Decision Trees

Data Mining and Machine Learning: Techniques and Algorithms

Eneldo Loza Mencía

eneldo@ke.tu-darmstadt.de

Knowledge Engineering Group, TU Darmstadt

International Week 2019, 21.1. – 24.1. University of Economics, Prague

Outline

- Introduction
 - Decision Trees
 - TDIDT: Top-Down Induction of Decision Trees
- ID3
 - Attribute selection
 - Entropy, Information, Information Gain
 - Gain Ratio

• C4.5

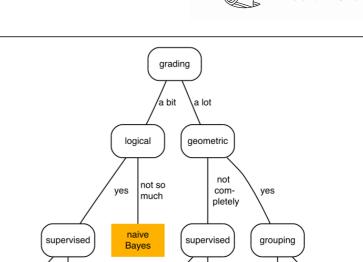
- Missing Values
- Numeric Values
- Split Encoding
- Pruning
- Regression and Model Trees

Decision Trees

- a decision tree consists of
 - Nodes:
 - test for the value of a certain attribute
 - Edges:
 - correspond to the outcome of a test
 - connect to the next node or leaf
 - Leaves:
 - terminal nodes that predict the outcome

to classifiy an example:

- 1.start at the root
- 2.perform the test
- 3. follow the edge corresponding to outcome
- 4.goto 2. unless leaf
- 5.predict that outcome associated with the leaf



ves

SVM

ves

GMM

trees &

rules

rules

no

linear

classifiers

some

K-means

supervised

correspond to the outcome of a test connect to the next node or leaf

Decision Trees

a decision tree consists of

Leaves:

Nodes:

Edges:

terminal nodes that predict the outcome

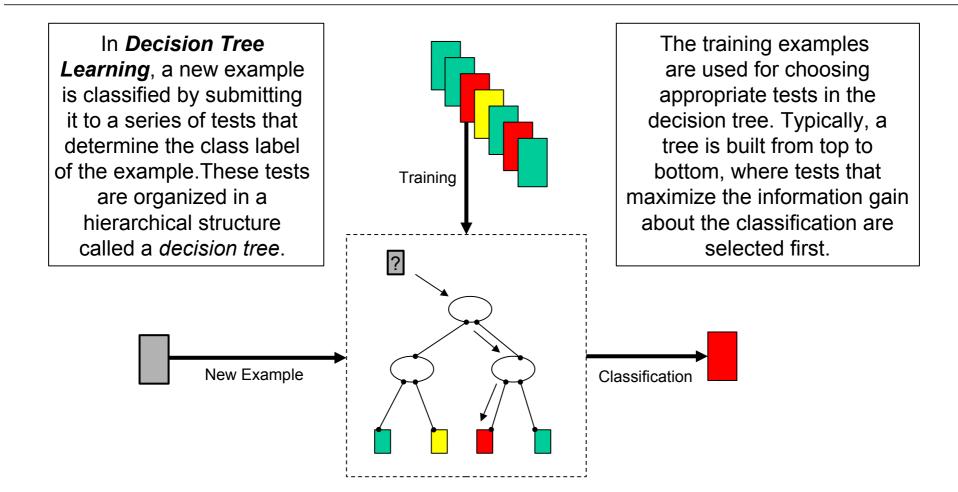
test for the value of a certain attribute

to classifiy an example:

- 1.start at the root
- 2.perform the test
- 3. follow the edge corresponding to outcome
- 4.goto 2. unless leaf
- 5.predict that outcome associated with the leaf

root node decision nodes salary at least \$50,000 commute more decline yes than 1 hour offer no offers free decline coffee offer no **Decision Tree:** leaf nodes Should I accept a new accept decline iob offer? offer offer

Decision Tree Learning



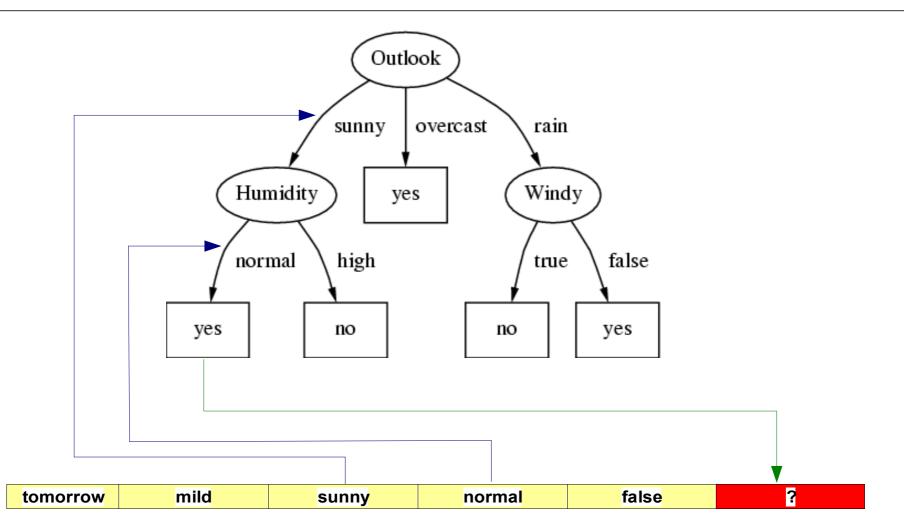
A Sample Task

TECHNISCHE UNIVERSITÄT DARMSTADT

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

Decision Tree Learning



Divide-And-Conquer Algorithms

- Family of decision tree learning algorithms
 - TDIDT: Top-Down Induction of Decision Trees
- Learn trees in a Top-Down fashion:
 - divide the problem in subproblems
 - solve each problem

Basic Divide-And-Conquer Algorithm:

- 1. select a test for root node Create branch for each possible outcome of the test
- 2. split instances into subsets One for each branch extending from the node
- 3. repeat recursively for each branch, using only instances that reach the branch
- 4. stop recursion for a branch if all its instances have the same class

ID3 Algorithm

Function ID3

- Input: Example set S
- Output: Decision Tree DT
- If all examples in *S* belong to the same class *c*
 - return a new leaf and label it with c
- Else
 - i. Select an attribute A according to some heuristic function
 - ii. Generate a new node DT with A as test
 - iii. For each Value v_i of A

