
IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 1

Decision Trees

Data Mining and
Machine Learning: Techniques and

Algorithms

 Eneldo Loza Mencía
eneldo@ke.tu-darmstadt.de

Knowledge Engineering Group, TU Darmstadt

International Week 2019, 21.1. – 24.1.
University of Economics, Prague

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 3

Outline

 Introduction
 Decision Trees
 TDIDT: Top-Down Induction of

Decision Trees
 ID3
 Attribute selection
 Entropy, Information, Information

Gain
 Gain Ratio

 C4.5
 Missing Values
 Numeric Values
 Split Encoding
 Pruning

 Regression and Model Trees

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 4

Decision Trees

 a decision tree consists of
 Nodes:
 test for the value of a certain attribute

 Edges:
 correspond to the outcome of a test
 connect to the next node or leaf

 Leaves:
 terminal nodes that predict the outcome

to classifiy an example:
1.start at the root
2.perform the test
3.follow the edge corresponding to outcome
4.goto 2. unless leaf
5.predict that outcome associated with the leaf

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 5

Decision Trees

 a decision tree consists of
 Nodes:
 test for the value of a certain attribute

 Edges:
 correspond to the outcome of a test
 connect to the next node or leaf

 Leaves:
 terminal nodes that predict the outcome

to classifiy an example:
1.start at the root
2.perform the test
3.follow the edge corresponding to outcome
4.goto 2. unless leaf
5.predict that outcome associated with the leaf

https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-
dde4edffae11

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 6

Decision Tree Learning

Training

Classification

?

New Example

In Decision Tree
Learning, a new example
is classified by submitting
it to a series of tests that
determine the class label

of the example.These tests
are organized in a

hierarchical structure
called a decision tree.

The training examples
are used for choosing

appropriate tests in the
 decision tree. Typically, a

tree is built from top to
bottom, where tests that

maximize the information gain
about the classification are

selected first.

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 7

A Sample Task

Day Temperature Outlook Humidity Windy Play Golf?

07-05 hot sunny high false no

07-06 hot sunny high true no

07-07 hot overcast high false yes

07-09 cool rain normal false yes

07-10 cool overcast normal true yes

07-12 mild sunny high false no

07-14 cool sunny normal false yes

07-15 mild rain normal false yes

07-20 mild sunny normal true yes

07-21 mild overcast high true yes

07-22 hot overcast normal false yes

07-23 mild rain high true no

07-26 cool rain normal true no

07-30 mild rain high false yes

today cool sunny normal false ?

tomorrow mild sunny normal false ?

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 8

Decision Tree Learning

tomorrow mild sunny normal false ?

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 9

Divide-And-Conquer Algorithms

 Family of decision tree learning algorithms
 TDIDT: Top-Down Induction of Decision Trees

 Learn trees in a Top-Down fashion:
 divide the problem in subproblems
 solve each problem

Basic Divide-And-Conquer Algorithm:

1. select a test for root node
Create branch for each possible outcome of the test

2. split instances into subsets
One for each branch extending from the node

3. repeat recursively for each branch, using only instances that reach the
branch

4. stop recursion for a branch if all its instances have the same class

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 10

ID3 Algorithm

Function ID3
 Input: Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi

Function ID3
 Input: Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 11

A Different Decision Tree

 also explains all of the training data
 will it generalize well to new data?

vs.

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 12

Which attribute to select as the root?

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 13

What is a good Attribute?

We want to grow a simple tree
→ a good heuristic prefers attributes that split the data so that each

successor node is as pure as posssible
 i.e., the distribution of examples in each node is so that it mostly

contains examples of a single class

 In other words:
 We want a measure that prefers attributes that have a high degree of

„order“:
 Maximum order: All examples are of the same class
 Minimum order: All classes are equally likely

→ Entropy is a measure for (un-)orderedness
 Another interpretation:
 Entropy is the amount of information that is contained in the node
 all examples of the same class → no information

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 14

Entropy (for two classes)

 S is a set of examples

 p⊕ is the proportion of
examples in class ⊕

 p⊖ = 1 − p⊕ is the
proportion of examples
in class ⊖

Entropy:

 Interpretation:
 amount of unorderedness in the

class distribution of S

maximal value at equal
class distribution

minimal value if only
one class left in S

E S =−p⊕⋅log2 p⊕− p⊖⋅log2 p⊖

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 15

Example: Attribute Outlook

Outlook = sunny: 2 examples yes, 3 examples no

 Outlook = overcast: 4 examples yes, 0 examples no

 Outlook = rainy : 3 examples yes, 2 examples no

`

E Outlook=rainy =−3
5

log2 3
5 −2

5
log2 2

5 =0.971

E Outlook=overcast =−1⋅log21−0⋅log20=0

E Outlook=sunny =−2
5

log2 2
5 −3

5
log2 3

5 =0.971

Note: this
is normally
undefined.
Here: = 0

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 16

Entropy (for more classes)

