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Outline

Rote Learning
 k-Nearest Neighbor Classification
 Choosing k
Distance functions
 Instance and Feature Weighting
 Efficiency

 kD-Trees
 Ball trees
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Rote Learning

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

07-30 mild  rain  high false  yes 

today cool sunny normal false yes
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Instance Based Classifiers

No model is learned
 The stored training instances themselves represent the knowledge
 Training instances are searched for instance that most closely 
resembles new instance

→ lazy learning

Examples:
 Rote-learner
 Memorizes entire training data and performs classification only if 

attributes of record match one of the training examples exactly
Nearest-neighbor classifier
 Uses k “closest” points (nearest neigbors) for performing 

classification
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Nearest Neighbor Classification

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

12-30 mild  rain  high false  yes 

tomorrow mild sunny normal false yes
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?

Training

Classification
New Example

K-Nearest Neighbor algorithms 
classify a new example by 

comparing it to all previously 
seen examples. The 

classifications of the k most 
similar previous cases are used 
for predicting the classification of 

the current example.

The training examples are 
used for 

• providing a library of 
sample cases 

• re-scaling the similarity 
function to maximize 

performance

Nearest Neighbor Classifier
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Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

    k nearest neighbors of an example x are the data points that have the k 
smallest distances to x
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Prediction

The predicted class is determined from the nearest neighbor list

 classification
 take the majority vote of class labels among the k-nearest neighbors

 can be easily be extended to regression
 predict the average value of the class value of the k-nearest 
neighbors

y=1
k ∑i=1

k
yi

y=maxc∑i=1

k {1 if y i=c
0 if y i≠c

=maxc∑i=1

k
1 yi=c

indicator function
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Weighted Prediction

Often prediction can be improved if the influence of each 
neighbor is weighted 

Weights typically depend on distance, e.g.

Note:
with weighted distances, we could use all examples for classifications 
(→ Inverse Distance Weighting)

y=
∑i=1

k
w i⋅y i

∑i=1

k
w i

w i=
1

d x i , x2
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Nearest-Neighbor Classifiers

Unknown record  Require three things
 The set of stored examples
 Distance Metric to compute distance 

between examples
 The value of k, the number of nearest 

neighbors to retrieve

 To classify an unknown example:

 Compute distance to other training 
examples

 Identify k nearest neighbors 
 Use class labels of nearest neighbors to 

determine the class label of unknown 
example 
(e.g., by taking majority vote)

unknown example
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Lazy Learning Algorithms

 kNN is considered a lazy learning algorithm
Defers data processing until it receives a request to classify an 
unlabelled example

 Replies to a request for information by combining its stored training 
data

Discards the constructed answer and any intermediate results

Other names for lazy algorithms
Memory-based, Instance-based , Exemplar-based , Case-based, 
Experience based

This strategy is opposed to eager learning algorithms which
 Compiles its data into a compressed description or model
Discards the training data after compilation of the model
 Classifies incoming patterns using the induced model
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Choosing the value of k

 if k is too small
 sensitive to noise in the data (misclassified examples)

greater k leads to smoother boundaries

Steven Skiena
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Choosing the value of k

 If k is too large
 neighborhood may include 
points from other classes

 limiting case: 
 all examples are considered
 largest class is predicted

good values can be found
 e.g, by evaluating various 
values with cross-validation on the training data
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Distance Functions 

Computes the distance between two examples
 so that we can find the “nearest neighbor” to a given example

General Idea:
 reduce the distance d (x1, x2) of two examples to the distances

d A (v1, v2) between two values for attribute A

Popular choices
 Euclidean Distance (L2):
 straight-line between two points

Manhattan or City-block Distance (L∞):
 sum of axis-parallel line segments

other choices possible
 important in higher dimensional 
spaces: do we care about 
deviations in all dimensions or primarily the biggest?

d  x1, x2=∑A
d Av1, A , v2, A

2

d  x1, x2=∑A
d Av1, A , v2, A

© Steven Skiena: CSE 519
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Distance Functions for Numerical 
Attributes

Numerical Attributes:
 distance between two attribute values

Normalization:
Different attributes are measured on different scales 

→ values need to be normalized in [0,1]:

Note: 
 This normalization assumes a (roughly) uniform distribution of 

attribute values
 For other distributions, other normalizations might be preferable
 e.g.: logarithmic for salaries?

vi=
vi−min v j

max v j−min v j

d Av1, v2=∣v1−v2∣
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Distance Functions for Symbolic 
Attributes

0/1 distance

Value Difference Metric (VDM) (Stanfill & Waltz 1986)

 two values are similar if they have approximately the same 
distribution over all classes (similar relative frequencies in all classes)

d Av1, v2={0 if v1=v2

1 if v1≠v2
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Other Distance Functions

Other distances are possible
 hierarchical attributes
 distance of the values in the hierarchy 
 e.g., length of shortest path form v1 to v2

d (Canada , USA)=2 , d (Canada , Japan )=4
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Other Distance Functions

