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Outline

Preprocessing
Vector space model
Text preprocessing pipeline
Similarity of Documents

Text Classification Algorithms
Rocchio Classifer
Naïve Bayes classifier
Linear classification
Support Vector Machines

Occam's Razor and Overfitting Avoidance
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Text Classification: Examples

Text  Categorization: Assign (class) labels to each document

Labels are most often topics such as Yahoo-categories
e.g., "finance," "sports," "news::world::asia::business"

Labels may be genres
e.g., "editorials" "movie-reviews" "news“

Labels may be opinion
e.g., “like”, “hate”, “neutral”

Labels may be binary concepts
e.g., "interesting-to-me" : "not-interesting-to-me”
e.g., “spam” : “not-spam”
e.g., “contains adult language” :“doesn’t”

Manning and Raghavan

More than one 
learning task could
be defined over the
same documents
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News categorization

The Reuters RCV1 dataset has in total 103 assignable news 
categories for 804.414 news articles

Funding/Capital

Bonds/Debt issues

Corporate/Industrial

David Dolan LEWIS, Yiming YANG, Tony G. ROSE, Fan LI: RCV1: A New Benchmark 
Collection for Text Categorization Research. In: Journal of Machine Learning Research, 
2004.



IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 5 

Book Scenario

Summary: Returning from an important case in Syria, 
Hercule Poirot boards the Orient Express in Istanbul. The 
train is unusually crowded for the time of year. Poirot 
secures a berth only with ...

Text: It was five o'clock on a winter's morning in Syria. … 
"Then," said Poirot, "having placed my solution before you, 
I have the honour to retire from the case." 

Author: 

  Agatha Christie

Genres:

  Crime, Mystery, Thriller

Subjects (LOC):

  Private Investigators, Orient Express, ...

Keywords:

  mystery, fiction, crime, murder, british, 

  poirot, ...

Rate: 

  4 of 5 stars

Epoch:

  1930ies

Country:

  UK

...
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The Vector Space Model

Origin: 
Information Retrieval, SMART system (Salton et al.)

Basic idea: 
A document is regarded as a vector in an n-dimensional space
 1 dimension for each possible word (feature, token)
 the value in each dimension is (in the simplest case) 

the number of times the word occurs in the document 
(term frequency – TF)

a document is a linear combination of the base vectors 
 linear algebra can be used for various computations
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Intuition

Postulate: Documents that are “close together” 
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

Manning and Raghavan

di=d i ,1 , d i ,2 , d i ,3
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Document Representation

The vector space models allows to transform a text into a 
document-term table

 In the simplest case
Rows: 
 training documents

Columns:
 words in the training documents

More complex representation possible

Most machine learning and data mining algorithms need this 
type of representation
 they can now be applied to, e.g., text classification
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Document Representation

baseball specs graphics .... quicktime computer

D1 0 3 0 .... 2 0

D2 1 2 0 ... 0 0

D3 0 0 2 ... 1 5

..... .... .... .... .... .... ....

t1

d2

d1
d3

d4

d5

t3

t2
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Text Preprocessing Pipeline
Tokenization

 Identification of basic document entities („words“)
 typically performed in indexing phase

 Issues in tokenization:

Finland’s capital  

     Finland? Finlands? Finland’s?

Hewlett-Packard                   Hewlett and Packard as 
two tokens?
 State-of-the-art: break up hyphenated sequence.  
 co-education ?
 the hold-him-back-and-drag-him-away-maneuver ?
 It’s effective to get the user to put in possible hyphens

San Francisco: one token or two?  How do you decide it is 
one token?

Manning and Raghavan
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Text Preprocessing Pipeline
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Text Preprocessing Pipeline
Stemming

Reduce terms to their “roots” before indexing

 “Stemming” suggest crude affix chopping
 language dependent
e.g., automate(s), automatic, automation all reduced to 

automat.

