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1. Motivation

I Open questions in Rule Learning:
I selection of an appropriate heuristic
I how to adjust the parameter of parametrized heuristics

I trade-off between Consistency and Coverage
I so far this trade-off is often fixed

I no visualization of the parametrized heuristics

I no exhaustive study about the behavior of many different heuristics on many

different datasets
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2. Separate-and-Conquer Rule Learning

In the experiments we used a simple SeCo Rule Learner with the following

properties:

I allows the usage of different heuristics and uses a Top-Down Hill Climbing

Search

I employs ordered class binarization

I classification is done by a decision list of rules

I does not perform pruning

I but performs implicit pruning when selecting the best rule along a refinement

process

I this work focuses on heuristics not on sophisticated pruning methods

October 14, 2008 | DS 2008 | Janssen & Fürnkranz | 4 KE



3. Rule Learning Heuristics

I a heuristic is a function of the form h(p, n, P, N)

I usually a good heuristic should optimize two criteria:
I Coverage: the number of positive examples that are covered by the rule (p)

should be maximized and
I Consistency: the number of negative examples that are covered (n) should be

minimized

I heuristics could be visualized in Coverage Spaces (un-normalized ROC

spaces) following J. Fürnkranz and P. Flach (2005)
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3. Rule Learning Heuristics

Basic Heuristics

heuristic formula

Consistency

Precision hPrecision = p
p+n

MinNeg hMinNeg = −n

Rel. MinNeg hrelMinNeg = − n
N

Coverage

Full Coverage hCoverage = p+n
P+N

Weighted Relative Accuracy hWRA = p
P − n

N

Recall (Rel. MaxPos) hRecall = p
P

MaxPos hMaxPos = p
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3. Rule Learning Heuristics

Parametrized Heuristics

heuristic formula

Cost Measure hcost = c · p − (1 − c) · n
Relative Cost Measure hrcost = cr · p

P − (1 − cr ) · n
N

F-Measure hF−Measure = (β2+1)·hPrecision·hRecall

β2·hPrecision+hRecall

m-Estimate hm−Estimate =
p+m· P

P+N

p+n+m

Klösgen hKloesgen = (hCoverage)ω ·
(
hPrecision − P

P+N

)
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4. Experimental Setup

I 27 tuning datasets and 30 validation datasets (all from the UCI Repository)

I datasets are selected to cover a broad spectrum of different domains (i.e.,

different ratios of nominal to numeric attributed, different number of

instances/classes)

I macro/micro-average accuracy of 10-fold stratified CV on m datasets

I macro: 1
m

m∑
i=1

pi +(Ni−ni )
Pi +Ni

I micro:

m∑
i=1

(pi +Ni−ni )

m∑
i=1

(Pi +Ni )

I averaged ranking of the heuristics on all datasets

I to test for significance we used a Friedman test along with a Nemenyi test as

suggested by J. Demsar (2006)
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5. The Search Strategy

I expectation: an inverse convex U-shape curve (x-axis: parameter, y-axis:

macro-averaged accuracy)
I idea: binary search

I record the accuracy of 10 (intuitively) parametrizations on all tuning sets
I pick the parameter with highest accuracy
I narrow down the bounds/the increment (lowerbound ← pbest − i

2
,

upperbound ← pbest + i
2

and i ← i
10

) and
I record the accuracies again

I greedy search algorithm for narrowing down the region of interest
I algorithm stores 3 candidate parameters (to avoid local optima)

Run set which has to be searched increment best parameter Accuracy

1 {0.1, ..., 1.0} 0.1 0.4 84.5658

2 {0.35, ..., 0.45} 0.01 0.42 84.6852

3 {0.415, ..., 0.425} 0.001 0.418 84.7015

4 {0.4175, ..., 0.4185} 0.0001 0.4176 84.7045

5 {0.41755, ..., 0.41765} 0.00001 0.4176 84.7045
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6. Results

Macro-averaged accuracy over parameter values

Cost Measure Rel. Cost Measure
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Klösgen Measure F-Measure m-Estimate
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6. Results

Isometrics

Klösgen Measure F-Measure m-Estimate

ω = 0.4323 β = 0.5 m = 22.466

0 N

0

P

0 N

0

P

0 N

0

P

I Cost Measures are just parallel lines with a slope corresponding to the best
setting

I best parameter of Cost Measure: c = 0.437
I best parameter of Relative Cost Measure: cr = 0.342
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6. Results

Accuracies

average accuracy average

Heuristic Macro Micro Rank Size

m = 22.466 85.87 93.87 (1) 4.54 (1) 36.85 (4)

cr = 0.342 85.61 92.50 (6) 5.54 (4) 26.11 (3)

ω = 0.4323 84.82 93.62 (3) 5.28 (3) 48.26 (8)

JRip 84.45 93.80 (2) 5.12 (2) 16.93 (2)

β = 0.5 84.14 92.94 (5) 5.72 (5) 41.78 (6)

JRip-P 83.88 93.55 (4) 6.28 (6) 45.52 (7)

Correlation 83.68 92.39 (7) 7.17 (7) 37.48 (5)

WRA 82.87 90.43 (12) 7.80 (10) 14.22 (1)

c = 0.437 82.60 91.09 (11) 7.30 (8) 106.30 (12)

Precision 82.36 92.21 (9) 7.80 (10) 101.63 (11)

Laplace 82.28 92.26 (8) 7.31 (9) 91.81 (10)

Accuracy 82.24 91.31 (10) 8.11 (12) 85.93 (9)

average accuracy average

Heuristic Macro Micro Rank Size

JRip 78.98 82.42 (1) 4.72 (1) 12.20 (2)

cr = 0.342 78.87 81.80 (3) 5.28 (3) 25.30 (3)

m = 22.466 78.67 81.72 (4) 4.88 (2) 46.33 (4)

JRip-P 78.50 82.04 (2) 5.38 (4) 49.80 (6)

ω = 0.4323 78.46 81.33 (6) 5.67 (6) 61.83 (8)

β = 0.5 78.12 81.52 (5) 5.43 (5) 51.57 (7)

Correlation 77.55 80.91 (7) 7.23 (8) 47.33 (5)

Laplace 76.87 79.76 (8) 7.08 (7) 117.00 (10)

Precision 76.22 79.53 (9) 7.83 (10) 128.37 (12)

c = 0.437 76.11 78.93 (11) 8.15 (11) 122.87 (11)

WRA 75.82 79.35 (10) 7.82 (9) 12.00 (1)

Accuracy 75.65 78.47 (12) 8.52 (12) 99.13 (9)

I m-Estimate performs best on the tuning sets (85.87%)

I JRip was the best algorithm on the validation sets (78.98%)

I Ranking has not changed much

I some evidence for robustness of the best performing parameters
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6. Results

Statistical significance (validation sets)
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Critical Difference

I for p = 0.05 the null hypothesis of the Friedmann Test was rejected

I only the Klösgen Measure is not significantly better than the Accuracy

heuristic

I noticable gap between the tuned and the basic heuristics
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7. Discussion

I we have determined suitable parameter settings for 5 parametrized heuristics

I taking the class distribution into account is mandatory

I rating the true positive rate more heavily than the false positive rate yields

good overall performance among all parametrized heuristics

I isometrics of the best settings showed strong similarities

I this work yields a very exhaustive experimental comparison of different

heuristics
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