Evaluation

Data Mining and Machine Learning: Techniques and Algorithms

Eneldo Loza Mencía

eneldo@ke.tu-darmstadt.de

Knowledge Engineering Group, TU Darmstadt



International Week 2019, 21.1. – 24.1. University of Economics, Prague

Evaluation of Learned Models

- Validation through experts
 - a domain expert evaluates the plausibility of a learned model
 - + but often the only option (e.g., clustering)
 - subjective, time-intensive, costly
- Validation on data
 - evaluate the accuracy of the model on a separate dataset drawn from the same distribution as the training data
 - labeled data are scarce, could be better used for training
 - + fast and simple, off-line, no domain knowledge needed, methods for re-using training data exist (e.g., cross-validation)
- On-line Validation
 - test the learned model in a fielded application
 - + gives the best estimate for the overall utility
 - bad models may be costly

Confusion Matrix

	Classified as +	Classified as –	
Is +	true positives (tp)	false negatives (fn)	tp + fn = P
Is –	false positives (fp)	true negatives (tn)	fp + tn = N
	tp + fp	fn + tn	$ \mathbf{E} = \mathbf{P} + \mathbf{N}$

- the confusion matrix summarizes all important information
 - how often is class *i* confused with class *j*
- most evaluation measures can be computed from the confusion matrix, most prominent ones being:
 - accuracy:
 - percentage of correctly classified examples
 - error rate:
 - percentage of incorrectly classified examples

$$acc = \frac{tp+tn}{P+N}$$

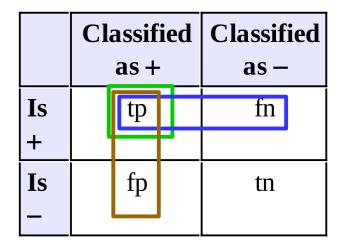
$$err = \frac{fp + fn}{P + N} = 1 - acc$$

$$\ominus$$

Recall and Precision

- Accuracy is sometimes not good for evaluation
 - Accuracy must be interpreted relative to *default accuracy* (accuracy of the learner that always predicts majority class)
 - For unbalanced class distributions might be misleading
 - No interpretation of results (low accuracy because classified too cautious/permissive?)
- Alternative:
 - Recall: Percentage of relevant (=positive) and predicted test instances among all relevant test instances
 - Precision: Percentage of relevant and predicted test instances among all predicted test instances

$$P = \frac{tp}{tp + fp}$$



F-Measure

Weighted harmonic mean of recall and precision

$$F_{\beta} = \frac{(\beta^{2} + 1) \cdot P \cdot R}{\beta^{2} \cdot P + R} \quad \alpha = \frac{\beta^{2}}{\beta^{2} + 1} \quad F_{\alpha} = \frac{1}{\alpha \frac{1}{R} + (1 - \alpha) \frac{1}{P}}$$
• equivalent form for

The parameter β can be used to trade off the relative importance of recall and precision

•
$$F_0 = P$$

- $F_{\infty} = R$
- F_1 : *P* and *R* equally weighted
- F_2 : recall is four times more important than precision
- $F_{0.5}$: precision is four times more important than recall

Recall and Precision for Multi-Class Problems

- For multi-class text classification tasks, recall and precision can be defined for each category separately
- Recall of Class X:
 - How many documents of class X have been recognized as class X?
- Precision of Class X:
 - How many of our predictions for class X were correct?
- Predictions for Class X can be summarized in a 2x2 table
 - z.B:

$$X = A, \overline{X} = \{B, C, D\}$$

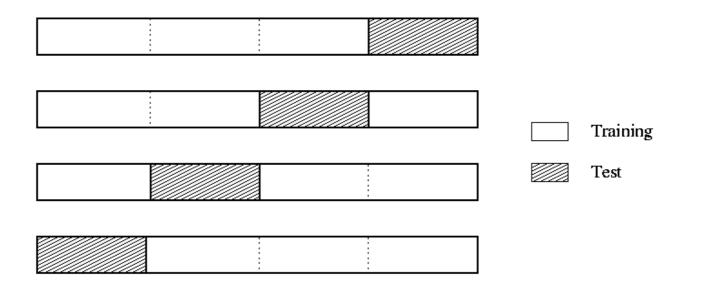
	classified X	classified not X	
is X	$n_{X,X}$	$n_{\overline{X},X}$	n_X
is not X	$n_{X,\overline{X}}$	$n_{\overline{X},\overline{X}}$	$n_{\overline{X}}$
	\overline{n}_X	$\overline{n}_{\overline{X}}$	п