(a) Let S_i = all examples in S with $A = v_i$

(b) Use ID3 to construct a decision tree DT_i for example set S_i

(c) Generate an edge that connects DT and DT_i

DARMSTADT Temperature hot mild cool VS. Outlook Outlook Outlook Outlook sunny rain overcast sunny rain overcast sunny rain overcast sunny overcast rain 9 Humidity Humidity Humidity yes yes no yes yes Humidity Windy yes high high high normal normal normal normal true high false Windy ? Windy no no yes yes no yes yes true false true false no yes no yes

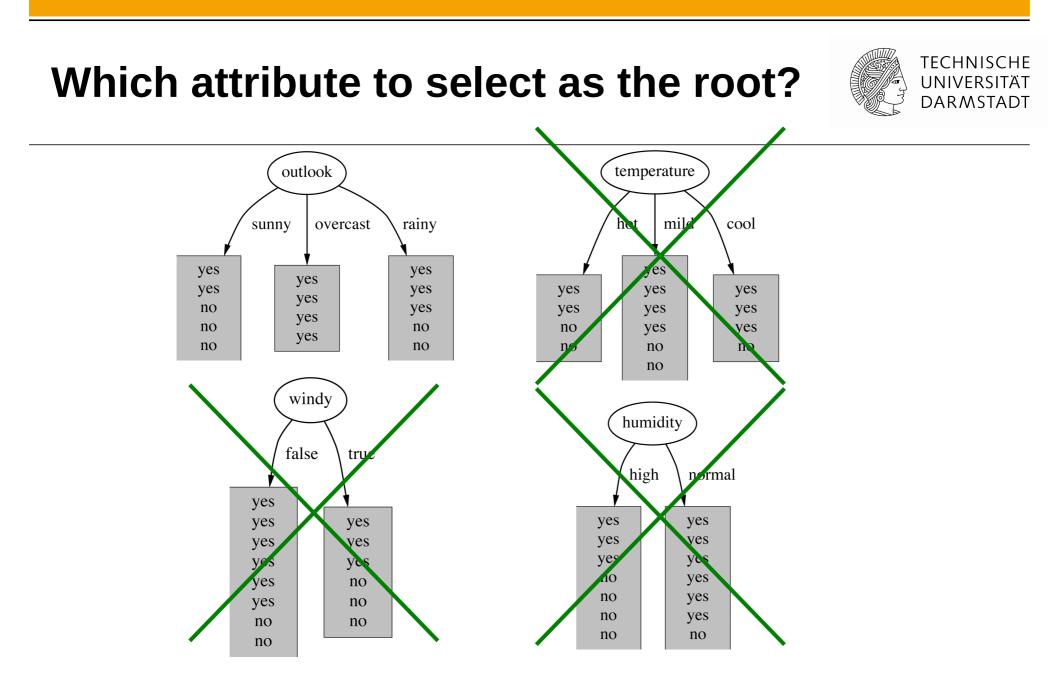
also explains all of the training data

A Different Decision Tree

will it generalize well to new data?

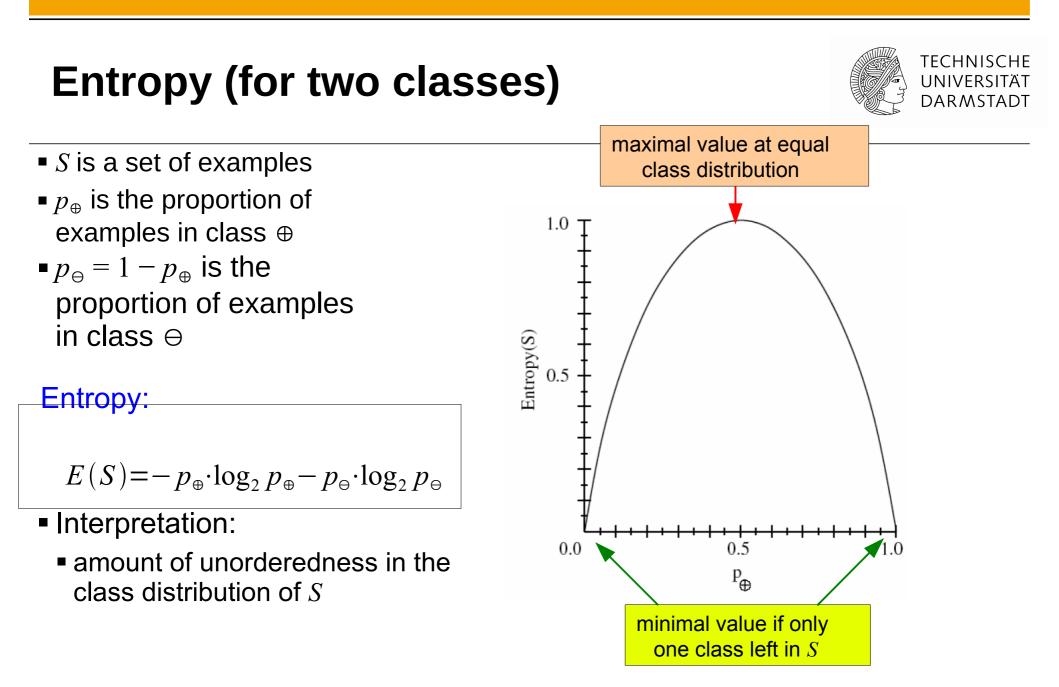
TECHNISCHE

UNIVERSITÄT



What is a good Attribute?

