Towards Rule Learning Approaches to Instance-based Ontology Matching Frederik Janssen¹, Faraz Fallahi², Jan Noessner³, Heiko Paulheim¹

TECHNISCHE UNIVERSITÄT DARMSTADT

¹ Knowledge Engineering Group, TU Darmstadt ² ontoprise GmbH, Karlsruhe, Germany

³ KR & KM Research Group, University of Mannheim, Germany

Outline

- 1. Motivation
- 2. Case Study 1 Creating mappings by association rule mining
- 3. Case Study 2 Refining mappings by separate-and-conquer rule learning
- 4. Conclusions and Challenges

Motivation

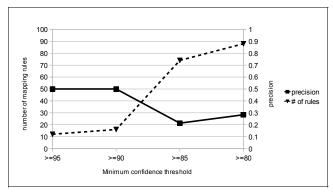
- Main problems of lexical distance measures or pattern recognition for ontology matching:
 - complex mappings cannot be found
 - in multi-lingual schemas there is no lexical similarity at all
- ► Remedy:
 - machine learning techniques with a focus on symbolic representations (such as rules)
- Advantages:
 - interpretability: enhanced methods for comparison and combination of rules and rule sets
 - capability of finding complex mappings
 - exploiting large-scale instance information, e.g. in LOD

Creating mappings by association rule mining

► Approach:

- exploit instance information from LOD
- basic idea: classes with similar instance sets are equal
- use association rule learning to find mappings
- using binary features for classes
- conclude mappings for symmetrical rules, e.g.

 $\texttt{DBpedia-owl:ProtectedArea} \gets \texttt{yago:Park}$


 $\texttt{yago:Park} \gets \texttt{DBpedia-owl:ProtectedArea}$

 \Rightarrow DBpedia-owl:ProtectedArea \equiv yago:Park

Case Study 1 Preliminary Results

Data set: manual partial mapping between DBpedia and YAGO

- approach is able to find complex matchings, such as
 - \geq 1DBpedia-owl:name \sqsubseteq yago:Person

Refining mappings by separate-and-conquer rule learning

► Given:

- ► two ontologies O₁ and O₂ and some existing mappings, e.g., found by a lexical matcher
- Goal:
 - find additional mappings
- ► Approach:
 - create datasets for both ontologies using Linked Open Data
 - learn rule sets with the same algorithm on these two datasets for all unmapped entities
 - compute similarity between rule sets

Refining mappings by separate-and-conquer rule learning

dataset from ontology \mathcal{O}_1 dataset from ontology \mathcal{O}_2 @relation car @relation cars @attribute acceleration {low,medium,high} @attribute acceleration {low,medium,high} @attribute cargoCapacity {low,high} @attribute cargoCapacityRating {low,high} @attribute passengerSpaceRating {low,high} → @attribute passengerSpace {low,high} @attribute convenienceRating {low.medium.high} + → @attribute convenience {low.medium.high} @attribute milesPerGallon {low.medium.high} @attribute mpg {low.medium.high} @data @data high.low.high.medium.low high.low.high.medium.low high.low.low.high.medium high.low.high.medium.low low.low.high.high.low low.high.high.low. low low low low low medium low.low.low.high. low medium.high.high.low.low low,high,high,high, medium medium.high.low.high.medium medium.high.high.high. medium low.high.high.medium.high low.high.high.medium.high learn _ rules learn _____rules $r_{1,1}$: milesPerGallon=medium \leftarrow conveniencempg=medium \leftarrow convenience=high \land Rating=high ∧ acceleration=high acceleration=high

 $r_{1,2}$: milesPerGallon=high←accelearation= medium \land cargoCapacity=low

```
numberOfExtras=high\leftarrow \texttt{convenience}=\texttt{high} \land \texttt{passengerSpace}=\texttt{high}
```

