Instance based classification

Data Mining and Machine Learning: Techniques and Algorithms

Eneldo Loza Mencía

eneldo@ke.tu-darmstadt.de

Knowledge Engineering Group, TU Darmstadt

International Week 2019, 21.1. – 24.1. University of Economics, Prague

Outline

- Rote Learning
- k-Nearest Neighbor Classification
 - Choosing k
 - Distance functions
 - Instance and Feature Weighting
 - Efficiency
- kD-Trees
 - Ball trees

Rote Learning

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
<mark>07-14</mark>	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes
today		CUPPY	normal	false	

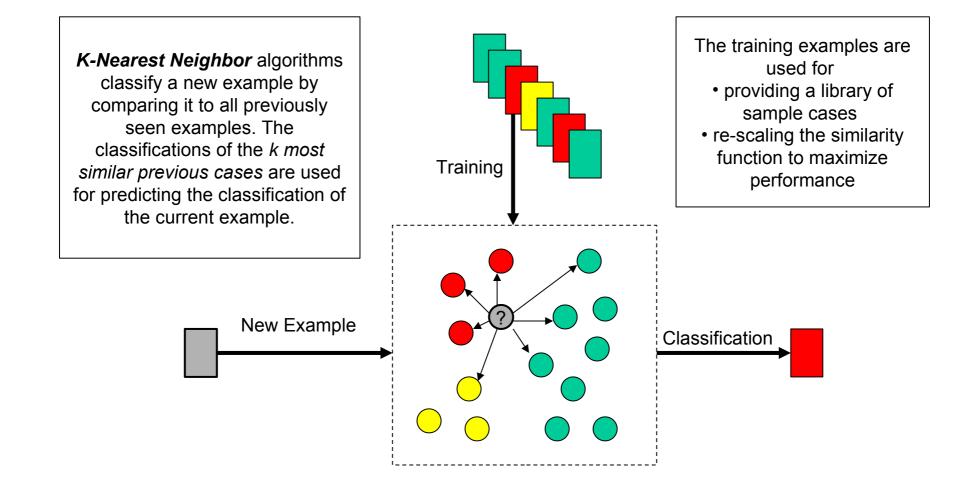
Instance Based Classifiers

- No model is learned
 - The stored training instances themselves represent the knowledge
 - Training instances are searched for instance that most closely resembles new instance
 - \rightarrow lazy learning
- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest-neighbor classifier
 - Uses k "closest" points (nearest neigbors) for performing classification

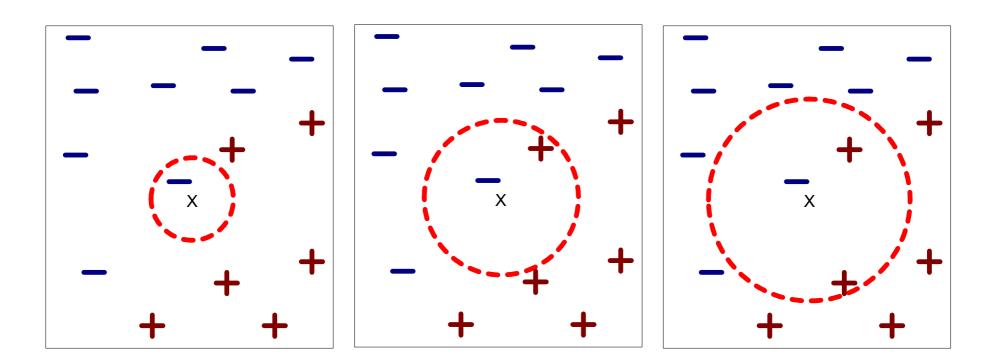
Nearest Neighbor Classification

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
12-30	mild	rain	high	false	yes
tomorrow	mild	sunny	normal	false	yes

Nearest Neighbor Classifier



Nearest Neighbors



(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

k nearest neighbors of an example *x* are the data points that have the *k* smallest distances to *x*

Prediction

The predicted class is determined from the nearest neighbor list

classification

• take the majority vote of class labels among the k-nearest neighbors

$$\hat{y} = \max_{c} \sum_{i=1}^{k} \begin{cases} 1 & \text{if } y_{i} = c \\ 0 & \text{if } y_{i} \neq c \end{cases} = \max_{c} \sum_{i=1}^{k} \frac{1}{4} (y_{i} = c) \\ \text{indicator function} \end{cases}$$

- can be easily be extended to regression
 - predict the average value of the class value of the k-nearest neighbors