Out-of-Sample Testing

- Performance cannot be measured on training data over-estimation due to (over)fitting! 20 Reserve a portion of the available Fehler [%] data for testing typical scenario 2/3 of data for training 80 1/3 of data for testing (evaluation) Trainingsdaten Testdaten a classifier is trained on the training data 100 60 40 80 0 20 100 and tested on the test data Trainingsdaten [%]
 - e.g., confusion matrix is computed for test data set
- Problems:
 - waste of data
 - Iabelling may be expensive
 - high variance
 - often: repeat 10 times or → cross-validation

Cross-Validation

- Algorithm:
 - split dataset into x (usually 10) partitions
 - for every partition *X*
 - use other x-1 partitions for learning and partition X for testing
 - average the results
- Example: 4-fold cross-validation



Leave-One-Out Cross-Validation

- n-fold cross-validation
 - where *n* is the number of examples:
 - use *n*-1 examples for training
 - I example for testing
 - repeat for each example
- Properties:
 - + makes best use of data
 - only one example not used for testing
 - + no influence of random sampling
 - training/test splits are determined deterministically
 - typically very expensive
 - but, e.g., not for k-NN (Why?)
 - bias
 - Why?

Cost-Sensitive Evaluation

- Error rate assumes same costs for all misclassifications, but this is very often not the case in reality
 - Examples
 - Loan Applications
 - \hfill rejecting an applicant who will not pay back \rightarrow minimal costs
 - accepting an applicant who will pay back \rightarrow gain
 - \hfill accepting an applicant who will not pay back \rightarrow big loss
 - rejecting an applicant who would pay back \rightarrow loss
 - Spam-Mail Filtering
 - rejecting good E-mails (ham) is much worse than accepting a few spam mails
 - Medical Diagnosis
 - failing to recognize a disease is often much worse than to treat a healthy patient for this disease

ROC Analysis

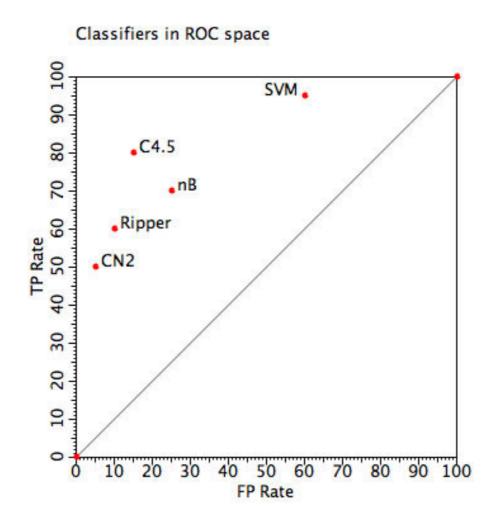
Receiver Operating Characteristic

 origins in signal theory to show tradeoff between hit rate and false alarm rate over noisy channel

