Ensemble Methods

Data Mining and Machine Learning: Techniques and Algorithms

Eneldo Loza Mencía

eneldo@ke.tu-darmstadt.de

Knowledge Engineering Group, TU Darmstadt

International Week 2019, 21.1. – 24.1. University of Economics, Prague

■Bias:

Bias and Variance Decomposition

- the part of the error that is caused by bad (non-appriopriate!) model
- Variance:
 - the part of the error that is caused by the data sample
 - Theoretical interpretation
- suppose a regression problem f(x) and we measure the error by squared loss by learning different models $\overline{f}(x)$

we obtain the expected loss

$$\mathbb{E}\left[\left(f(x) - \hat{f}(x)\right)^2\right] =$$

Peter Flach: Machine Learning The Art and Science of Algorithms that Make Sense of Data Slides CS6375: Machine Learning

Bias and Variance Decomposition Bias-Variance Trade-off/Dilemma

- Models with a low bias often have a high variance
 - small variations in training data may result in considerably different models
 - often powerful models with high number of parameters
 - e.g., nearest neighbor, unpruned decision trees, SVM with kernels, big neural networks
- Models with a low variance often have a high bias
 - suffer less from variability due to random variations in training data
 - but may introduce systematic bias that large amount of training data cannot solve
 - often low-complexity models with little number of parameter, e.g., decision stump, linear model

Bias and Variance Decomposition Reasons

- What causes bias?
 - Inability to represent certain decision boundaries (linear hyperplanes, ..)
 - incorrect assumptions (independence assumption in naïve Bayes)
 - classifiers that are "too global", "too general" (or too smooth)
 - e.g: single linear separator, small decision tree, a large k in k-NN
 - if the bias is high, the model is underfitting the data
- What causes variance?
 - making decision based on small subsets of the data
 - e.g., decision tree splits near the leaves
 - computational reasons, e.g., randomization in the learning algorithm
 - classifiers that are "too local" (or too nonlinear) can easily fit noisy data
 - learners that make sharp decisions can be unstable (change of decision boundary if one training example changes
 - if the variance is high, the model is likely overfitting the data

Bias and Variance Decomposition Yet another view

Fitting noisy, linear-sinusal curve $f(x) = x + 2\sin(1.5x) + N(0,0.2)$ with linear function on 20 sampled training examples, repeated 50 times, gives:

50 fits (20 examples each)

Bias and Variance Decomposition Yet another view

We can decompose error

$$E\left[\left(y'-g_S(x')\right)^2\right]$$

into:

Bias and Variance Decomposition

Model Complexity

Ensemble Classifiers

Idea:

- do not learn a *single* classifier but learn a *set of classifiers*
- combine the predictions of multiple classifiers

Motivation:

- reduce variance: results are less dependent on peculiarities of a single training set
- reduce bias: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

Problem:

- Only one training set; where do multiple models come from?
- Key step:
 - formation of an ensemble of *diverse* classifiers from a single training set

Why do ensembles work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 - Note: in practice they are not independent!
- Probability that the ensemble classifier makes a wrong prediction
 - The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 - The probability that 13 or more classifiers err is

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$

Why do ensembles work?

- When combining multiple independent and diverse decisions, random errors cancel each other out, correct decisions are reinforced
 - decision can come from weak learners: at least more accurate than random guessing
- Human ensembles are demonstrably better
 - How many jelly beans in the jar? individual estimates vs. group average
 - Who Wants to be a Millionaire: expert friend v. audience vote
 - "wisdom of the crowd": crowd-sourcing

Can We Reduce Variance Without Increasing Bias?

model averaging can reduce variance without changing bias

Bagging Algorithm Bootstrap AGGregatING

- 1. for m = 1 to t // t: #iterations a) draw (with replacement) a bootstrap sample D_m of the data $D(|D_m|=|D|)$
 - b) learn a classifier C_m from D_m
- 2. for each test example
 - a) apply all classifiers C_m
 - b) predict the class that receives the highest number of votes

Bagging Algorithm Example Models

Bagging Algorithm Example Models

Bagging Algorithm Characteristics

How does bagging minimize the error?

- recall error term: $\mathbb{E}\left[\left(f(x) \hat{f}(x)\right)^2\right] = \left(f(x) \mathbb{E}\left[\hat{f}(x)\right]\right)^2 + \mathbb{E}\left[\left(\hat{f}(x) \mathbb{E}\left[\hat{f}(x)\right]\right)^2\right]$
- due how it is built, $f(x)=f_{bag}(x)$ approximates the expectation of $\overline{f}(x)$ bias: systematic error \rightarrow variance approximates 0 (while leaving bias unchanged)
- in reality: bagging usually reduces variance and slightly increases bias When to use bagging?
- for unstable base classifiers (small changes in data causes large changes in models)
- but could hurt stable classifiers

Variations

- size of subset, sampling w/o replacement, etc.
- sampling of features, learn a set of classifiers with different algorithms, etc.