Other distances are possible
 hierarchical attributes
 distance of the values in the hierarchy 
 e.g., length of shortest path form v1 to v2

 in general
 distances are domain-dependent
 can be chosen appropriately

Distances for Missing Values

 not all attribute values may be specified for an example
Common policy: 
 assume missing values to be maximally distant 
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Feature and Instance Weighting

Feature Weighting
Not all dimensions are equally important
 comparisons on some dimensions might even be completely 

irrelevant for the prediction task
 straight-forward distance functions give equal weight to all 

dimensions
 RELIEF: give higher weight to features which allow to better 

discriminate between classes (Kira & Rendell, ICML-92)

 Instance Weighting:
 we assign a weight to each instance
 instances with lower weights are always distant
 hence have a low impact on classification
 PEBLS  (Cost & Salzberg, 1993):

d ' ( x1 , x2)=
1

w x1
⋅w x2

⋅d ( x1 , x2) w x=
Number of times x  has correctly predicted the class
Number of times x  has been used for prediction
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Efficiency of NN algorithms

 very efficient in training
 only store the training data

not so efficient in testing
 computation of distance measure to every training example
much more expensive than, e.g., decision trees

Note that k-NN and 1-NN are equal in terms of efficiency
 retrieving the k nearest neighbors is (almost) not more expensive 
than retrieving a single nearest neighbor

 k nearest neighbors can be maintained in a queue
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Finding nearest neighbors 
efficiently

Simplest way of finding nearest neighbour: 
 linear scan of the data
 classification takes time proportional to the product of the number of 
instances in training and test sets

Nearest-neighbor search can be done more efficiently using 
appropriate data structures
 kD-trees
 ball trees
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kD-Trees

 common setting (others possible)
 each level corresponds to one of the attributes
 order of attributes can be arbitrary, fixed, and cyclic

 each level splits according to its attribute
 ideally use the median value (results in balanced trees)
 often simply use the value of the next example

at
tr

ib
ut

es
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Using kD-trees: example

The effect of a kD-tree is to partition the (multi-dimensional) 
sample space according to the underlying data distribution 
 finer partitioning in regions with high density
 coarser partitioning in regions with low density

 For a given query point
 descending the tree to find the 

data points lying in the cell that 
contains the query point

 examine surrounding cells if they overlap 
the ball centered at the query point and 
the closest data point so far
 recursively back up one level and 

check distance to the split point
 if overlap also search other branch 

→ only a few cells have to be searched



IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 35 

Using kD-trees: example

Assume we have example [1,5]
 Unweighted Euclidian distance

 sort the example down the tree:

 ends in the left successor of [4,7]

 compute distance to example in the leaf

 

 now we have to look into rectangles 
that may contain a nearer example

 remember the difference to the
closest example

.

17

54
d e1, e2=∑A

d Ae1, e2
2

d  [1,5 ] , [4,7 ]=1−425−72=13

d min=13

d min

14
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Using kD-trees: example

go up one level (to example [4,7])
 compute distance to the closest point
on this split (difference only on X)

 If the difference is smaller than 
the current best difference

 then we could have a closer
example in the right subtree of [4,7]
which in our case does not contain
any example  done→

.

17

d ([1,5 ] , [4,*])=√(4−1)2+02=3

d mind ([1,5 ] , [4,* ])=3<√13=d min
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Using kD-trees: example

go up one level (to example [5,4])
 compute distance to the closest point
on this split (difference only on Y)

 if the difference is smaller than 
the current best difference

 then we could have a closer
example in area Y < 4.
 go down the other branch
 and repeat recursively

.

17

d  [1,5 ] , [*,4 ]=025−42=1

d min
d ([1,5 ] , [*,4 ])=1<√13=d min
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Using kD-trees: example

 go down to leaf [2,3]
 compute distance to example in

this leaf

 if the difference is smaller than 
the current best difference

 then the example in the leaf is 
the new nearest neighbor and

 this is recursively repeated until
we have processed the root node
 no more distances have to be computed

.

17

d ([1,5 ] , [2,3 ])=√(1−2)2+(5−3)2=√5

d min

d ([1,5 ] , [2,3 ])=√5<√13=d min

d min

d min=513
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Ball trees

Problem in kD-trees: corners
Observation: 
 There is no need to make sure 
that regions don't overlap 

 → We can use balls 
(hyperspheres) instead of 
hyperrectangles
 A ball tree organizes the data 
into a tree of k-dimensional 
hyperspheres

Normally allows for a better fit 
to the data and thus more 
efficient search
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Discussion 

Nearest Neighbor methods are often very accurate
 Assumes all attributes are equally important
 Remedy: attribute selection or weights

 Possible remedies against noisy instances
 Take a majority vote over the k nearest neighbors
 Removing noisy instances from dataset (difficult!)

 Statisticians have used k-NN since early 1950s
 If n   and k/n  0, error approaches minimum
 can model arbitrary decision boundaries

 ...but somewhat inefficient (at classification time)
 straight-forward application maybe too slow
 kD-trees become inefficient when number of attributes is too large (approximately > 10)
 Ball trees work well in higher-dimensional spaces

 several similarities with rule learning
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