 $fpr = \frac{fp}{fn + tn}$ $tpr = \frac{tp}{tp + fn}$

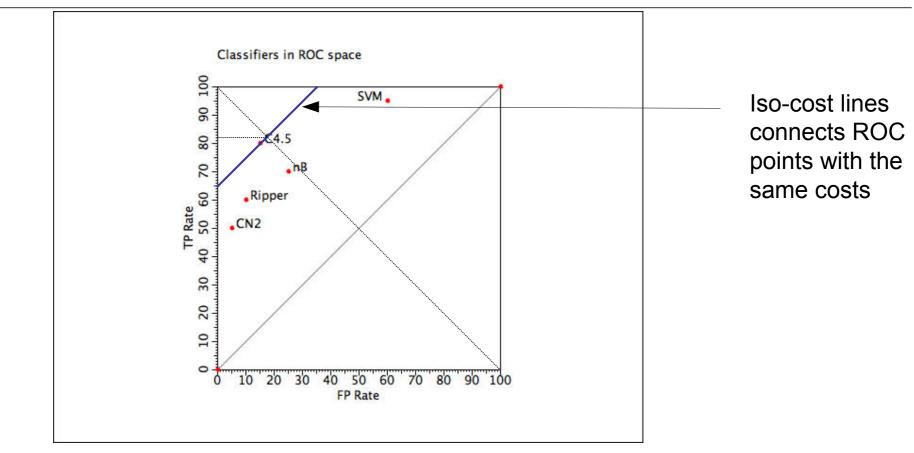
- Basic Objective:
 - Determine the best classifier for varying cost models
 - accuracy is only one possibility, where true positives and false positives receive equal weight
- Additional Objective: analyze single classifier
- Method:
 - Visualization in ROC space
 - each classifier is characterized by its measures
 - false positive rate fpr (y-axis)
 - true positive rate tpr (x-axis)

ROC Analysis Example plot



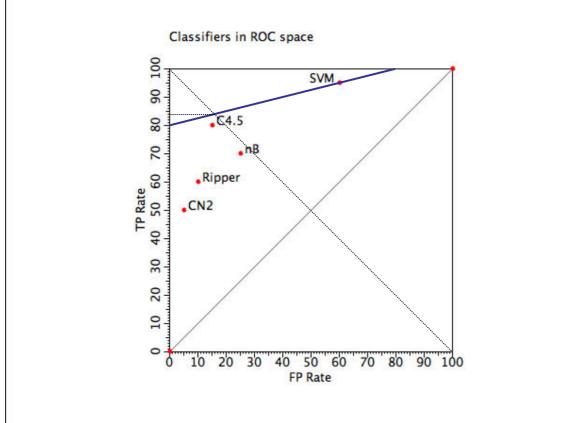
ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/ MachineLearning/rocon/) Slide © P. Flach, ICML-04 Tutorial on ROC

ROC Analysis Selecting the optimal classifier

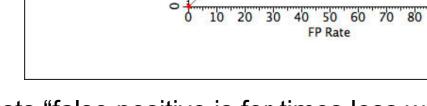


For costs "false positive is as bad as a false negative" \rightarrow C4.5 is optimal

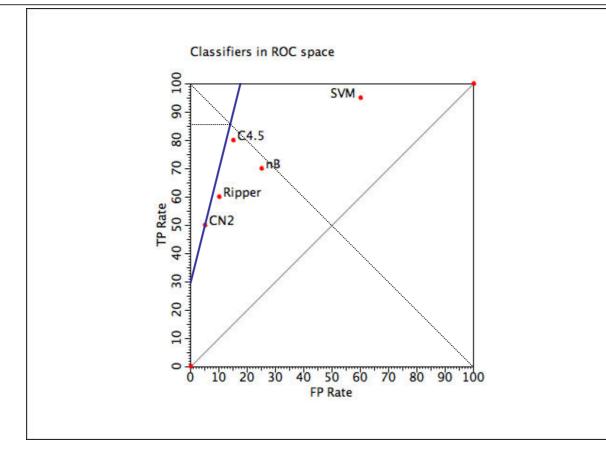
ROC Analysis Selecting the optimal classifier



For costs "false positive is for times less worse than a false negative" \rightarrow SVM is optimal