Randomization

- Randomize the learning algorithm instead of the input data
- Some algorithms already have a random component
 - e.g.: initial weights in neural net
- Most algorithms can be randomized, e.g. greedy algorithms:
 - pick from the N best options at random instead of always picking the best options
 - e.g.: test selection in decision trees or rule learning
- Can be combined with bagging

Random Forests

- Combines bagging and random attribute subset selection:
 - Build the tree from a bootstrap sample
 - Instead of choosing the best split among all attributes, select the best split among a random subset of k attributes
 - "random vector" in figure
 - is equal to bagging when k equals the number of attributes

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 24

https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbiesdde4edffae11

reduction of variance but also the higher the increase of bias

 Currently, one of the most successful methods in machine learning (see slides on decision trees)

There is a bias/variance trade-

• The smaller k, the greater the

Random Forests

off with k:

 Interactive Demo: https://cs.stanford.edu/people/ karpathy/svmjs/demo/demofor est.html

The ensemble model

Forest output probability $p(c|\mathbf{v}) = rac{1}{T}\sum_{i=1}^{T}p_t(c|\mathbf{v})$

Boosting

- Basic Idea:
 - later classifiers focus on examples that were misclassified by earlier classifiers
 - weight the predictions of the classifiers with their error
- Realization
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - increase the weight of incorrectly classified examples
 - this ensures that they will become more important in the next iterations
 - (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures

Boosting – Algorithm AdaBoost.M1

Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized

- Example Weights w_i
 - multiplier for correct and incorrect examples, depending

Boosting – Error rate example

• boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

Toy Example

An Applet demonstrating AdaBoost

http://www.cse.ucsd.edu/~yfreund/adaboost/

Round 1

Round 2

Round 3

Final Hypothesis

Boosting Example Models

AdaBoost using 20 decision trees with default settings

Final output of AdaBoost with 20 decision trees

Boosting Example Models

AdaBoost using 20 neural nets [bpxnc] default settings

Final output of AdaBoost with 20 neural nets

Comparison Bagging/Boosting

- Bagging
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis
 - each model may work by its own

- Boosting
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - only first model is global, the subsequent ones are local and incremental

Additive regression

- It turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, implements forward stagewise additive modeling
- Same kind of algorithm for numeric prediction:
 - 1. Build standard regression model (e.g. tree)
 - 2. Gather residuals
 - 3. learn model predicting residuals (e.g. tree)
 - 4. goto 2.
- To predict, simply sum up individual predictions from all models

Additive regression Gradient Boosting Trees

Reminder from slides on decision trees

- can use aleatory losses like MSE, logistic loss, ...
- splits determined by gain on gradient statistics
- regularization via tree size and model parameters in objective function

$$L(\phi) = \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{c})$$

where $\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^{2}$

Additive regression Gradient Boosting Trees

Reminder from slides on decision trees

- can use aleatory losses like MSE, logistic loss, ...
- splits determined by gain on gradient statistics
- regularization via tree size and model parameters in objective function

XGBoost

- one of the most successful machine learning algorithms in recent times
- won a lot of Kaggle competitions
- interactive visualizations: https://arogozhnikov.github.io/ 2016/06/24/gradient_boosting_explained.html

https://www.kaggle.com/msjgriffiths/r-what-algorithms-are-most-successful-on-kaggle/report

Combining Predictions

voting

- each ensemble member votes for one of the classes
- predict the class with the highest number of vote (e.g., bagging)
- weighted voting
 - make a weighted sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)
- stacking
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members

Stacking

- Basic Idea:
 - learn a function that combines the predictions of the individual classifiers
- Algorithm:
 - train *n* different classifiers $C_1...C_n$ (the base classifiers)
 - obtain predictions of the classifiers for the training examples
 - form a new data set (the meta data)
 - classes
 - the same as the original dataset
 - attributes
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example

train a separate classifier M (the meta classifier)

Stacking (2)

• Example:

Attributes			Class
x_{11}		x_{1n_a}	t
x_{21}		x_{2n_a}	f
x_{n_e1}		$x_{n_e n_a}$	t

training set

C_1	C_2	 C_{n_c}
t	t	 f
f	t	 t
f	f	 t

predictions of the classfiers

C_1	C_2		C_{n_c}	Class
t	t		f	t
f	t		t	f
		• • •		
f	f		t	t

training set for stacking

- Using a stacked classifier:
 - try each of the classifiers C₁...C_n
 - form a feature vector consisting of their predictions
 - submit these feature vectors to the meta classifier M

Summary: Forming an Ensemble

- Modifying the data
 - Subsampling
 - bagging
 - boosting
 - feature subsets
 - randomly feature samples

- Exploiting the algorithm characteristics
 - algorithms with random components
 - neural networks
 - randomizing algorithms
 randomized decision trees
 - use multiple algorithms with different characteristics

