforms standard rule learning heuristics
- it is not that simple to predict true coverage values of rules
- adjust the out-of-range features (P, N, p, n)
- address a third problem in SECO-Rule learning: the problem of local evaluation

Introduction	Meta Learning Scenario	Results	Conclusion/Further research
000		000	○●
The End			

- Thank you for your attention!
- Questions?