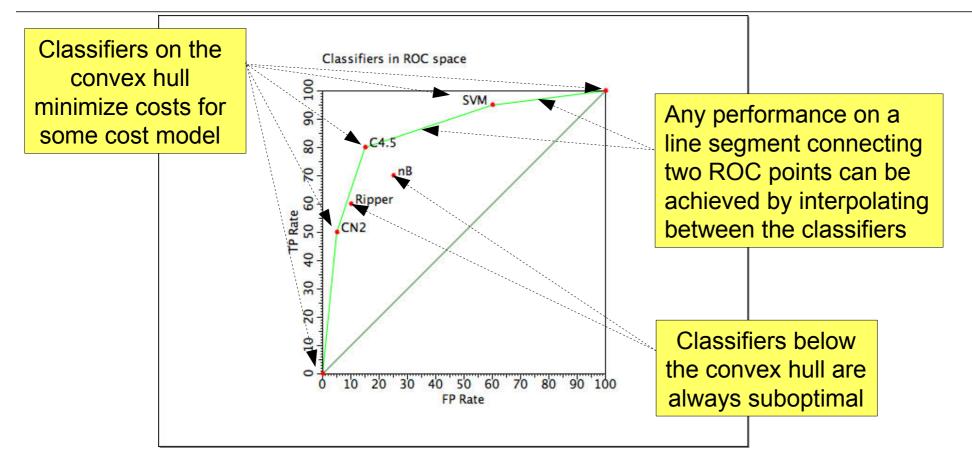


ROC Analysis Selecting the optimal classifier

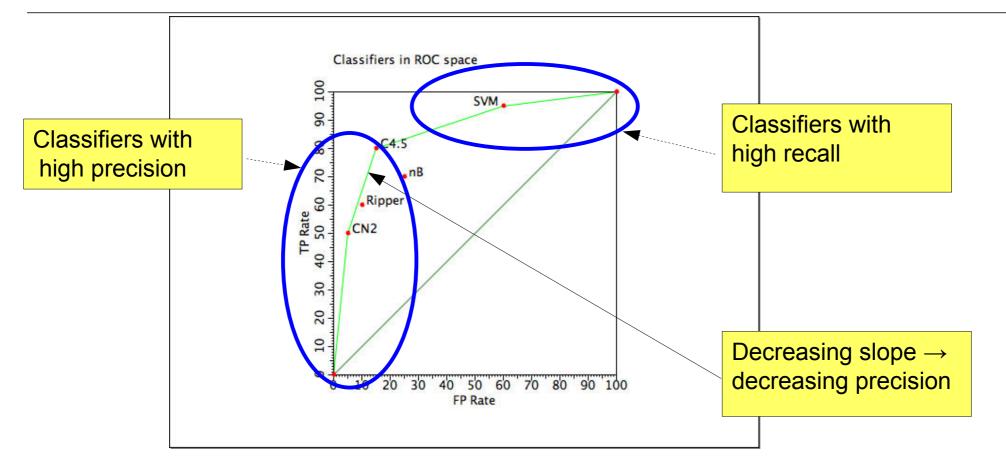


For costs "false positive is for times worse than a false negative" \rightarrow CN2 is optimal

ROC Analysis The ROC convex hull



ROC Analysis The ROC convex hull



Rankers and Classifiers

- A scoring classifier outputs scores f(x,+) and f(x,-) for each class
 - e.g. estimate probabilities P(+|x) and P(-|x)
 - scores don't need to be normalised
- f(x) = f(x,+) / f(x,-) can be used to rank instances from most to least likely positive
 - e.g. odds ratio *P* (+ | *x*) / *P* (− | *x*)
- Rankers can be turned into classifiers by setting a threshold on f(x)A simple classifier that estimates
- Example:

A simple classifier that estimates probabilities P(c|x) for each class c

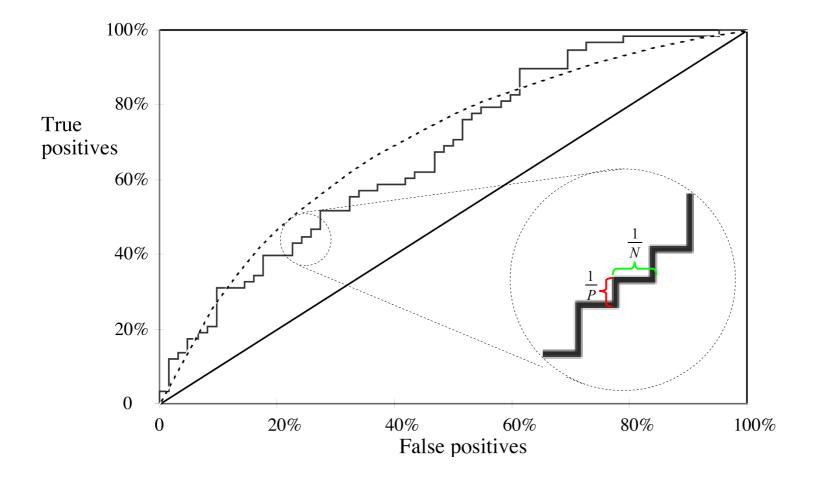
- Naïve Bayes Classifier for two classes is actually a ranker
- that has been turned into classifier by setting a probability threshold of 0.5 (corresponds to a odds ratio treshold of 1.0)
 - P(+|x) > 0.5 > 1 P(+|x) = P(-|x) means that class + is more likely