- We want to grow a simple tree
 - \rightarrow a good heuristic prefers attributes that split the data so that each successor node is as *pure* as posssible
 - i.e., the distribution of examples in each node is so that it mostly contains examples of a single class
- In other words:
 - We want a measure that prefers attributes that have a high degree of "order":
 - Maximum order: All examples are of the same class
 - Minimum order: All classes are equally likely
 - \rightarrow Entropy is a measure for (un-)orderedness
 - Another interpretation:
 - Entropy is the amount of information that is contained in the node
 - \hfill all examples of the same class \rightarrow no information



Example: Attribute Outlook

• Outlook = sunny: $E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.971$

Outlook = overcast: 4 examples yes, 0 examples no

 $E(\text{Outlook} = \text{overcast}) = -1 \cdot \log_2(1) - 0 \cdot \log_2(0) = 0$

• Outlook = rainy :

3 examples yes, 2 examples no

Note: this is normally undefined. Here: = 0

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = 0.971$$

Entropy (for more classes)

Entropy can be easily generalized for n > 2 classes

• p_i is the proportion of examples in *S* that belong to the *i*-th class

$$E(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 \dots - p_n \log_2 p_n = -\sum_{i=1}^n p_i \log_2 p_i$$

 Calculation can be simplified using absolute counts c_i of examples in class i instead of fractions

• If :

$$p_{i} = \frac{c_{i}}{|S|}$$

Example: $E(S) = -\sum_{i=1}^{n} p_{i} \log_{2} p_{i} = -\frac{1}{|S|} \cdot \left(\sum_{i=1}^{n} c_{i} \log_{2} c_{i} - |S| \cdot \log_{2} |S| \right)$

$$E([2,3,4]) = -\frac{2}{9} \cdot \log_2(\frac{2}{9}) - \frac{3}{9} \cdot \log_2(\frac{3}{9}) - \frac{4}{9} \cdot \log_2(\frac{4}{9})$$

= $-\frac{1}{9} (2 \cdot \log_2(2) + 3 \cdot \log_2(3) + 4 \cdot \log_2(4) - 9 \cdot \log_2(9))$

Average Entropy / Information

Problem:

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute
- Solution:
 - Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$V(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Example:

• Average entropy for attribute *Outlook*:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

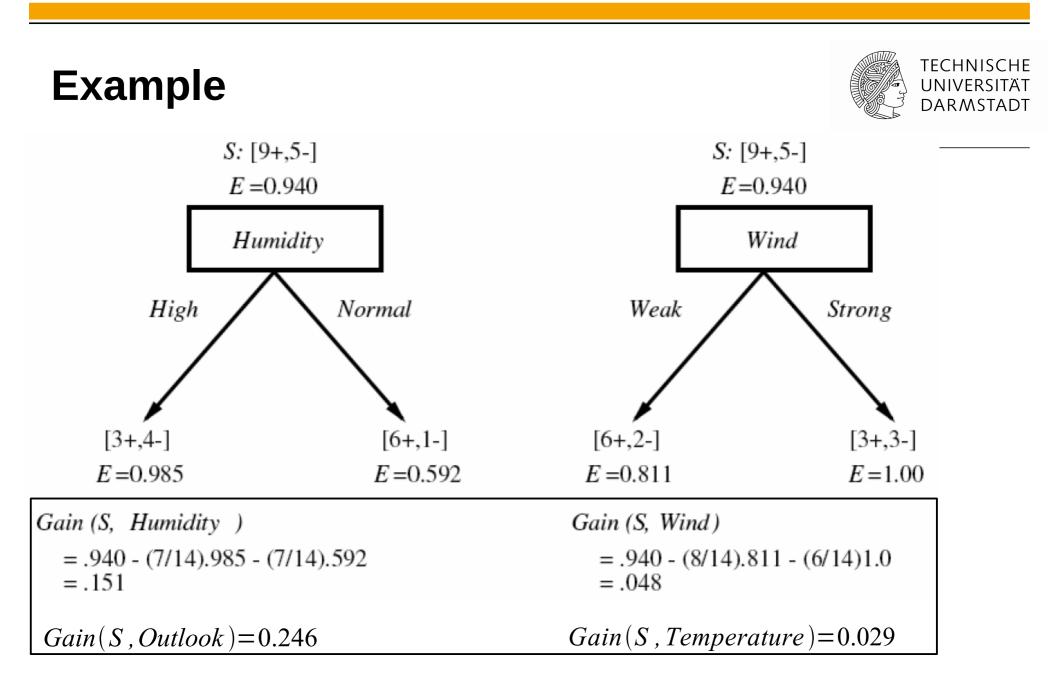
Information Gain

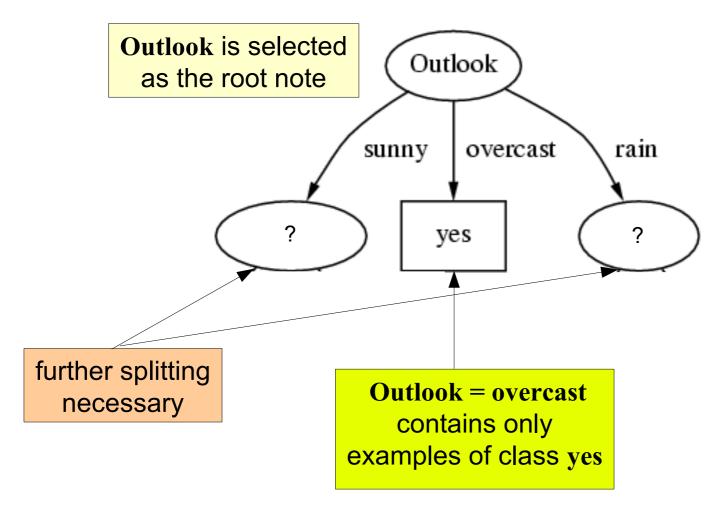
- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - $\hfill\blacksquare$ and compare the sum to the entropy of the original set S

Information Gain for Attribute *A*

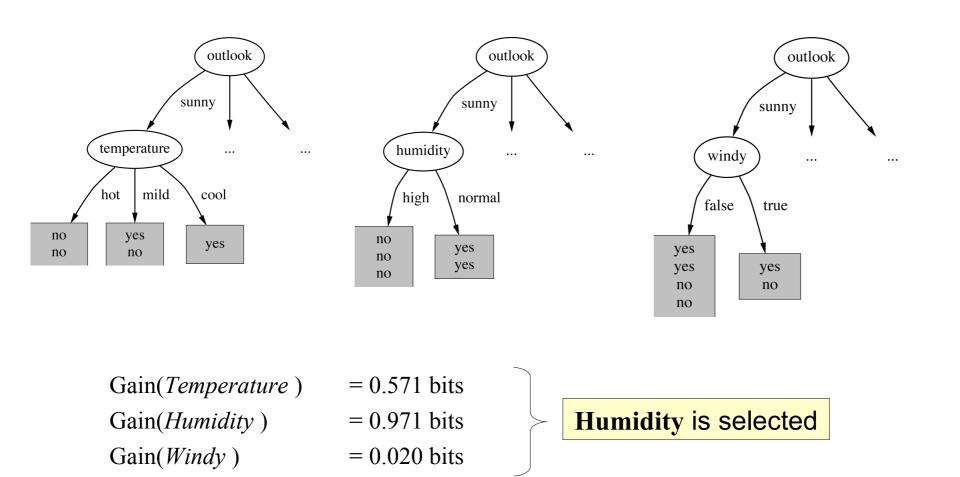
$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