Stemming may reduce number of terms by ~35%

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress

Manning and Raghavan
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Text Preprocessing Pipeline
Stop Words

Remove most frequent words in the (English) language
a, about, above, across, after, afterwards, again, against, all, almost, 

alone, along, already, also, although, always, am, .... yet, you, your, 
yours, yourself, yourselves

Assumption: 
These words occur in all documents and are irrelevant for retrieval

Rule of 30: ~30 words account for ~30% of all term occurrences in 
written text

Stop lists used to be popular, but are sometimes avoided, 
because important information may be lost
polysemous words: „can“ as a verb vs. „can“ as a noun
phrases: “Let it be”, “To be or not to be”, pop group „The The“
 relations: “flights to London” vs. „flights from London“
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Text Preprocessing Pipeline
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Text Preprocessing Pipeline
Term Weighting 

Different ways for computing the d
i,j
: 

Boolean
possible values are only 
 0 (term does not occur in document) 
 1 (term does occur)

Term Frequency (TF)
 term is weighted with the frequency of its 

occurrence in the text

Term Frequency - Inverse Document Frequency (TF-IDF)
 Idea: A term is characteristic for a document if
 it occurs frequently in this document (TF)
 occurs infrequently in other documents (IDF)

divides TF by DF 
(or multiplies TF with IDF)

d i , j=TF di , t j

d i , j=
TF di , t j

DF t j
=TF di , t j⋅IDF t j

d i , j={0  if t j∉di

1  if t j∈di
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Text Preprocessing Pipeline
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Text Preprocessing Pipeline
Feature Subset Selection

Using each word as a feature results in tens, hundreds, or 
thousands of thousands of features

Many of them are
 irrelevant 
 redundant

Removing them can
 increase efficiency
prevent overfitting

Feature Subsect Selection techniques try to determine 
appropriate features automatically
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Text Preprocessing Pipeline
Feature Subset Selection

Unsupervised Feature Subset Selection
Using domain knowledge
 some features may be known to be irrelevant, uninteresting or 

redundant
Frequency-based selection
 select features based on statistical properties
 e.g. IDF: hypothesis that terms with high document frequency 

are more important (except stop words)

Supervised Feature Subset Selection
Filter approaches
 compute some measure (e.g. statistical) for estimating the 

ability to discriminate between classes
Wrapper approaches
 each search subset is tried with the learning algorithm
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Text Preprocessing Pipeline
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Text Preprocessing Pipeline
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Similarity of Document Vectors

First Idea: 
Distance between d1 and d2 is the 

length of the vector |d1 – d2| 
(measured with Euclidean distance)

Why is this not a great idea?
Short documents would be more similar to each other by virtue of 

length, not topic

→ We have to deal with the issue of length normalization
explicit normalization (as, e.g., through normalized TF)

Alternative approaches?
We can also implicitly normalize by looking at angles between 

document vectors instead

Manning and Raghavan

t 1

d 2

d 1

t 3

t 2
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Cosine similarity

Distance between vectors d1 and d2 captured by the cosine of the 
angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ
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Cosine similarity

Distance between vectors d1 and d2 captured by the cosine of the 
angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ

cos=
d1⋅d2

∥d1∥⋅∥d2∥
=

∑
i=1

n

d 1,i d 2, i

∑
i=1

n

d 1, i
2 ⋅∑

i=1

n

d 2, i
2
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Cosine similarity

Distance between vectors d1 and d2 captured by the cosine of the 
angle θ between them.

 the distance is invariant to re-scaling the vector

e.g., if two copies of document d1 are concatenated to a new 
document d3, the similarity to d2 remains the same

t 1

d 2

d 1

t 3

t 2

θ

d3=2⋅d1

cos=
d1⋅d2

∥d1∥⋅∥d2∥
=

2⋅d1⋅d2

2⋅∥d1∥⋅∥d2∥
=

d3⋅d2

∥d3∥⋅∥d2∥
because ∥c⋅x∥=c⋅∥x∥
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Rocchio Classifier
(Nearest Centroid Classifier)

based on ideas for Rocchio Relevance Feedback

compute a prototype vector pc for each class c

average the document vectors for each class

classify a new document according to distance to prototype 
vectors instead of documents 

assumption:
documents that belong

to the same class
are close to each other 
(form one cluster)

+

++

+
+

+

─ ─

─

─
─ ─

─p-

p+ ?