Drawing ROC Curves for Rankers

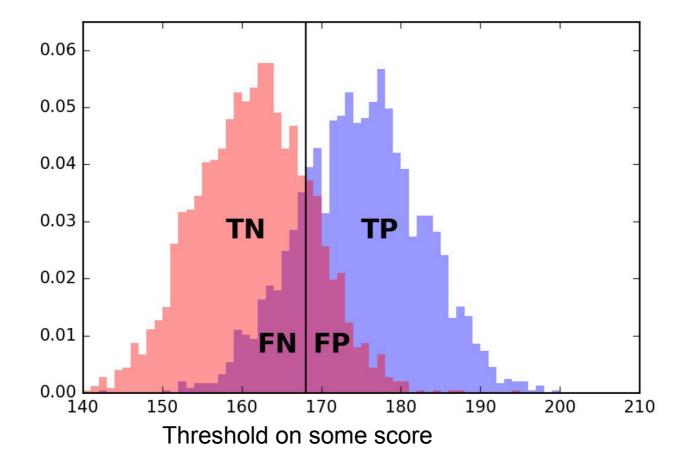
Performance of a ranker can be visualized via a ROC curve

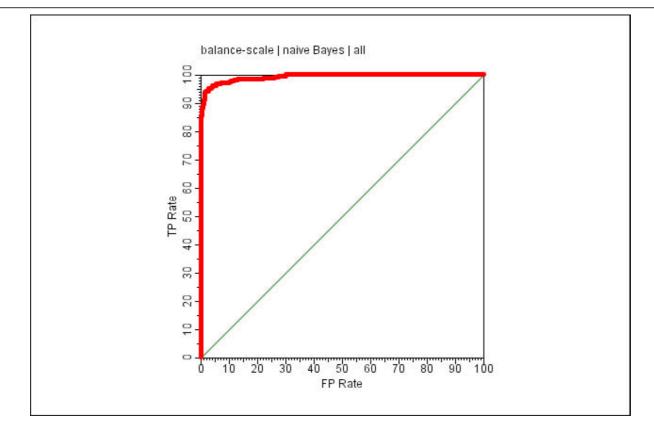
- Naïve method:
 - consider all possible thresholds
 - only *k*+1 thresholds between the *k* instances need to be considered
 - each threshold corresponds to a new classifier
 - for each classifier
 - construct confusion matrix
 - plot classifier at point (*fpr,tpr*) in ROC space
- Practical method:
 - rank test instances on decreasing score f(x)
 - start in (0,0)
 - if the next instance in the ranking is +: move 1/P up
 - if the next instance in the ranking is -: move 1/N to the right
 - make diagonal move in case of ties