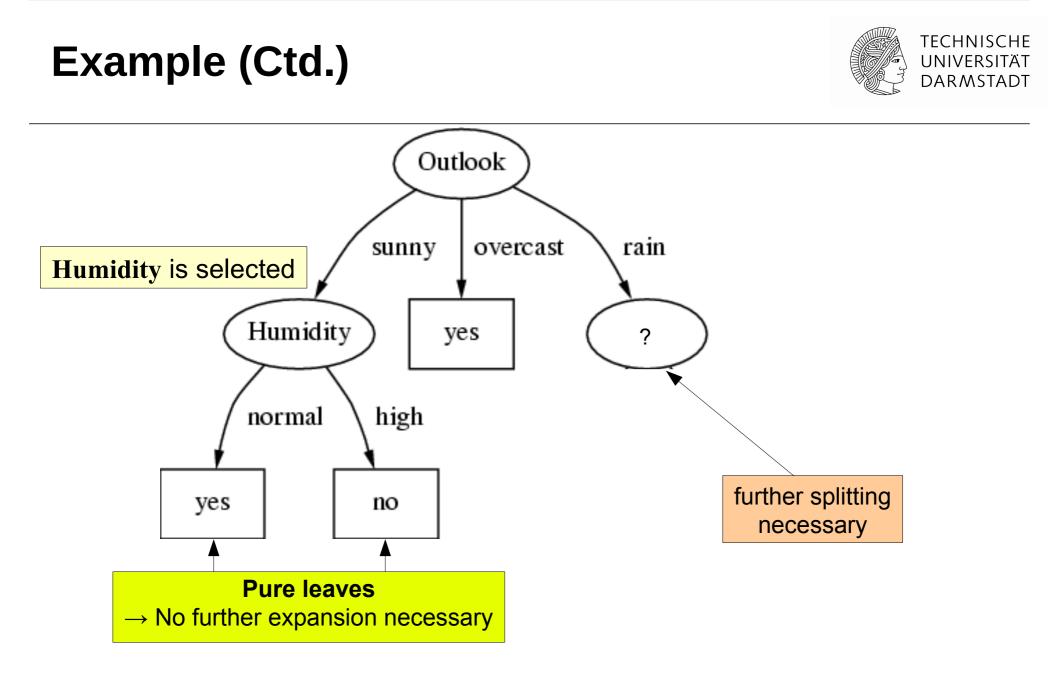
- The attribute that maximizes the difference is selected
 - i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A



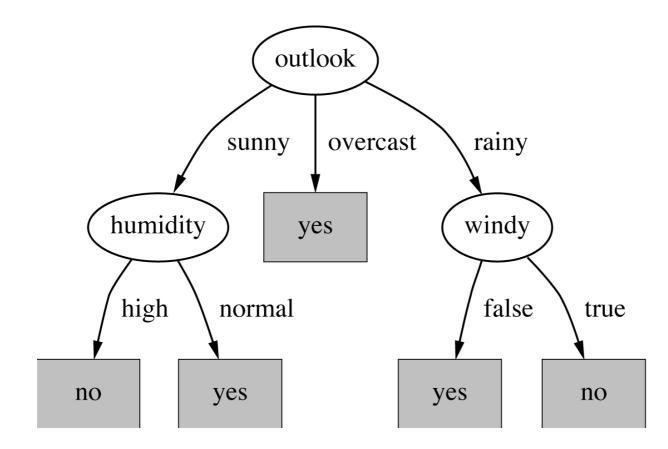


Example (Ctd.)





Final decision tree



Gini Index

- Many alternative measures to Information Gain
- Most popular altermative: Gini index
 - used in e.g., in CART (Classification And Regression Trees)
 - impurity measure (instead of entropy)

$$Gini(S) = \sum_{i} p_{i} \cdot (1 - p_{i}) = 1 - \sum_{i} p_{i}^{2}$$

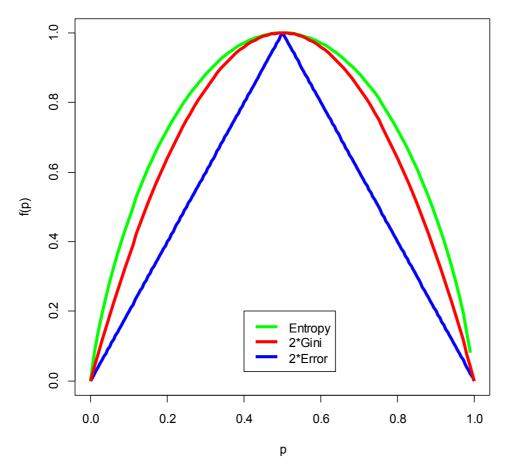
average Gini index (instead of average entropy / information)

$$Gini(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot Gini(S_i)$$

- Gini Gain
 - could be defined analogously to information gain
 - but typically averageGini index is minimized instead of maximizing Gini gain

Comparison of Splitting Criteria

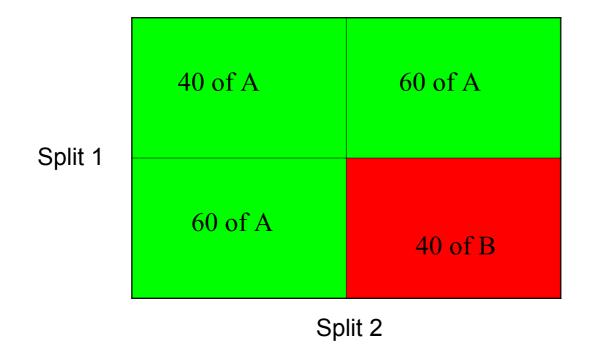
For a 2-class problem:



Why not use Error as a Splitting Criterion?