Refining mappings by separate-and-conquer rule learning

dataset from ontology \mathcal{O}_1 dataset from ontology \mathcal{O}_2 @relation car @relation cars @attribute acceleration {low,medium,high} @attribute acceleration {low,medium,high} @attribute cargoCapacity {low,high} @attribute cargoCapacityRating {low,high} @attribute passengerSpaceRating {low,high} → @attribute passengerSpace {low,high} @attribute convenienceRating {low.medium.high} @attribute convenience {low.medium.high} @attribute milesPerGallon {low.medium.high} @attribute mpg {low.medium.high} @data @data high.low.high.medium.low high.low.high.medium.low high.low.low.high.medium high.low.high.medium.low low.low.high.high.low low.high.high.low. low low low low low medium low.low.low.high. low medium.high.high.low.low low,high,high,high, medium medium.high.low.high.medium medium.high.high.high. medium low.high.high.medium.high low.high.high.medium.high learn 1 rules learn _____rules $r_{1,1}$: milesPerGallon=medium \leftarrow conveniencempg=medium \leftarrow convenience=high \land Rating=high \land acceleration=high acceleration=high

 $r_{1,2}$: milesPerGallon=high \leftarrow accelearation= medium \land cargoCapacity=low

```
numberOfExtras=high\leftarrowconvenience=high \land passengerSpace=high
```

Refining mappings by separate-and-conquer rule learning

dataset from ontology \mathcal{O}_1 dataset from ontology \mathcal{O}_2 @relation car @relation cars @attribute acceleration {low,medium,high} @attribute acceleration {low,medium,high} @attribute cargoCapacity {low,high} @attribute cargoCapacityRating {low,high} @attribute passengerSpaceRating {low,high} → @attribute passengerSpace {low,high} @attribute convenienceRating {low.medium.high} @attribute convenience {low.medium.high} @attribute milesPerGallon {low.medium.high} @attribute mpg {low.medium.high} @data @data high.low.high.medium.low high.low.high.medium.low high.low.low.high.medium high.low.high.medium.low low.low.high.high.low low.high.high.low. low low low low low medium low.low.low.high. low medium.high.high.low.low low,high,high,high, medium medium.high.low.high.medium medium.high.high.high. medium low.high.high.medium.high low.high.high.medium.high learn 1 rules learn _____rules

$r_{1,1}$: milesPerGallon=medium \leftarrow convenience-Rating=high \land acceleration=high

 $r_{1,2}$: milesPerGallon=high←accelearation= medium \land cargoCapacity=low

```
\label{eq:mpg} \begin{array}{l} mpg=medium \leftarrow convenience=high \land \\ acceleration=high \end{array}
```

numberOfExtras=high $\leftarrow \texttt{convenience}=\texttt{high} \land \texttt{passengerSpace}=\texttt{high}$

May 27, 2012 | ESWC 2012 | F. Janssen et al. | 8

Case Study 2

Refining mappings by separate-and-conquer rule learning

Idea:

- similar rule sets \rightarrow mapping candidate
- possible similarity measures:

$$sim_{R}(R, R') = \frac{\sum_{sim_{r}(r_{1,i}, r_{2,j}) \ge \theta} tp(r_{1,i}) + tp(r_{2,j})}{|D_{1}| + |D_{2}|}$$

e.g., with $sim_{r}(r, r') = \begin{cases} 1 \text{ if } r \text{ matches } r' \text{ exactly} \\ 0 \text{ otherwise} \end{cases}$

where R, R': rule sets, $tp(r_{1,i})$: true positives of the *i*-th rule of ruleset 1, D_1, D_2 : data sets, and θ is a similarity threshold

Conclusions and Challenges

Conclusions

- reformulation of ontology matching as problems of (association) rule learning
- first experiments show that both approaches work

Challenges

- create suitable benchmark data sets for complex mappings
- scaling up to the whole web of data
- similarity measures for rules and rule sets
- parameter tuning of rule learning algorithms
- impact of different rule learning heuristics

Questions?

