Ontology Matching

Towards Rule Learning
Approaches to Instance-based
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of lexical distance measures or pattern recognition for Ontology Matching:

e complex mappings cannot be found

* .g., In multi-lingual schemas there is no lexical similarity at all
use of machine learning techniques, focus on symbolic representations (such as rules)

* Interpretability: enhanced methods for comparison and combination of rules and rule sets

e capability of finding complex mappings

Case Study 1 - Creating mappings by
association rule mining
. use association rule learning
to find mappings
* using binary features for classes
» conclude mappings for symmetrical rules, e.qg.

DBpedia-owl:ProtectedArea < yvago:Park
vago:Park < DBpedia-owl:ProtectedArea
= DBpedia-owl:ProtectedArea = yago:Park

Preliminary Results

. manual partial mapping
between DBpedia and YAGO
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e approach is also able to find

complex mappings, such as
> |DBpedia-owl:name L yago:Person

Case Study 2 — Refining mappings by
separate-and-conquer rule learning

. two ontologies and some existing
mappings (e.g., found by a lexical matcher)
. find additional mappings

dataset from ontology O,

@relation car

dataset from ontology O-

@relation cars

@attribute acceleration {low,medium,high} <——— @attribute acceleration {low,medium,high}
@attribute cargoCapacityRating {low,high} <——————— @attribute cargoCapacity {low,high}
@attribute passengerSpaceRating {low,high} <———— @attribute passengerSpace {low,high}
@attribute convenienceRating {low,medium, high} «——— @attribute convenience {low,medium,high}

@attribute milesPerGallon {low,medium,high}

@data
high,low,high,medium,low
high,low,low, high,medium
low,low, high,high,low
low,low,low,low,medium
medium,high,high,low,low
medium,high,low,high,medium
low, high,high,medium, high

Iearn&‘ules

r,,: milesPerGallon=medium < convenience-
Rating=high AND acceleration=high

r,,- milesPerGallon=high < acceleration=
medium AND cargoCapacity=low

@attribute numberOfExtras {low,medium,high}
@attribute mpg {low,medium,high}

@data
high,low,high,medium,medium,low
high,low,low,low,high, high

low,low, high,high,high,low
low,low,low, high,medium,low

low, high,high,high,low,medium
medium,high,high,high,high,medium
low, high,high,medium,low, high

Iearn&ules

mpg=medium < convenience=high AND
i acceleration=high

numberOfExtras=high < convenience=high
: AND passengerSpace=high

. similar rule sets » mapping candidate
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1 if 7 matches 1’ exactly
0 otherwise

Conclusions
* reformulation of ontology matching as
problems of (association) rule learning
e first experiments show
that both approaches work

Challenges:

e create suitable benchmark data sets for

complex mappings

* similarity measures for rules and rule sets
* parameter tuning of rule learning algorithms
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