Reason:

- The bias towards pure leaves is not strong enough
- Example 1: Data set with 160 Examples A, 40 Examples B
 - $\blacksquare \rightarrow$ Error rate without splitting is 20%

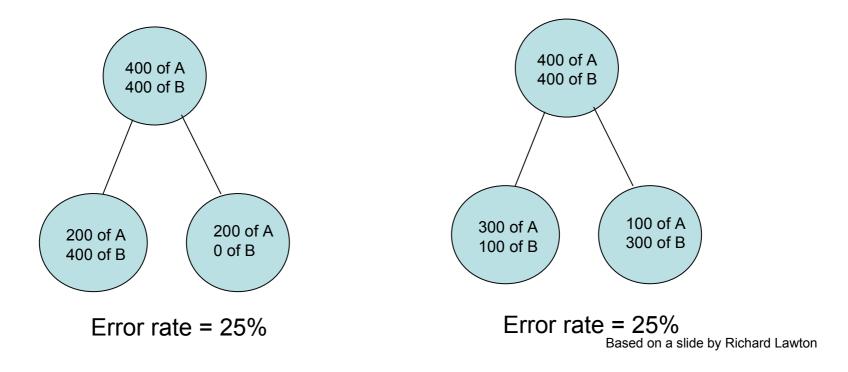


For each of the two splits, the total error after splitting is also (0% + 40%)/2 = 20% \rightarrow no improvement

However, together both splits would give a perfect classfier.

Why not use Error as a Splitting Criterion?

- Reason:
 - The bias towards pure leaves is not strong enough
- Example 2:
 - Dataset with 400 examples of class A and 400 examples of class B



Industrial-strength algorithms

- For an algorithm to be useful in a wide range of real-world applications it must:
 - Permit numeric attributes
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
- \rightarrow ID3 needs to be extended to be able to deal with real-world data
- Result: C4.5
 - Best-known and (probably) most widely-used learning algorithm
 - original C-implementation at http://www.rulequest.com/Personal/
 - Re-implementation of C4.5 Release 8 e.g. in Weka: J4.8
 - Commercial successor: C5.0
 - freely available e.g. in R

Missing values

- Examples are classified as usual
 - if we are lucky, attributes with missing values are not tested by the tree
- If an attribute with a missing value needs to be tested:
 - split the instance into fractional instances (pieces)
 - one piece for each outgoing branch of the node
 - a piece going down a branch receives a weight proportional to the popularity of the branch
 - weights sum to 1
- Info gain or gain ratio work with fractional instances
 - use sums of weights instead of counts
- during classification, split the instance in the same way
 - Merge probability distribution using weights of fractional instances

Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure) for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
- → Computationally more demanding than splits on discrete attributes

Example

- Assume a numerical attribute for Temperature
- First step:
 - Sort all examples according to the value of this attribute
 - Could look like this:

6465686970717272757580818385YesNoYesYesNoYesYesYesYesYesNoYesYesNoTemperature < 71.5: yes/4, no/2</td>Temperature \geq 71.5: yes/5, no/3

 $I(\text{Temperature} @ 71.5) = \frac{6}{14} \cdot E(\text{Temperature} < 71.5) + \frac{8}{14} E(\text{Temperature} \ge 71.5) = 0.939$

Split points can be placed between values or directly at values

Has to be computed for all pairs of neighboring values

Efficient Computation

- Efficient computation needs only one scan through the values!
 - Linearly scan the sorted values, each time updating the count matrix and computing the evaluation measure
 - Choose the split position that has the best value

Cheat		No	No	No	Yes	Yes	Yes	No	No	No	No		
•	Taxable Income												
Sorted Values		60	70	75	85	90	95	100	120	125	220		

Efficient Computation

- Efficient computation needs only one scan through the values!
 - Linearly scan the sorted values, each time updating the count matrix and computing the evaluation measure
 - Choose the split position that has the best value

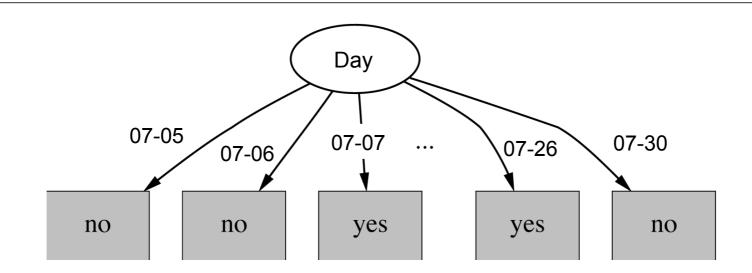
	Cheat		No		No)	N	0	Ye	S	Ye	S	Ye	es	Ν	0	N	0	N	0		No	
							_	_		_	Ta	xabl	e In	com	e			_			_		
Sorted Values			60		70)	7	5	85	5	9()	9	5	1()0	1:	20	12	25		220	
Split Positions		5	5	6	5	7	2	8	0	8	7	9	2	9	7	1'	0	12	22	17	72	23	0
-		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	 	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.420 0		0.4	0.400 0.375		575	0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Highly-branching attributes

Problematic: attributes with a large number of values

- extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values
- This may cause several problems:
 - Overfitting
 - selection of an attribute that is non-optimal for prediction
 - Fragmentation
 - data are fragmented into (too) many small sets

Decision Tree for Day attribute



Entropy of split:

$$I(\text{Day}) = \frac{1}{14} (E([0,1]) + E([0,1]) + ... + E([0,1])) = 0$$

Information gain is maximal for Day (0.940 bits)

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 40

Split Encoding

Categorical Encoding

- use at it is
- #branches=#categories

Numeric Encoding

- enumerate categories
- ordering might be aleatoric
- DT treats feature as numeric

Categorical Feature		Numeric
Louise	=>	1
Gabriel	=>	2
Emma	=>	3
Adam	=>	4
Alice	=>	5
Raphael	=>	6
Chloe	=>	7
Louis	=>	8
Jeanne	=>	9
Arthur	=>	10

Split Encoding

One-Hot Encoding

- one binary feature for each category
- also very popular representation e.g. for neural networks
- #features=#categories

Binary Encoding

- unique binary encoding for each category
- #features=log2(#categories+1)

