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Decision Trees

 a decision tree consists of
 Nodes: 
 test for the value of a certain attribute

 Edges: 
 correspond to the outcome of a test
 connect to the next node or leaf

 Leaves:
 terminal nodes that predict the outcome

to classifiy an example:
1.start at the root
2.perform the test
3.follow the edge corresponding to outcome
4.goto 2. unless leaf
5.predict that outcome associated with the leaf

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
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Decision Trees

 a decision tree consists of
 Nodes: 
 test for the value of a certain attribute

 Edges: 
 correspond to the outcome of a test
 connect to the next node or leaf

 Leaves:
 terminal nodes that predict the outcome

to classifiy an example:
1.start at the root
2.perform the test
3.follow the edge corresponding to outcome
4.goto 2. unless leaf
5.predict that outcome associated with the leaf

https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-
dde4edffae11
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Decision Tree Learning

Training

Classification

?

New Example

In Decision Tree 
Learning, a new example 
is classified by submitting 
it to a series of tests that 
determine the class label 

of the example.These tests 
are organized in a 

hierarchical structure 
called a decision tree.

The training examples 
are used for choosing

appropriate tests in the
 decision tree. Typically, a  

tree is built from top to 
bottom, where tests that 

maximize the information gain 
about the classification are 

selected first.
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A Sample Task

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

07-30 mild  rain  high false  yes 

today cool sunny normal false ?

tomorrow mild sunny normal false ?
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Decision Tree Learning

tomorrow mild sunny normal false ?
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Divide-And-Conquer Algorithms

 Family of decision tree learning algorithms
 TDIDT: Top-Down Induction of Decision Trees

 Learn trees in a Top-Down fashion:
 divide the problem in subproblems
 solve each problem

Basic Divide-And-Conquer Algorithm:

1. select a test for root node
Create branch for each possible outcome of the test

2. split instances into subsets
One for each branch extending from the node

3. repeat recursively for each branch, using only instances that reach the 
branch

4. stop recursion for a branch if all its instances have the same class
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ID3 Algorithm

Function ID3 
 Input:    Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi

Function ID3 
 Input:    Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi
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A Different Decision Tree

 also explains all of the training data
 will it generalize well to new data?

vs.
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Which attribute to select as the root?
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What is a good Attribute?

We want to grow a simple tree
→ a good heuristic prefers attributes that split the data so that each 

successor node is as pure as posssible
 i.e., the distribution of examples in each node is so that it mostly 

contains examples of a single class

 In other words:
 We want a measure that prefers attributes that have a high degree of 

„order“:
 Maximum order: All examples are of the same class
 Minimum order: All classes are equally likely

→ Entropy is a measure for (un-)orderedness
 Another interpretation:
 Entropy is the amount of information that is contained in the node
 all examples of the same class → no information
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Entropy (for two classes)

 S is a set of examples

 p⊕ is the proportion of
examples in class ⊕

 p⊖ = 1 − p⊕ is the
proportion of examples 
in class ⊖

Entropy:

 Interpretation:
 amount of unorderedness in the 

class distribution of S

maximal value at equal
class distribution

minimal value if only 
one class left in S

E S =−p⊕⋅log2 p⊕− p⊖⋅log2 p⊖
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Example: Attribute Outlook

Outlook = sunny: 2 examples yes, 3 examples no

 Outlook = overcast: 4 examples yes, 0 examples no

 Outlook = rainy : 3 examples yes, 2 examples no

`

E Outlook=rainy =−3
5

log2  3
5 −2

5
log2 2

5 =0.971

E Outlook=overcast =−1⋅log21−0⋅log20=0

E Outlook=sunny =−2
5

log2 2
5 −3

5
log2  3

5 =0.971

Note: this
is normally
undefined.
Here: = 0
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Entropy (for more classes)