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y_i$$

Weighted Prediction

 Often prediction can be improved if the influence of each neighbor is weighted

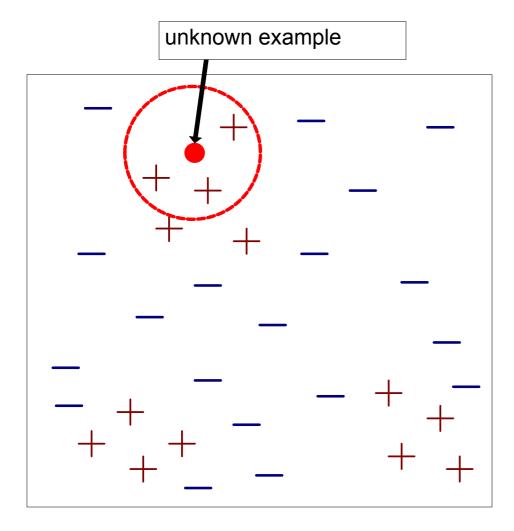
$$\hat{y} = \frac{\sum_{i=1}^{k} w_i \cdot y_i}{\sum_{i=1}^{k} w_i}$$

Weights typically depend on distance, e.g.

$$w_i = \frac{1}{d(x_i, x)^2}$$

- Note:
 - with weighted distances, we could use all examples for classifications (→ Inverse Distance Weighting)

Nearest-Neighbor Classifiers



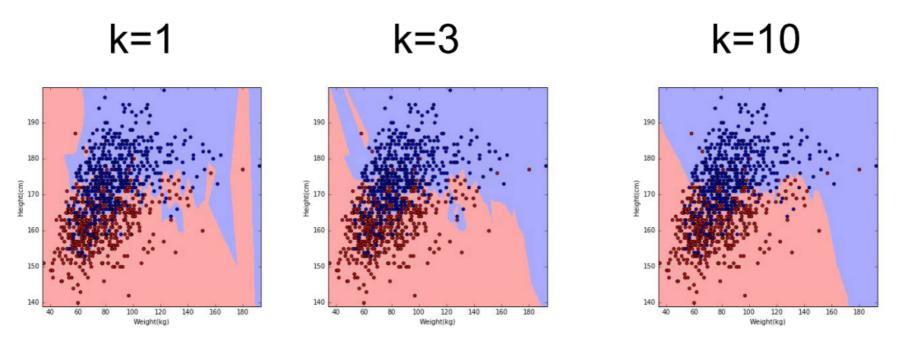
- Require three things
 - The set of stored examples
 - Distance Metric to compute distance between examples
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown example:
 - Compute distance to other training examples
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown example

(e.g., by taking majority vote)

Lazy Learning Algorithms

- kNN is considered a lazy learning algorithm
 - Defers data processing until it receives a request to classify an unlabelled example
 - Replies to a request for information by combining its stored training data
 - Discards the constructed answer and any intermediate results
- Other names for lazy algorithms
 - Memory-based, Instance-based, Exemplar-based, Case-based, Experience based
- This strategy is opposed to eager learning algorithms which
 - Compiles its data into a compressed description or model
 - Discards the training data after compilation of the model
 - Classifies incoming patterns using the induced model

Choosing the value of k



• if k is too small

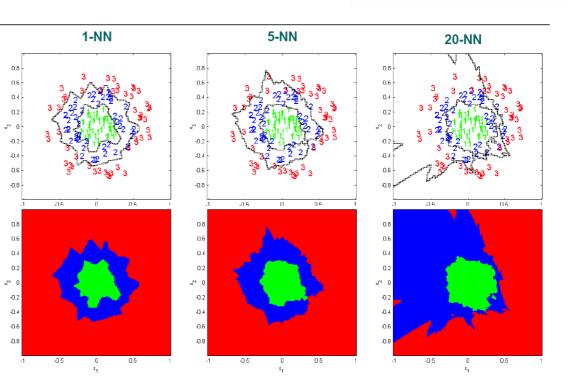
sensitive to noise in the data (misclassified examples)

greater k leads to smoother boundaries

Choosing the value of k

- If k is too large
 - neighborhood may include points from other classes
 - Iimiting case:
 - all examples are considered
 - Iargest class is predicted

- good values can be found
 - e.g, by evaluating various values with cross-validation on the training data



Distance Functions

- Computes the distance between two examples
 - so that we can find the "nearest neighbor" to a given example
- General Idea:
 - reduce the distance $d(x_1, x_2)$ of two examples to the distances

 $d_A(v_1, v_2)$ between two values for attribute A

- Popular choices
 - Euclidean Distance (L2):
 - straight-line between two points
 - Manhattan or City-block Distance (L∞):
 - sum of axis-parallel line segments
- other choices possible
 - important in higher dimensional spaces: do we care about deviations in all dimensions or primarily the biggest?