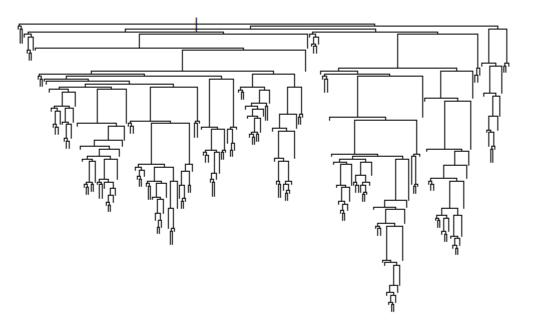
Categorical Feature		f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
Louise	=>	1	0	0	0	0	0	0	0	0	0
Gabriel	=>	0	1	0	0	0	0	0	0	0	0
Emma	=>	0	0	1	0	0	0	0	0	0	0
Adam	=>	0	0	0	1	0	0	0	0	0	0
Alice	=>	0	0	0	0	1	0	0	0	0	0
Raphael	=>	0	0	0	0	0	1	0	0	0	0
Chloe	=>	0	0	0	0	0	0	1	0	0	0
Louis	=>	0	0	0	0	0	0	0	1	0	0
Jeanne	=>	0	0	0	0	0	0	0	0	1	0
Arthur	=>	0	0	0	0	0	0	0	0	0	1

			Binary Encoded							
Categorical Feature		=	x1	x2	x4	x8				
Louise	=>	1	1	0	0	0				
Gabriel	=>	2	0	1	0	0				
Emma	=>	3	1	1	0	0				
Adam	=>	4	0	0	1	0				
Alice	=>	5	1	0	1	0				
Raphael	=>	6	0	1	1	0				
Chloe	=>	7	1	1	1	0				
Louis	=>	8	0	0	0	1				
Jeanne	=>	9	1	0	0	1				
Arthur	=>	10	0	1	0	1				

Split Encoding

1024 categories and 25% positive labels

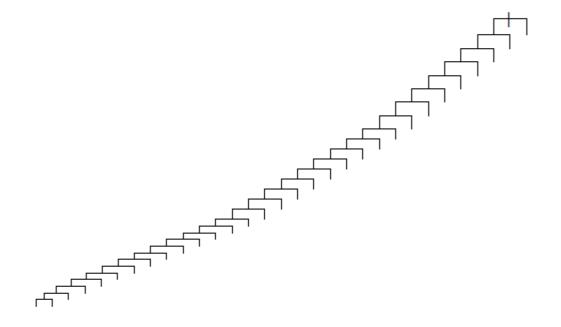
Numeric Encoding - Accuracy: 100.00%



Split Encoding

1024 categories and 25% positive labels

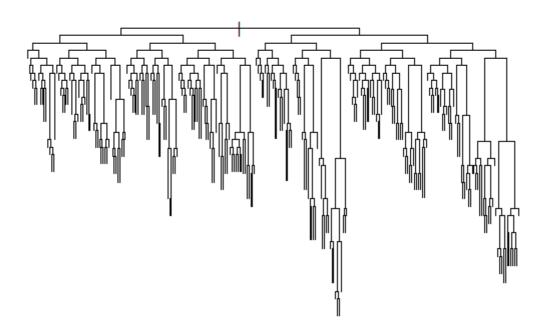
One-Hot Encoding - Accuracy: 84.08%



Split Encoding

1024 categories and 25% positive labels

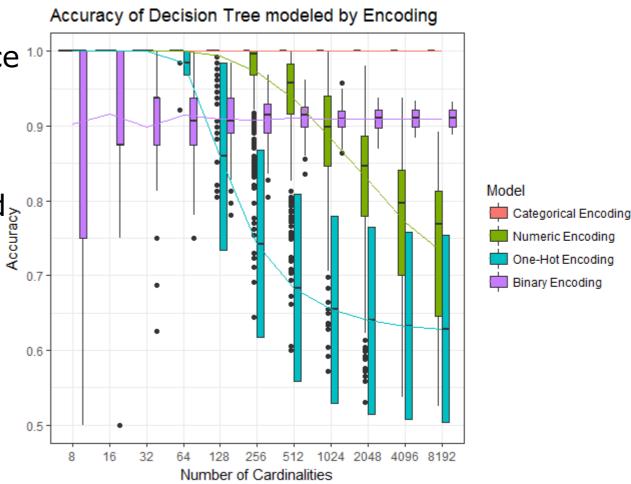
Binary Encoding - Accuracy: 99.61%



https://medium.com/data-design/ visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

Split Encoding Example Results

- categorical encoding achieves best performance
 - but, in addition to overfitting and fragmentation problem, might be difficult to read⁰⁹
- one-hot encoding not beneficial for DT learning
 - Iess accurate
 - more computationally expensive for high number of categories
 What other possibilities would make sense?



Overfitting and Pruning

- The smaller the complexity of a concept, the less danger that it overfits the data
 - A polynomial of degree n can always fit n+1 points
- Thus, learning algorithms try to keep the learned concepts simple
 - Note a "perfect" fit on the training data can always be found for a decision tree! (except when data is contradictory)

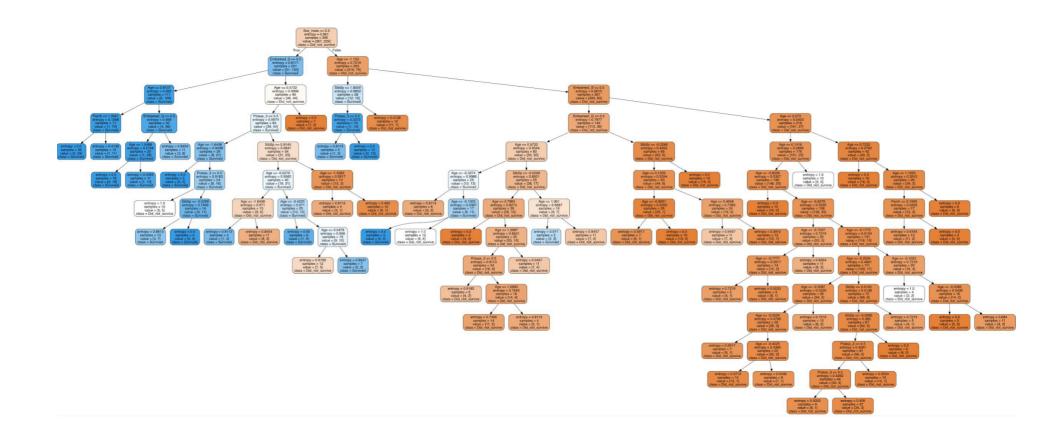
Pre-Pruning:

stop growing a branch when information becomes unreliable

Post-Pruning:

- grow a decision tree that correctly classifies all training data
- simplify it later by replacing some nodes with leafs
- Post-pruning preferred in practice—pre-pruning can "stop early"

Overfitting and Pruning



Pre-pruning

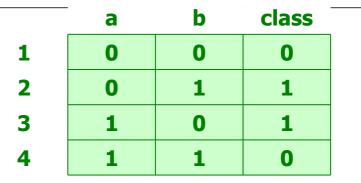
- Based on statistical significance test
 - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure
- C4.5 uses a simpler strategy
 - \hfill but combines it with \rightarrow post-pruning
 - parameter -m: (default value m=2) each node above a leave must have
 - at least two successors
 - that contain at least m examples

Early Stopping

- Pre-pruning may stop the growth process prematurely: *early stopping*
- Classic example: XOR/Parity-problem
 - No individual attribute exhibits any significant association to the class
 - irrelevant (e.g., random) attributes, ID3 can not distinguish between relevant and irrelevant attributes
 → Pre-pruning won't expand the root node

 \rightarrow In a dataset that contains XOR attributes a and b, and several

- Structure is only visible in fully expanded tree
- But:
 - XOR-type problems rare in practice
 - pre-pruning is faster than post-pruning



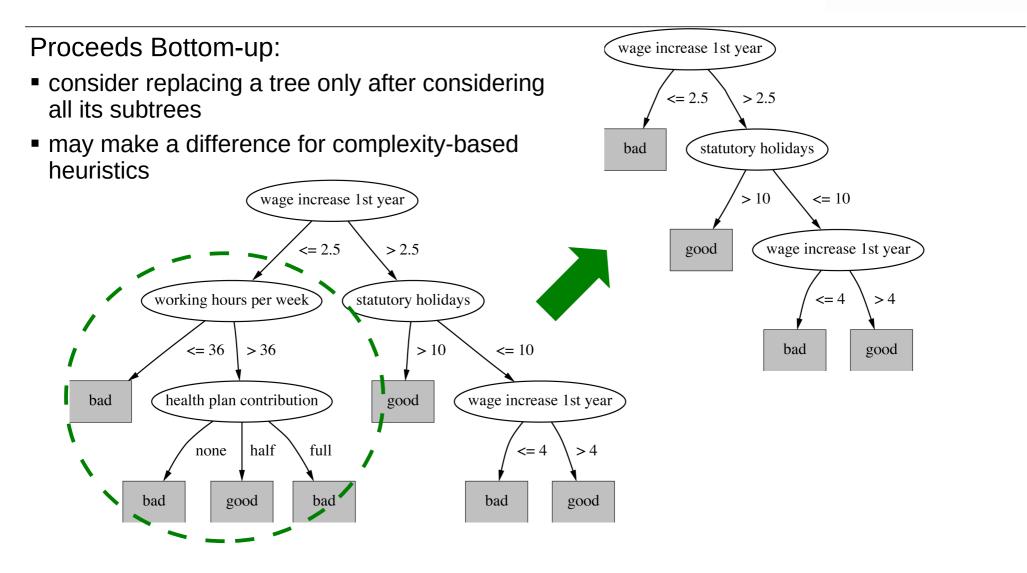
Post-pruning

- basic idea
 - first grow a full tree to capture all possible attribute interactions
 - Iater remove those that are due to chance
 - 1.learn a complete and consistent decision tree that classifies all examples in the training set correctly
 - 2.as long as the performance increases
 - try simplification operators on the tree
 - evaluate the resulting trees
 - make the replacement that results in the best estimated performance
 - 3.return the resulting decision tree

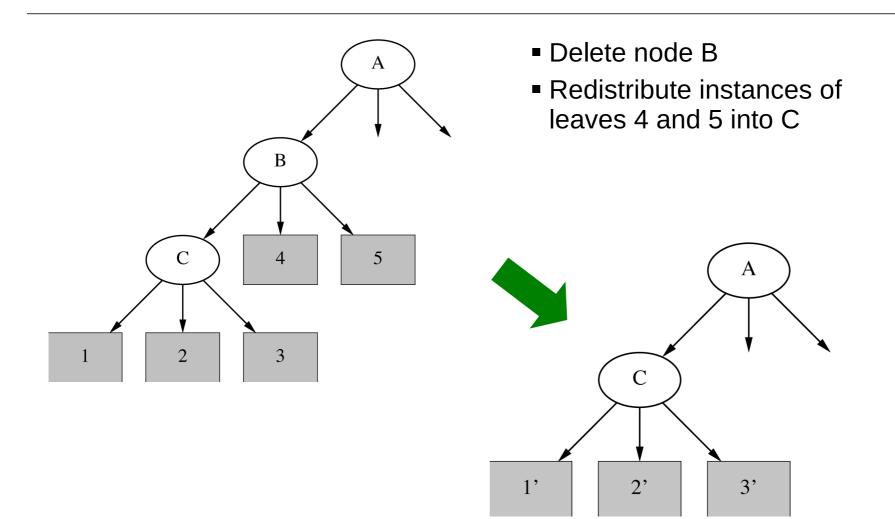
Post-pruning

- Two subtree simplification operators
 - Subtree replacement
 - Subtree raising
- Possible performance evaluation strategies
 - error estimation
 - on separate pruning set ("reduced error pruning")
 - with confidence intervals (C4.5's method)
 - significance testing
 - MDL principle

Subtree Replacement



Subtree Raising



Estimating Error Rates

- Prune only if it does not increase the estimated error
 - Error on the training data is NOT a useful estimator (would result in almost no pruning)
- Reduced Error Pruning
 - Use hold-out set for pruning
 - Essentially the same as in rule learning
 - only pruning operators differ (subtree replacement)
- C4.5's method
 - Derive confidence interval from training data
 - with a user-provided confidence level
 - Assume that the true error is on the upper bound of this confidence interval (pessimistic error estimate)