Drawing ROC Curves for Rankers A sample ROC curve

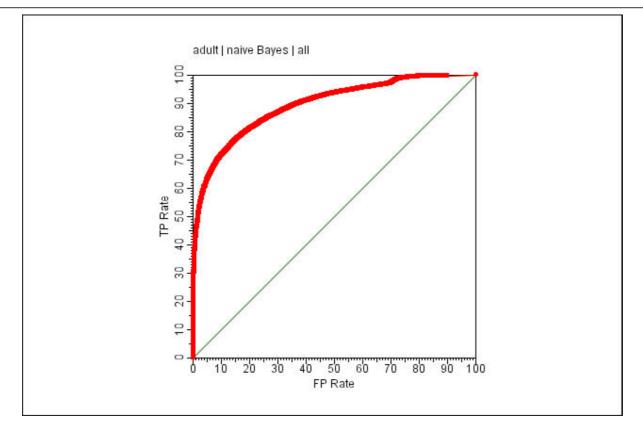


Drawing ROC Curves for Rankers Alternative View

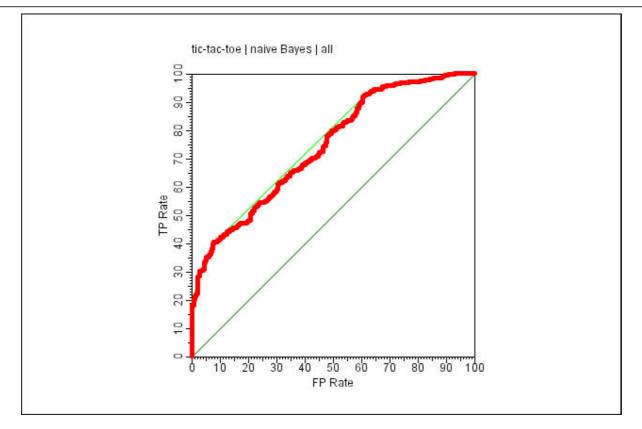




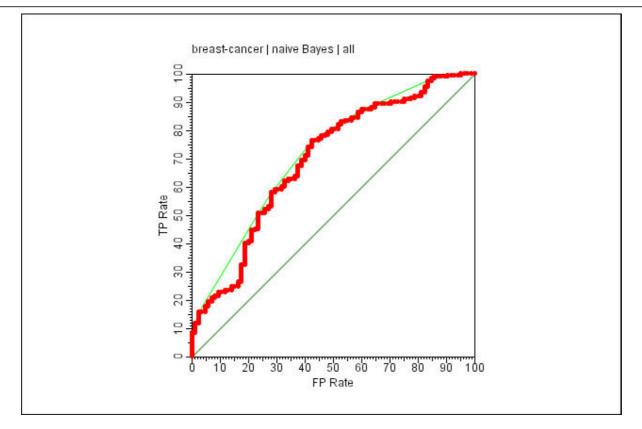
Good separation between classes, convex curve