 $d(x_1, x_2) = \sqrt{\sum_{A} d_{A}(v_{1,A}, v_{2,A})^2}$

 $d(x_1, x_2) = \sum_{A} d_A(v_{1,A}, v_{2,A})$

Distance Functions for Numerical Attributes

distance between two attribute values

$$d_A(v_{1}, v_2) = |v_1 - v_2|$$

- Normalization:
 - Different attributes are measured on different scales
 - \rightarrow values need to be normalized in [0,1]:

$$\hat{v}_i = \frac{v_i - \min v_j}{\max v_j - \min v_j}$$

- Note:
 - This normalization assumes a (roughly) uniform distribution of attribute values
 - For other distributions, other normalizations might be preferable
 - e.g.: logarithmic for salaries?

TECHNISCHE

Distance Functions for Symbolic Attributes

1

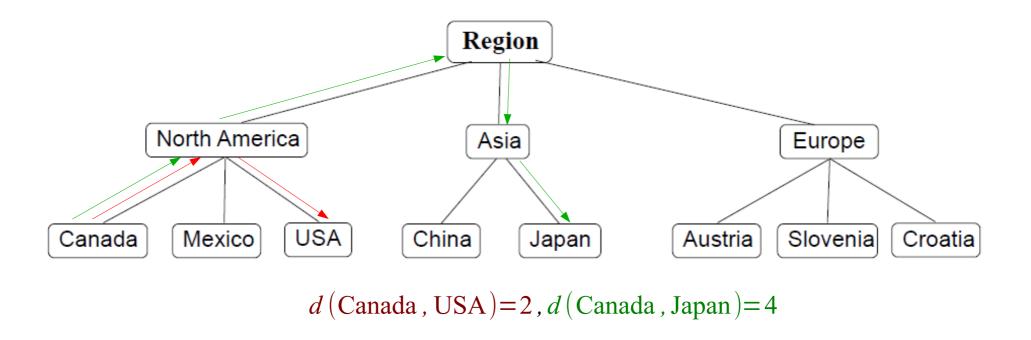
0/1 distance

$$d_{A}(v_{1}, v_{2}) = \begin{vmatrix} 0 & \text{if } v_{1} = v_{2} \\ 1 & \text{if } v_{1} \neq v_{2} \end{vmatrix}$$

- Value Difference Metric (VDM) (Stanfill & Waltz 1986)
 - two values are similar if they have approximately the same distribution over all classes (similar relative frequencies in all classes)

Other Distance Functions

- Other distances are possible
 - hierarchical attributes
 - distance of the values in the hierarchy
 - e.g., length of shortest path form v_1 to v_2



Other Distance Functions

- Other distances are possible
 - hierarchical attributes
 - distance of the values in the hierarchy
 - e.g., length of shortest path form v_1 to v_2
- in general
 - distances are domain-dependent
 - can be chosen appropriately

Distances for Missing Values

- not all attribute values may be specified for an example
- Common policy:
 - assume missing values to be maximally distant

Feature and Instance Weighting

Feature Weighting

- Not all dimensions are equally important
 - comparisons on some dimensions might even be completely irrelevant for the prediction task
 - straight-forward distance functions give equal weight to all dimensions
 - RELIEF: give higher weight to features which allow to better discriminate between classes (Kira & Rendell, ICML-92)

Instance Weighting:

- we assign a weight to each instance
- instances with lower weights are always distant
- hence have a low impact on classification
- PEBLS (Cost & Salzberg, 1993):

 $d'(x_1, x_2) = \frac{1}{w_x \cdot w_x} \cdot d(x_1, x_2)$ $w_x = \frac{\text{Number of times } x \text{ has correctly predicted the class}}{\text{Number of times } x \text{ has been used for prediction}}$