E (S)=− p1 log2 p1− p2 log2 p2 ...− pn log2 pn=−∑i=1

n
pi log 2 pi

Entropy can be easily generalized for n > 2 classes

 p
i
 is the proportion of examples in S that belong to the i-th class

 Calculation can be simplified using absolute counts c
i
 of examples in

class i instead of fractions
 If :

 Example:

E ([2,3 ,4])=− 2
9⋅log2(

2
9)−

3
9⋅log2(

3
9)−

4
9⋅log2(

4
9)

=− 1
9 (2⋅log2(2)+3⋅log2(3)+4⋅log2(4)−9⋅log2(9))

E (S)=−∑i=1

n
pi log2 p i=− 1

∣S∣
⋅(∑i=1

n
ci log2 ci−∣S∣⋅log2∣S∣)

pi=
c i

∣S∣

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 17

Average Entropy / Information

 Problem:
 Entropy only computes the quality of a single (sub-)set of examples
 corresponds to a single value

 How can we compute the quality of the entire split?
 corresponds to an entire attribute

 Solution:
 Compute the weighted average over all sets resulting from the split
 weighted by their size

 Example:
 Average entropy for attribute Outlook:

I S , A=∑
i

∣S i∣
∣S∣

⋅E S i

I Outlook = 5
14⋅0.971 4

14⋅0 5
14⋅0.971=0.693

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 18

Information Gain

When an attribute A splits the set S into subsets Si

 we compute the average entropy
 and compare the sum to the entropy of the original set S

Information Gain for Attribute A

 The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!

Note:
 maximizing information gain is equivalent to minimizing average

entropy, because E(S) is constant for all attributes A

Gain S , A=E S − I S , A=E S −∑
i

∣S i∣
∣S∣

⋅E S i

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 19

Example

GainS ,Outlook =0.246 Gain S ,Temperature =0.029

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 20

Example (Ctd.)

? ?

Outlook is selected
as the root note

 Outlook = overcast
contains only

examples of class yes

further splitting
necessary

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 21

Example (Ctd.)

Gain(Temperature) = 0.571 bits

Gain(Humidity) = 0.971 bits

Gain(Windy) = 0.020 bits

Humidity is selected

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 22

Example (Ctd.)

?

Humidity is selected

further splitting
necessary

Pure leaves
→ No further expansion necessary

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 23

Final decision tree

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 28

Gini Index

 Many alternative measures to Information Gain
 Most popular altermative: Gini index
 used in e.g., in CART (Classification And Regression Trees)
 impurity measure (instead of entropy)

 average Gini index (instead of average entropy / information)

 Gini Gain
 could be defined analogously to information gain
 but typically averageGini index is minimized instead of maximizing

Gini gain

Gini S =∑
i

pi⋅1− pi=1−∑
i

pi
2

Gini S , A=∑
i

∣S i∣
∣S∣

⋅Gini S i

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 29

Comparison of Splitting Criteria

For a 2-class problem:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

f(
p)

Entropy
2*Gini
2*Error

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 30

Why not use Error as a Splitting
Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 1: Data set with 160 Examples A, 40 Examples B
 → Error rate without splitting is 20%

 40 of A 60 of A

 60 of A
 40 of B

Split 2

Split 1

For each of the two
splits, the total error
after splitting is also
(0% + 40%)/2 = 20%
→ no improvement

However, together
both splits would
give a perfect
classfier.

Based on a slide by Richard Lawton

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 31

Why not use Error as a Splitting
Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 2:
 Dataset with 400 examples of class A and 400 examples of class B

400 of A
400 of B

200 of A
400 of B

200 of A
0 of B

400 of A
400 of B

300 of A
100 of B

100 of A
300 of B

Error rate = 25% Error rate = 25%
Based on a slide by Richard Lawton

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 32

Industrial-strength algorithms

 For an algorithm to be useful in a wide range of real-world applications it
must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept descriptions (at least in

principle)
→ ID3 needs to be extended to be able to deal with real-world data

 Result: C4.5
 Best-known and (probably) most widely-used learning algorithm
 original C-implementation at http://www.rulequest.com/Personal/

 Re-implementation of C4.5 Release 8 e.g. in Weka: J4.8
 Commercial successor: C5.0
 freely available e.g. in R

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 33

Missing values

 Examples are classified as usual
 if we are lucky, attributes with missing values are not tested by the tree