Q: Imagine simple scenarios 
where Rocchio would not 
work!
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Bag of Words Model

assumes that the document has 
been generated by repeatedly 
drawing one word out of a bag of 
words 
 like drawing letters out of a 

Scrabble-bag, but with replacement

words in the bag may occur 
multiple times, some more 
frequently than others
 like letters in a Scrabble-bag
each word w is drawn with a 

different probability 

WORD
S

Peace

Peace

p w
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Probabilistic Document Model

Repeatedly drawing from the bag of words results in a 
sequence of randomly drawn words → a document
                                 where  d=t1 , t 2 , ... , t∣d∣ t j=wk j

∈W

WORDS

Peace

Peace
PeacePeace

WarWar andand

d = (War, and, Peace)
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Class-conditional Probabilities

Different classes have different bags of words

probabilities of words in different classes are different
 the sports bag contains more sports words, etc.
Formally:  

Politics

Change

Change

Sports 

Soccer

Soccer

Business 

Crisis

Crisis

p w∣ci≠ p w∣c j≠ p w
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Independence Assumption

 the probability that a word occurs does not depend on the 
context (the occurrence or not-occurrence of other words)
 it only depends on the class of the document

 In other words:
Knowing the previous word in the document (or any other word) does 

not change the probability that a word occurs in position ti

we will write this shorter as

 Important:
 the independence assumption does not hold in real texts!
but it turns out that it can still be used in practice

p(t i=wk i
∣t j=w k j

, c) = p(t i=wk i
∣c)

p(t i∣t j , c) = p(t i∣c)
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Probabilistic Text Classification

Answer the question:
From which bag was a given document d generated?

Answer is found by estimating the probabilities

PeacePeace

WarWar andand

p c∣d 

d = (War, and, Peace)

p Sports∣d

p Business∣d 

p Politics∣d
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Simple Naïve Bayes Classifier 
for Text  (Mitchell 1997)

a document is a sequence of n terms

Apply Independence Assumption:
p(ti|c) is the probability with which the 

word                 occurs in documents of class c

Naïve Bayes Classifier
putting things together:

p d∣c =∏
i=1

∣d∣

pt i ∣c 

p d∣c =p t1 , t2 ,.... t n∣c 

t i=wi j

c=arg maxc ∏
i=1

∣d∣

p t i ∣c p c
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Estimating Probabilities

Estimate for prior class probability p(c)
 fraction of documents that are of class c

Word probabilities can be estimated from data
estimated from fraction of document positions in each class on 

which the term occurs
 put all documents of class c into a single (virtual) document
 compute the frequencies of the words in this document

Straight-forward approach:
estimate probabilities from the frequencies 

in the training set
word w occurs n(d,w) times in document d

What happens if there is a new word in a test document? 
Solutions? 

Wt

p t i=w∣c =
nw, c

∑
w∈W

nw ,c

nw , c=∑d∈c
n d , w
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Estimating Probabilities
Laplace Correction

Straight-forward approach:
estimate probabilities from the frequencies 

in the training set
word w occurs n(d,w) times in document d

Problem:
 test documents may contain new words
 those will be have estimated probabilities 0
assigned probability 0 for all classes

Smoothing of probabilities:
basic idea: assume a prior distribution on word probabilities
e.g., Laplace correction

assumes each word occurs
at least once in a document

p (t i=w|c )=
nw , c+1

∑
w∈W

(nw , c+1)
=

nw , c+1

∑
w∈W

nw , c+|W|

p (t i=w∣c)=
nw , c

∑
w ∈W

nw ,c

nw , c=∑d∈c
n(d , w)
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Finding a Linear Decision Boundary

Find w1, w2, b, such that

w1 x1 + w2 x2 + b ≥ 0 for red points

w1 x1 + w2 x2 + b ≤ 0 for green points

Find w1, w2, b, such that

w1 x1 + w2 x2 + b ≥ 0 for red points

w1 x1 + w2 x2 + b ≤ 0 for green points

Manning and Raghavan



IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 62 
Chakrabarti & Ramakrishnan

Fitting a linear decision boundary

Discriminative approach

 try to find a weight vector w so that the discrimination between the 
two classes is optimal

statistical approaches:
 perceptrons (neural networks with a single layer)
 logistic regression

most common approach in text categorization
→ support vector machines
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Which Hyperplane?