Reduced Error Pruning

Basic Idea

optimize the accuracy of a decision tree on a separate pruning set

- 1.split training data into a growing and a pruning set
- 2.learn a complete and consistent decision tree that classifies all examples in the growing set correctly
- 3.as long as the error on the pruning set does not increase
- try to replace each node by a leaf (predicting the majority class)
- evaluate the resulting (sub-)tree on the pruning set
- make the replacement that results in the maximum error reduction

4.return the resulting decision tree

Regression Trees

Differences to Decision Trees (Classification Trees)

- Leaf Nodes:
 - Predict the average value of all instances in this leaf
- Splitting criterion:
 - Minimize the variance of the values in each subset S_i
 - Standard deviation reduction

$$SDR(A,S) = SD(S) - \sum_{i} \frac{|S_i|}{|S|} SD(S_i)$$

Termination criteria:

Very important! (otherwise only single points in each leaf)

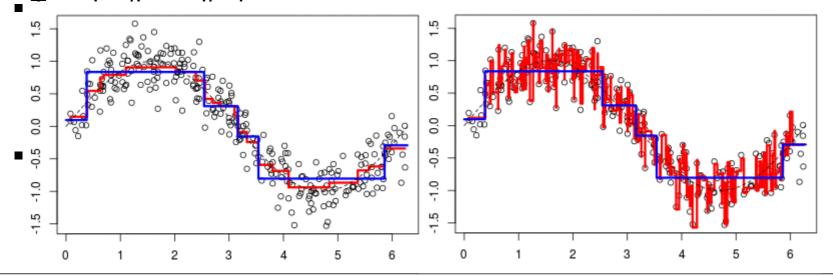
- Iower bound on standard deviation in a node
- Iower bound on number of examples in a node
- Pruning criterion:
 - size of tree, or numeric error measures, e.g. mean-squared error

Regression Trees

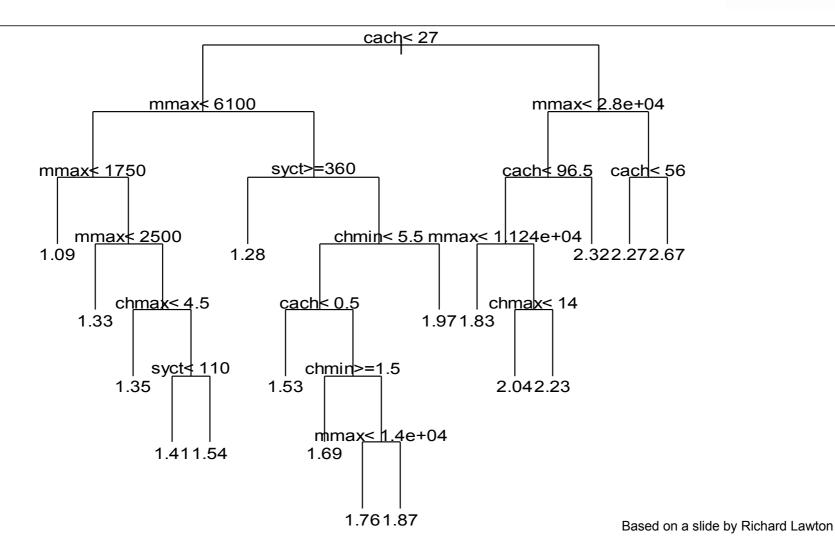
Differences to Decision Trees (Classification Trees)

- Leaf Nodes:
 - Predict the average value of all instances in this leaf
- Splitting criterion:
 - Minimize the variance of the values in each subset S_i
 - Standard deviation reduction

$$SDR(A,S) = SD(S) - \sum_{i} \frac{|S_i|}{|S|} SD(S_i)$$



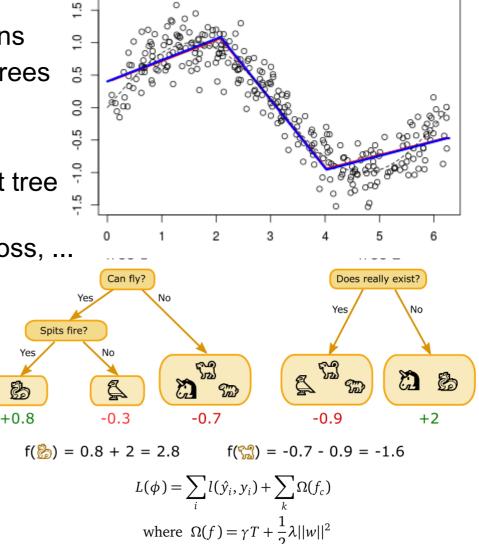
Regression Tree



Other Trees

Model Trees

- use a linear model for making the predictions
- growing of the tree is as with Regression Trees
- mapping function gets piecewise linear
- Gradient Boosting trees
 - ensemble of trees, where each subsequent tree corrects previous predictions (→ Boosting)
 - can use aleatory losses like MSE, logistic loss, ...
 - splits determined by gain on gradient statistics
 - regularization via tree size and model parameters in objective function



Summary

- Classification Problems require the prediction of a discrete target value
 - can be solved using decision tree learning
 - iteratively select the best attribute and split up the values according to this attribute
- Regression Problems require the prediction of a numerical target value
 - can be solved with regression trees and model trees
 - difference is in the models that are used at the leafs
 - are grown like decision trees, but with different splitting criteria
- Some Advantages of decision trees
 - non-linearity \rightarrow fast predictors
 - natural support for categorical data
 - Interpretability: comprehensible by humans
 - robustness: due to good heuristics and by using ensembles
- Overfitting is a serious problem!
 - simpler, seemingly less accurate trees are often preferable
 - evaluation has to be done on separate test sets

Tools

Online tool for exercising: http://www.aispace.org/exercises/exercise7-a-1.shtml

🙆 Decision Tree Learning Applet Version 4.4.0 survey.txt 🛛 🗖 🗙			
<u>File Edit View Decision Tree Options Help</u>			
View/Edit Ex. Step	Auto Create Stop		v Plot
Create Solve			
Click on any blue node to split.			
			^
	Split: mushroor Value Count Probability 1 37 0,37 0 63 0,63	n	
/	0 -		
Leaf]		Leaf
Value Count Probability		\∕alue Count	Probability
1 37 0,77		1 0	0,0
0 11 0,23		0 52	1,0
4			