Efficiency of NN algorithms

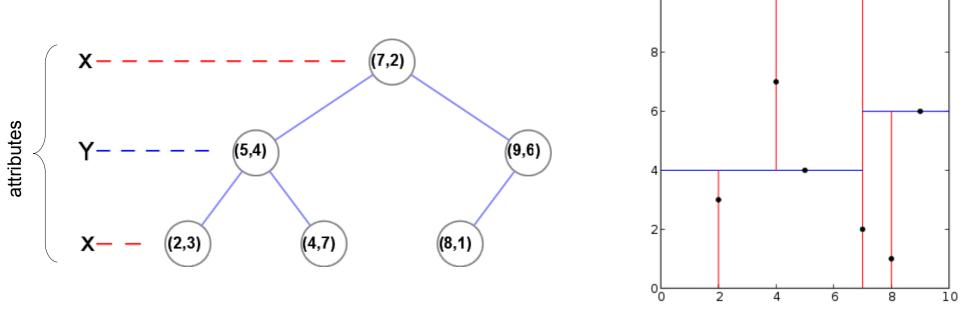
- very efficient in training
 - only store the training data
- not so efficient in testing
 - computation of distance measure to every training example
 - much more expensive than, e.g., decision trees
- Note that k-NN and 1-NN are equal in terms of efficiency
 - retrieving the k nearest neighbors is (almost) not more expensive than retrieving a single nearest neighbor
 - k nearest neighbors can be maintained in a queue

Finding nearest neighbors efficiently

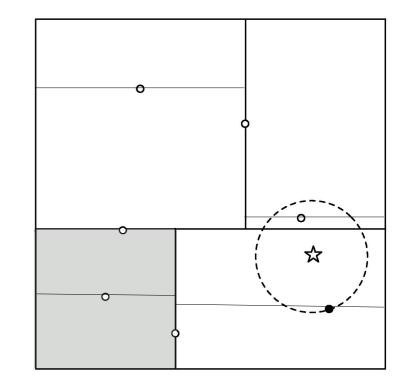
- Simplest way of finding nearest neighbour:
 - Inear scan of the data
 - classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
 - kD-trees
 - ball trees

kD-Trees

- common setting (others possible)
 - each level corresponds to one of the attributes
 - order of attributes can be arbitrary, fixed, and cyclic
 - each level splits according to its attribute
 - ideally use the median value (results in balanced trees)
 - often simply use the value of the next example



- The effect of a kD-tree is to partition the (multi-dimensional) sample space according to the underlying data distribution
 - finer partitioning in regions with high density
 - coarser partitioning in regions with low density
- For a given query point
 - descending the tree to find the data points lying in the cell that contains the query point
 - examine surrounding cells if they overlap the ball centered at the query point and the closest data point so far
 - recursively back up one level and check distance to the split point
 - if overlap also search other branch
 - \rightarrow only a few cells have to be searched



- Assume we have example [1,5]
 - Unweighted Euclidian distance

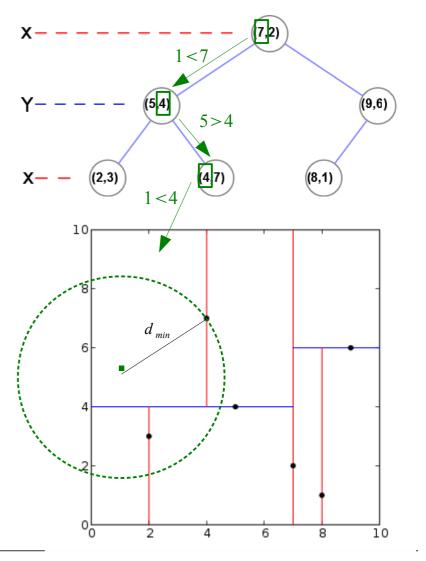
$$d(e_{1},e_{2}) = \sqrt{\sum_{A} d_{A}(e_{1},e_{2})^{2}}$$

- sort the example down the tree:
 - ends in the left successor of [4,7]
- compute distance to example in the leaf

 $d([1,5],[4,7]) = \sqrt{(1-4)^2 + (5-7)^2} = \sqrt{13}$

- now we have to look into rectangles that may contain a nearer example
 - remember the difference to the closest example

$$d_{min} = \sqrt{13}$$



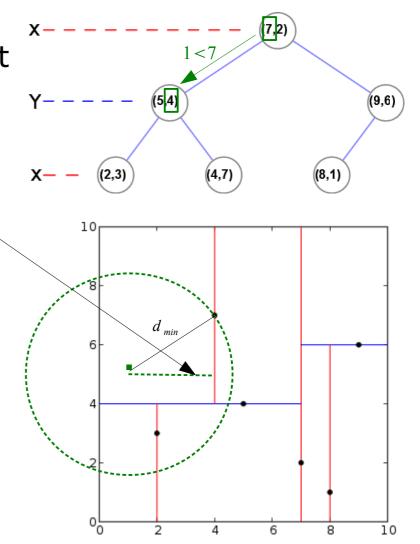
go up one level (to example [4,7])
compute distance to the closest point on this split (difference only on X)

 $d([1,5],[4,*]) = \sqrt{(4-1)^2 + 0^2} = 3$

 If the difference is smaller than the current best difference

 $d([1,5],[4,*]) = 3 < \sqrt{13} = d_{min}$

- then we could have a closer example in the right subtree of [4,7]
 - which in our case does not contain any example → done