E (S )=− p1 log2 p1− p2 log2 p2 ...− pn log2 pn=−∑i=1

n
pi log 2 pi

Entropy can be easily generalized for n > 2 classes

 p
i
 is the proportion of examples in S that belong to the i-th class

 Calculation can be simplified using absolute counts c
i
 of examples in 

class i instead of fractions
 If             : 

 Example:

E ([2,3 ,4])=− 2
9⋅log2(

2
9 )−

3
9⋅log2(

3
9 )−

4
9⋅log2(

4
9 )

=− 1
9 (2⋅log2(2)+3⋅log2(3)+4⋅log2(4)−9⋅log2(9))

E (S )=−∑i=1

n
pi log2 p i=− 1

∣S∣
⋅(∑i=1

n
ci log2 ci−∣S∣⋅log2∣S∣)

pi=
c i

∣S∣
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Average Entropy / Information

 Problem:
 Entropy only computes the quality of a single (sub-)set of examples
 corresponds to a single value

 How can we compute the quality of the entire split?
 corresponds to an entire attribute

 Solution:
 Compute the weighted average over all sets resulting from the split
 weighted by their size

 Example:
 Average entropy for attribute Outlook:

I S , A=∑
i

∣S i∣
∣S∣

⋅E S i

I Outlook = 5
14⋅0.971 4

14⋅0 5
14⋅0.971=0.693
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Information Gain

When an attribute A splits the set S into subsets Si

 we compute the average entropy
 and compare the sum to the entropy of the original set S

Information Gain for Attribute A

 The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!

Note:
 maximizing information gain is equivalent to minimizing average 

entropy, because E(S) is constant for all attributes A

Gain S , A=E S − I S , A=E S −∑
i

∣S i∣
∣S∣

⋅E S i



IW19 | Data Mining and Machine Learning: Techniques and Algorithms | 19 

Example

GainS ,Outlook =0.246 Gain S ,Temperature =0.029
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Example (Ctd.)

? ?

Outlook is selected
as the root note

 Outlook = overcast
contains only

examples of class yes

further splitting
necessary
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Example (Ctd.)

Gain(Temperature ) = 0.571 bits

Gain(Humidity )      = 0.971 bits

Gain(Windy ) = 0.020 bits

Humidity is selected
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Example (Ctd.)

?

Humidity is selected

further splitting
necessary

Pure leaves
→ No further expansion necessary
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Final decision tree
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Gini Index

 Many alternative measures to Information Gain
 Most popular altermative: Gini index
 used in e.g., in CART (Classification And Regression Trees)
 impurity measure (instead of entropy)

 average Gini index (instead of average entropy / information)

 Gini Gain
 could be defined analogously to information gain
 but typically averageGini index is minimized instead of maximizing 

Gini gain

Gini S =∑
i

pi⋅1− pi=1−∑
i

pi
2

Gini S , A=∑
i

∣S i∣
∣S∣

⋅Gini S i
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Comparison of Splitting Criteria

For a 2-class problem:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

f(
p)

Entropy
2*Gini
2*Error
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Why not use Error as a Splitting 
Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 1: Data set with 160 Examples A, 40 Examples B
 → Error rate without splitting is 20%

    40 of A      60 of A

      60 of A
     40 of B

Split 2

Split 1

For each of the two
splits, the total error
after splitting is also
(0% + 40%)/2 = 20%
→ no improvement

However, together
both splits would
give a perfect
classfier.

Based on a slide by Richard Lawton
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Why not use Error as a Splitting 
Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 2:
 Dataset with 400 examples of class A and 400 examples of class B

400 of A
400 of B

200 of A
400 of B

200 of A
0 of B

400 of A
400 of B

300 of A
100 of B

100 of A
300 of B

Error rate = 25% Error rate = 25%
Based on a slide by Richard Lawton
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Industrial-strength algorithms

 For an algorithm to be useful in a wide range of real-world applications it 
must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept descriptions (at least in 

principle) 
→ ID3 needs to be extended to be able to deal with real-world data

 Result: C4.5
 Best-known and (probably) most widely-used learning algorithm
 original C-implementation at http://www.rulequest.com/Personal/