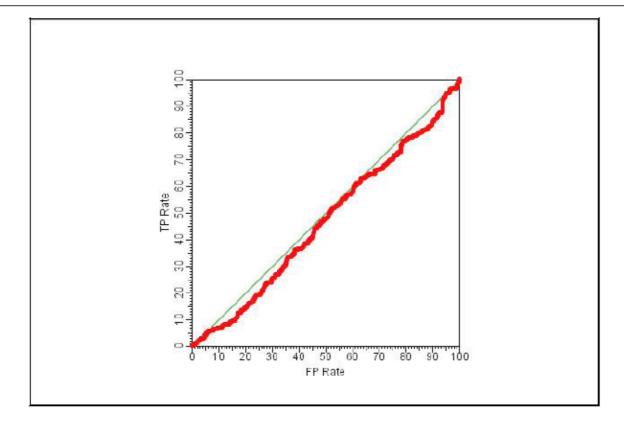
Reasonable separation, mostly convex



Fairly poor separation, mostly convex

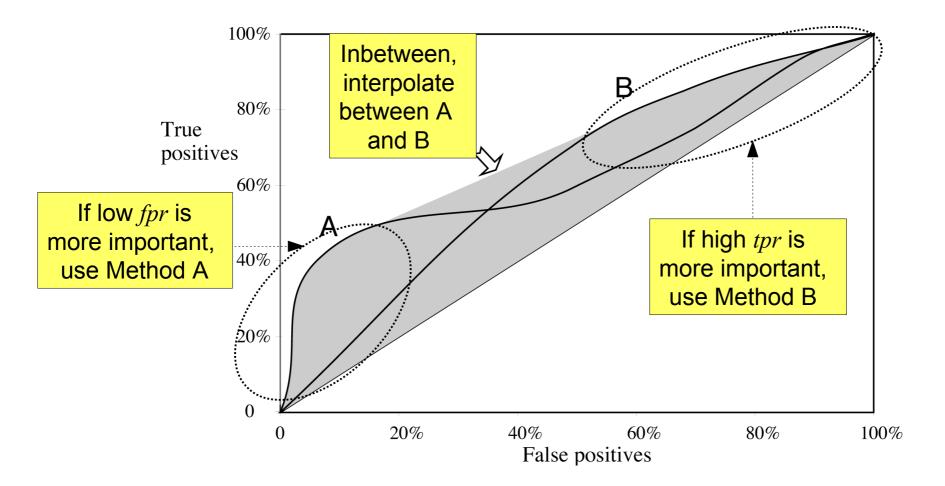


Poor separation, large and small concavities



Random performance

ROC analysis Comparing Rankers with ROC Curves

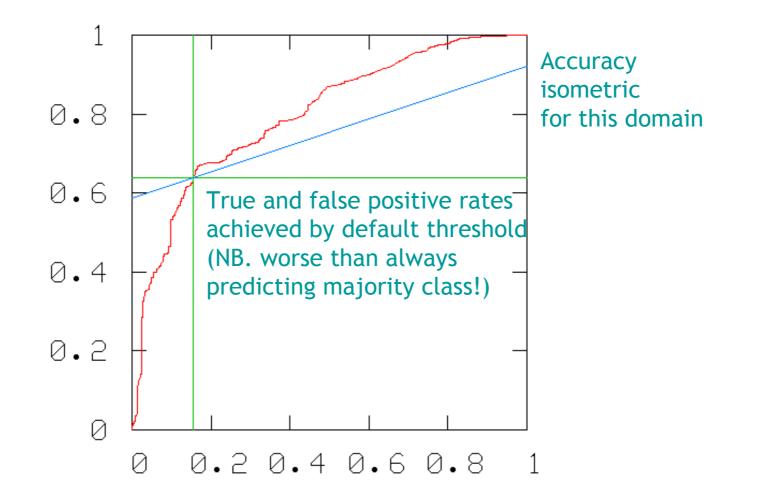


Calibrating a Ranking Classifier

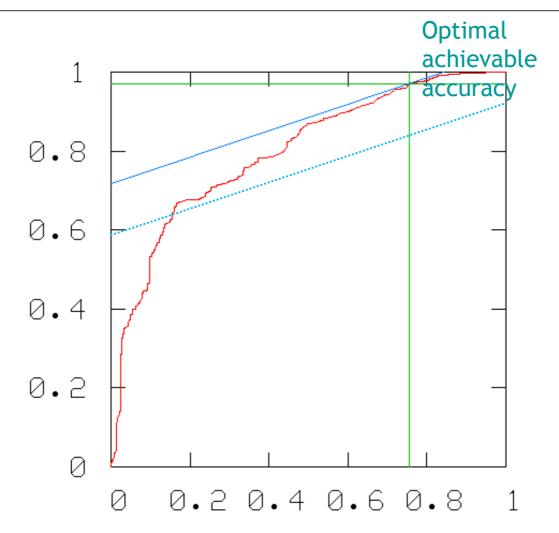
- What is the right threshold of the ranking score f(x) if the ranker does not estimate probabilities?
 - classifier can be *calibrated* by choosing appropriate threshold that minimizes costs
 - may also lead to improved performance in accuracy if probability estimates are bad (e.g., Naïve Bayes)
- Easy in the two-class case:
 - calculate cost for each point/threshold while tracing the curve
 - return the threshold with minimum cost
- Non-trivial in the multi-class case

Note: threshold selection is part of the classifier training and must therefore not be performed on the test data!

Example: Uncalibrated threshold



Example: Calibrated threshold



What is missing?

- Comparison of classifiers
 - Aggregation of results and statistical tests
 - Hyper parameter optimization
 - Proper separation of dataset: train, validation, test
- Cost-sensitive
 - transformation into cost-sensitive classifiers
- Evaluation on other target spaces
 - Multi-class classification
 - Multi-label classification
 - Rankings
 - Regression