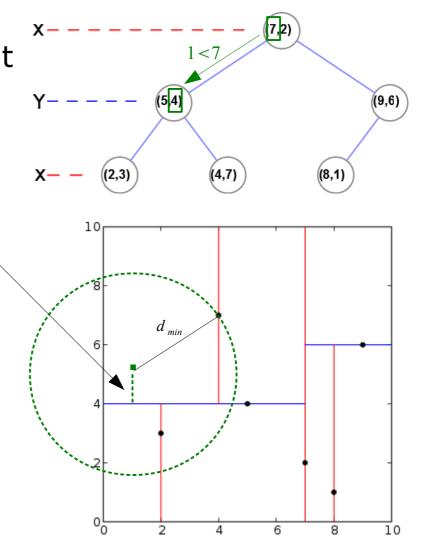
go up one level (to example [5,4])
compute distance to the closest point on this split (difference only on Y)

 $d([1,5],[*,4]) = \sqrt{0^2 + (5-4)^2} = 1$

 if the difference is smaller than the current best difference

 $d([1,5],[*,4]) = 1 < \sqrt{13} = d_{min}$

- then we could have a closer example in area Y < 4.</p>
 - go down the other branch
 - and repeat recursively



IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 38

Using kD-trees: example

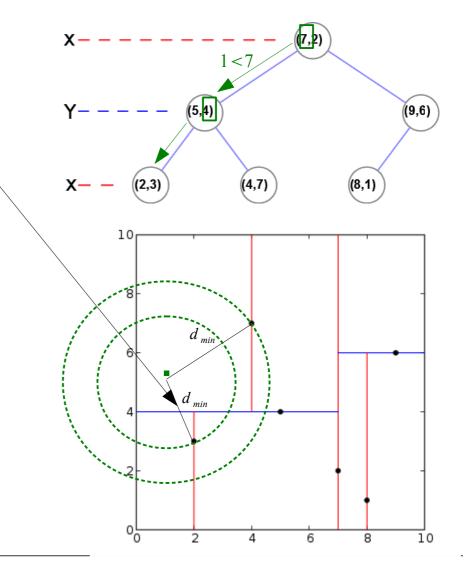
- go down to leaf [2,3]
- compute distance to example in this leaf

 $d([1,5],[2,3]) = \sqrt{(1-2)^2 + (5-3)^2} = \sqrt{5}$

 if the difference is smaller than the current best difference

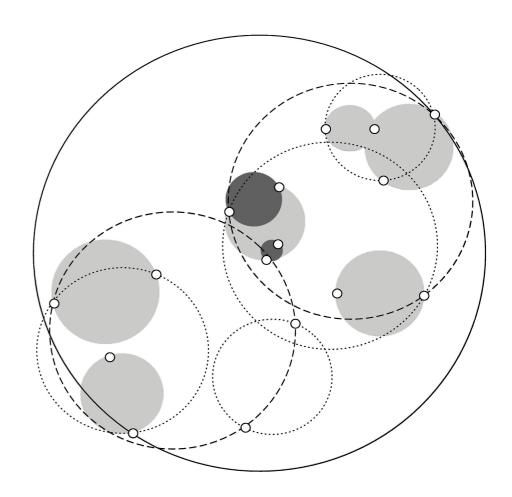
 $d([1,5],[2,3]) = \sqrt{5} < \sqrt{13} = d_{min}$

- then the example in the leaf is the new nearest neighbor and $d_{min} = \sqrt{5} < \sqrt{13}$
- this is recursively repeated until we have processed the root node
 - no more distances have to be computed



Ball trees

- Problem in kD-trees: corners
- Observation:
 - There is no need to make sure that regions don't overlap
- → We can use balls (hyperspheres) instead of hyperrectangles
 - A ball tree organizes the data into a tree of k-dimensional hyperspheres
 - Normally allows for a better fit to the data and thus more efficient search



Discussion

- Nearest Neighbor methods are often very accurate
 - Assumes all attributes are equally important
 - Remedy: attribute selection or weights
 - Possible remedies against noisy instances
 - Take a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
 - Statisticians have used k-NN since early 1950s
 - If $n \to \infty$ and $k/n \to 0$, error approaches minimum
 - can model arbitrary decision boundaries
- ...but somewhat inefficient (at classification time)
 - straight-forward application maybe too slow
 - kD-trees become inefficient when number of attributes is too large (approximately > 10)
 - Ball trees work well in higher-dimensional spaces
- several similarities with rule learning