 Re-implementation of C4.5 Release 8 e.g. in Weka: J4.8
 Commercial successor: C5.0
 freely available e.g. in R
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Missing values

 Examples are classified as usual
 if we are lucky, attributes with missing values are not tested by the tree

 If an attribute with a missing value needs to be tested:
 split the instance into fractional instances (pieces)
 one piece for each outgoing branch of the node
 a piece going down a branch receives a weight proportional to the popularity of 

the branch
 weights sum to 1

 Info gain or gain ratio work with fractional instances
 use sums of weights instead of counts

 during classification, split the instance in the same way
 Merge probability distribution using weights of fractional instances
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Numeric attributes

 Standard method: binary splits
 E.g. temp < 45

 Unlike nominal attributes, every attribute has many possible split points
 Solution is straightforward extension: 
 Evaluate info gain (or other measure) for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for attribute

→ Computationally more demanding than splits on discrete  
     attributes
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Example

Assume a numerical attribute for Temperature
 First step: 
 Sort all examples according to the value of this attribute
 Could look like this:

      

Split points can be placed between values or directly at values
Has to be computed for all pairs of neighboring values

 64     65     68      69      70     71    72     72       75     75      80     81     83      85
Yes  No  Yes  Yes  Yes  No  No  Yes  Yes  Yes  No  Yes  Yes  No

I Temperature @ 71.5 =
6

14
⋅E Temperature71.5

8
14

E Temperature≥71.5=0.939

Temperature < 71.5: yes/4, no/2 Temperature ≥ 71.5: yes/5, no/3
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Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix 

and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No 

 Taxable Income 

60 70 75 85 90 95 100 120 125 220 

 55 65 72 80 87 92 97 110 122 172 230 

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 

 

Split Positions

Sorted Values
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Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix 

and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No 

Taxable Income  

60 70 75 85 90 95 100 120 125 220 

55 65 72 80 87 92 97 110 122 172 230  

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 

 

Split Positions

Sorted Values

http://www.rulequest.com/Personal/
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Highly-branching attributes

Problematic: attributes with a large number of values 

 extreme case: each example has its own value
 e.g. example ID;  Day attribute in weather data

Subsets are more likely to be pure if there is a large number of 
different attribute values

 Information gain is biased towards choosing attributes with a large 
number of values

 This may cause several problems:
 Overfitting 
 selection of an attribute that is non-optimal for prediction

 Fragmentation
 data are fragmented into (too) many small sets
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Decision Tree for Day attribute

I Day = 1
14  E [0,1]E [0,1]...E [0,1]=0

 Entropy of split:

 Information gain is maximal for Day (0.940 bits)

   Day   

07-05 07-3007-06 07-2607-07
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Split Encoding

Categorical Encoding
 use at it is
 #branches=#categories

Numeric Encoding
 enumerate categories
 ordering might be aleatoric
 DT treats feature as numeric

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Split Encoding

One-Hot Encoding
 one binary feature for each category
 also very popular representation e.g. 

for neural networks
 #features=#categories

Binary Encoding
 unique binary encoding for each 

category
 #features=log2(#categories+1)

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Split Encoding

1024 categories and 25% positive labels

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Split Encoding 
Example Results

 categorical encoding 
achieves best performance
but, in addition to 
overfitting and 
fragmentation problem,  
might be difficult to read

 one-hot encoding not 
beneficial for DT learning
 less accurate
more computationally 
expensive for high 
number of categories

What other possibilities 
would make sense?

https://medium.com/data-design/
visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931
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Overfitting and Pruning

 The smaller the complexity of a concept, the less danger that it overfits 
the data

 A polynomial of degree n can always fit n+1 points

 Thus, learning algorithms try to keep the learned concepts simple 
 Note a „perfect“ fit on the training data can always be found for a 

decision tree! (except when data is contradictory)