 If an attribute with a missing value needs to be tested:
 split the instance into fractional instances (pieces)
 one piece for each outgoing branch of the node
 a piece going down a branch receives a weight proportional to the popularity of

the branch
 weights sum to 1

 Info gain or gain ratio work with fractional instances
 use sums of weights instead of counts

 during classification, split the instance in the same way
 Merge probability distribution using weights of fractional instances

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 34

Numeric attributes

 Standard method: binary splits
 E.g. temp < 45

 Unlike nominal attributes, every attribute has many possible split points
 Solution is straightforward extension:
 Evaluate info gain (or other measure) for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for attribute

→ Computationally more demanding than splits on discrete
 attributes

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 35

Example

Assume a numerical attribute for Temperature
 First step:
 Sort all examples according to the value of this attribute
 Could look like this:

Split points can be placed between values or directly at values
Has to be computed for all pairs of neighboring values

 64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

I Temperature @ 71.5 =
6

14
⋅E Temperature71.5

8
14

E Temperature≥71.5=0.939

Temperature < 71.5: yes/4, no/2 Temperature ≥ 71.5: yes/5, no/3

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 36

Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix

and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No

 Taxable Income

60 70 75 85 90 95 100 120 125 220

 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 37

Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix

and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values

http://www.rulequest.com/Personal/

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 38

Highly-branching attributes

Problematic: attributes with a large number of values

 extreme case: each example has its own value
 e.g. example ID; Day attribute in weather data

Subsets are more likely to be pure if there is a large number of
different attribute values

 Information gain is biased towards choosing attributes with a large
number of values

 This may cause several problems:
 Overfitting
 selection of an attribute that is non-optimal for prediction

 Fragmentation
 data are fragmented into (too) many small sets

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 39

Decision Tree for Day attribute

I Day = 1
14 E [0,1]E [0,1]...E [0,1]=0

 Entropy of split:

 Information gain is maximal for Day (0.940 bits)

 Day

07-05 07-3007-06 07-2607-07

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 40

Split Encoding

Categorical Encoding
 use at it is
 #branches=#categories

Numeric Encoding
 enumerate categories
 ordering might be aleatoric
 DT treats feature as numeric

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 41

Split Encoding

One-Hot Encoding
 one binary feature for each category
 also very popular representation e.g.

for neural networks
 #features=#categories

Binary Encoding
 unique binary encoding for each

category
 #features=log2(#categories+1)

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 42

Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 43

Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 44

Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 45

Split Encoding
Example Results

 categorical encoding
achieves best performance
but, in addition to
overfitting and
fragmentation problem,
might be difficult to read

 one-hot encoding not
beneficial for DT learning
 less accurate
more computationally
expensive for high
number of categories

What other possibilities
would make sense?

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 47

Overfitting and Pruning

 The smaller the complexity of a concept, the less danger that it overfits
the data

 A polynomial of degree n can always fit n+1 points

 Thus, learning algorithms try to keep the learned concepts simple
 Note a „perfect“ fit on the training data can always be found for a

decision tree! (except when data is contradictory)

 Pre-Pruning:
 stop growing a branch when information becomes unreliable

 Post-Pruning:
 grow a decision tree that correctly classifies all training data
 simplify it later by replacing some nodes with leafs

 Post-pruning preferred in practice—pre-pruning can “stop early”

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 48

Overfitting and Pruning

© Gabriel Cypriano

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 49

Pre-pruning

 Based on statistical significance test
 Stop growing the tree when there is no statistically significant

association between any attribute and the class at a particular node
 Most popular test: chi-squared test
 ID3 used chi-squared test in addition to information gain
 Only statistically significant attributes were allowed to be selected by

information gain procedure

 C4.5 uses a simpler strategy
 but combines it with → post-pruning
 parameter -m: (default value m=2)

each node above a leave must have
 at least two successors
 that contain at least m examples

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 50

 Pre-pruning may stop the growth
process prematurely: early stopping

 Classic example: XOR/Parity-problem
 No individual attribute exhibits any

significant association to the class
→ In a dataset that contains XOR attributes a and b, and several

irrelevant (e.g., random) attributes, ID3 can not distinguish between
relevant and irrelevant attributes

→ Pre-pruning won’t expand the root node
 Structure is only visible in fully expanded tree

 But:
 XOR-type problems rare in practice
 pre-pruning is faster than post-pruning

0001

1102

1

1

a

014

103

classb

Early Stopping

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 51

Post-pruning

 basic idea
 first grow a full tree to capture all possible attribute interactions
 later remove those that are due to chance

1.learn a complete and consistent decision tree that classifies all
examples in the training set correctly

2.as long as the performance increases

 try simplification operators on the tree
 evaluate the resulting trees
 make the replacement that results in the best estimated performance