In general, many possible
solutions for w = (w1, w2), b

Manning and Raghavan

 Intuition 1: If there are no points near the decision surface, then 
there are no very uncertain classifications → better 
generalization
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Support Vector Machines: Intuition

 Intuition 2: If you have to place a fat separator between 
classes, you have less choices, and so overfitting is not so 
easy

Manning and Raghavan
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Support Vector Machine (SVM)

Support vectors

Maximize
margin

SVMs maximize the margin around 
the separating hyperplane.
 a.k.a. large margin classifiers

The decision function is fully specified 
by a subset of training samples, 
the support vectors.

Formalization
w: normal vector to decision hyperplane

xi: i-th data point 

 yi: class of data point i (+1 or −1)     NB: Not 1/0

Classifier is:  
                                  f (xi) =  sign(wTxi + b)

Manning and Raghavan

wT⋅xib=0
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Support Vector Machine (SVM) 
Mathematics

Find w and b such that

Φ(w) =½ |w|² + CΣξi  is minimized 

and for all {(xi ,yi)}:    
yi (wTxi + b) ≥ 1- ξi   and  ξi ≥ 0

Support vectors

Maximize
margin

wT⋅xib=0

Regularization 2, Soft margin idea: 
slack variables allow mistakes i.e. 
training examples on the wrong 
side of the hyperplane

Regularization 1: try to minimize 
the complexity of the model 
→  better generalization

Regularization control parameter: 
trade-off between underfitting and 
overfitting to training data
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Capacity Control
Occam's Razor

Machine Learning Interpretation:
Among theories of (approximately) equal quality on the training 

data, simpler theories have a better chance to be more 
accurate on the test data

 It is desirable to find a trade-off between accuracy and 
complexity of a model

(Debatable) Probabilistic Justification:
There are more complex theories than simple theories. 

Thus a simple theory is less likely to explain the observed 
phenomena by chance.

Entities should not be multiplied beyond necessity.
William of Ockham (1285 - 1349) 
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Capacity Control
Overfitting

Given 
 a fairly general model class (e.g., rules)
 enough degrees of freedom (e.g., no length restriction)

you can always find a model that explains the data
→ Overfitting

Such concepts do not generalize well!
Particularly bad for noisy data
Data often contain errors due to
 inconsistent classification
 measurement or annotation errors
 missing values
 some other kinds of noise

→ Capacity control
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Regularization
Example for linear SVMs
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High Dimensional Data

Pictures like the one at right are misleading!
Documents are zero along almost all axes
Most document pairs are very far apart 
 (i.e., not strictly orthogonal, but only 

share very common words and a few 
scattered others)

 In classification terms: 
virtually all document sets are separable, for almost any 
classification

This is part of why linear classifiers are quite successful in 
text classification

→ SVMs with linear Kernels are usually sufficient!

Manning and Raghavan
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Non-linear SVMs
Feature spaces

General idea:   the original feature space can always be 
mapped to some higher-dimensional feature space where 
the training set is separable:

Φ:  x → φ(x)

Manning and Raghavan
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Non-linear SVMs
Kernel-Trick

Replace inner product operation by Kernel function
K(xi,xj)= φ(xi) 

Tφ(xj)

→ make data separable
→ map data into better representational space

Common kernels
Linear:

Polynomial:

                   
Radial basis function (infinite dimensional space)

Manning and Raghavan

K xi , x j=1xi
T⋅x j

d

K xi , x j=xi
T⋅x j

K xi , x j=e
−∥xi−x j∥

2

2 2
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Regularization
Example for non-linear SVMs
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