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Motivation Experimental Setup

» event-related information very useful in domains like, e.g.,

» Event-based Clustering compared against three other
emergency management

approaches

* main issue for supervised learning ~ Tang et al., 2002
—Ioi).taining labeled data very costly - k-means for initial clustering (k=4)
+ solution:

- select most uncertain instances in each cluster

— needs initial training set and - information density to weight examples

— method for query selection per iteration
» k-means for initial clustering (k=4)

Active Learning for Event Type Classification  selection based on density X entropy measure
- Uncertainty Sampling
* selection of most informative and representative instances - random instances for initialization
- by using metadata for clustering - selection strategy: entropy-based uncertainty sampling
 SVM classifier: weka's SMO
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* better performance for initial selection (50 instances) & regions
with few labeled instances (<500)

Spatial and

* drop after 500 instances: more instances result in higher # of
temporal extent

clusters, rendering the selection more difficult

Selection per iteration
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Event-based Clustering 0.44
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» deficiency measures F1 of all iterations compared to baseline
Initial Training Set iclency ur lteratl par i

* selection of informative instances not possible yet (step 1) » Event-based Clustering lowest value
— representative instances used » surprisingly good performance of Uncertainty Sampling
* apply Event-based Clustering based only on & — focusing only on informativeness good choice for this dataset
extent C lusi d Fut p 6
* order clusters by avg. k-nearest-neighbour-based density onciusions an uture Cerspectves
* select instances from top to bottom | - novel selection strategy based on temporal, spatial, and
— ensures selection of instances from best clusters, i.e., thematic information
noisy clusters with unrelated items are avoided — better initial training set

— improved selection in each iteration

Query Selection per iteration » future work: use framework in conjunction with labeling single

» train classifier on labeled data (step 1) and apply it on features
unlabeled data — assign
» apply Event-based Clustering based on all dimensions (step References
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