3.return the resulting decision tree

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 52

Post-pruning

 Two subtree simplification operators
 Subtree replacement
 Subtree raising

 Possible performance evaluation strategies
 error estimation
 on separate pruning set („reduced error pruning“)
 with confidence intervals (C4.5's method)

 significance testing
 MDL principle

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 53

Proceeds Bottom-up:
 consider replacing a tree only after considering

all its subtrees

 may make a difference for complexity-based
heuristics

Subtree Replacement

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 54

 Delete node B
 Redistribute instances of

leaves 4 and 5 into C

Subtree Raising

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 55

Estimating Error Rates

 Prune only if it does not increase the estimated error
 Error on the training data is NOT a useful estimator

(would result in almost no pruning)

 Reduced Error Pruning
 Use hold-out set for pruning
 Essentially the same as in rule learning
 only pruning operators differ (subtree replacement)

 C4.5’s method
 Derive confidence interval from training data
 with a user-provided confidence level

 Assume that the true error is on the upper bound of this confidence interval
(pessimistic error estimate)

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 56

Reduced Error Pruning

 Basic Idea

 optimize the accuracy of a decision tree on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent decision tree that classifies all
examples in the growing set correctly

3.as long as the error on the pruning set does not increase

 try to replace each node by a leaf (predicting the majority class)
 evaluate the resulting (sub-)tree on the pruning set
 make the replacement that results in the maximum error reduction

4.return the resulting decision tree

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 69

Regression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:
 Predict the average value of all instances in this leaf

 Splitting criterion:

 Minimize the variance of the values in each subset Si

 Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)

 lower bound on standard deviation in a node
 lower bound on number of examples in a node

 Pruning criterion:
 size of tree, or numeric error measures, e.g. mean-squared error

SDR A , S =SD S −∑
i

∣S i∣
∣S∣

SD S i

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 70

Regression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:
 Predict the average value of all instances in this leaf

 Splitting criterion:

 Minimize the variance of the values in each subset Si

 Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)

 lower bound on standard deviation in a node
 lower bound on number of examples in a node

 Pruning criterion:
 size of tree, or numeric error measures, e.g. mean-squared error

SDR A , S =SD S −∑
i

∣S i∣
∣S∣

SD S i

https://www.r-bloggers.com/an-attempt-to-understand-boosting-algorithms/

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 72

|cach< 27

mmax< 6100

mmax< 1750

mmax< 2500

chmax< 4.5

syct< 110

syct>=360

chmin< 5.5

cach< 0.5

chmin>=1.5

mmax< 1.4e+04

mmax< 2.8e+04

cach< 96.5

mmax< 1.124e+04

chmax< 14

cach< 56

1.09

1.33

1.35

1.411.54

1.28

1.53

1.69

1.761.87

1.971.83

2.042.23

2.322.272.67

Regression Tree

Based on a slide by Richard Lawton

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 75

Other Trees

 Model Trees
 use a linear model for making the predictions
 growing of the tree is as with Regression Trees
 mapping function gets piecewise linear

 Gradient Boosting trees
 ensemble of trees, where each subsequent tree

corrects previous predictions (→ Boosting)
 can use aleatory losses like MSE, logistic loss, ...
 splits determined by gain on

gradient statistics
 regularization via tree size and model

parameters in objective function

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
Simon Peter Bohlender, Dynamic Multilabel Classification using Gradient Boosted Trees

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 77

Summary

 Classification Problems require the prediction of a discrete target value
 can be solved using decision tree learning
 iteratively select the best attribute and split up the values according to

this attribute
 Regression Problems require the prediction of a numerical target value
 can be solved with regression trees and model trees
 difference is in the models that are used at the leafs
 are grown like decision trees, but with different splitting criteria

 Some Advantages of decision trees
 non-linearity → fast predictors
 natural support for categorical data
 interpretability: comprehensible by humans
 robustness: due to good heuristics and by using ensembles

 Overfitting is a serious problem!
 simpler, seemingly less accurate trees are often preferable
 evaluation has to be done on separate test sets

IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 78

Tools

 Online tool for exercising: http://www.aispace.org/exercises/exercise7-a-1.shtml

	Folie 1
	Folie 3
	Decision Trees
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Constructing decision trees
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Computing information
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Continuing to split
	Folie 22
	Final decision tree
	Folie 28
	Comparison among Splitting Criteria
	Folie 30
	Folie 31
	Industrial-strength algorithms
	Missing values
	Numeric attributes
	Example
	Continuous Attributes: Computing Gini Index...
	Folie 37
	Highly-branching attributes
	Tree stump for ID code attribute
	Binary vs multiway splits
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 47
	Folie 48
	Prepruning
	Early stopping
	Folie 51
	Postpruning
	Subtree replacement
	Subtree raising
	Estimating error rates
	Folie 56
	Folie 69
	Folie 70
	Folie 72
	Folie 75
	Folie 77
	Folie 78