  Pre-Pruning:
 stop growing a branch when information becomes unreliable

  Post-Pruning:
 grow a decision tree that correctly classifies all training data
 simplify it later by replacing some nodes with leafs

 Post-pruning preferred in practice—pre-pruning can “stop early”
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Overfitting and Pruning

© Gabriel Cypriano
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Pre-pruning

 Based on statistical significance test
 Stop growing the tree when there is no statistically significant 

association between any attribute and the class at a particular node
 Most popular test: chi-squared test
 ID3 used chi-squared test in addition to information gain
 Only statistically significant attributes were allowed to be selected by 

information gain procedure

 C4.5 uses a simpler strategy
 but combines it with → post-pruning
 parameter -m:     (default value m=2)

each node above a leave must have 
 at least two successors 
 that contain at least m examples
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 Pre-pruning may stop the growth
process prematurely: early stopping

 Classic example: XOR/Parity-problem
 No individual attribute exhibits any 

significant association to the class
→ In a dataset that contains XOR attributes a and b, and several 

irrelevant (e.g., random) attributes, ID3 can not distinguish between 
relevant and irrelevant attributes

→ Pre-pruning won’t expand the root node
 Structure is only visible in fully expanded tree

 But: 
 XOR-type problems rare in practice
 pre-pruning is faster than post-pruning

0001

1102

1

1

a

014

103

classb

Early Stopping
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Post-pruning 

 basic idea
 first grow a full tree to capture all possible attribute interactions
 later remove those that are due to chance

1.learn a complete and consistent decision tree that classifies all 
examples in the training set correctly 

2.as long as the performance increases

 try simplification operators on the tree
 evaluate the resulting trees
 make the replacement that results in the best estimated performance

3.return the resulting decision tree
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Post-pruning

 Two subtree simplification operators
 Subtree replacement
 Subtree raising

 Possible performance evaluation strategies
 error estimation
 on separate pruning set („reduced error pruning“)
 with confidence intervals (C4.5's method)

 significance testing
 MDL principle
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Proceeds Bottom-up:
 consider replacing a tree only after considering 

all its subtrees

 may make a difference for complexity-based 
heuristics

Subtree Replacement
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 Delete node B
 Redistribute instances of 

leaves 4 and 5 into C

Subtree Raising
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Estimating Error Rates

 Prune only if it does not increase the estimated error
 Error on the training data is NOT a useful estimator

(would result in almost no pruning)

 Reduced Error Pruning
 Use hold-out set for pruning
 Essentially the same as in rule learning
 only pruning operators differ (subtree replacement)

 C4.5’s method
 Derive confidence interval from training data
 with a user-provided confidence level

 Assume that the true error is on the upper bound of this confidence interval 
(pessimistic error estimate)
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Reduced Error Pruning 

  Basic Idea

 optimize the accuracy of a decision tree on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent decision tree that classifies all 
examples in the growing set correctly 

3.as long as the error on the pruning set does not increase

 try to replace each node by a leaf (predicting the majority class)
 evaluate the resulting (sub-)tree on the pruning set
 make the replacement that results in the maximum error reduction

4.return the resulting decision tree
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Regression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:
 Predict the average value of all instances in this leaf

 Splitting criterion:

 Minimize the variance of the values in each subset Si

 Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)

 lower bound on standard deviation in a node
 lower bound on number of examples in a node

 Pruning criterion:
 size of tree, or numeric error measures, e.g. mean-squared error

SDR A , S =SD S −∑
i

∣S i∣
∣S∣

SD S i
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Regression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:
 Predict the average value of all instances in this leaf

 Splitting criterion:

 Minimize the variance of the values in each subset Si

 Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)

 lower bound on standard deviation in a node
 lower bound on number of examples in a node

 Pruning criterion:
 size of tree, or numeric error measures, e.g. mean-squared error

SDR A , S =SD S −∑
i

∣S i∣
∣S∣

SD S i

https://www.r-bloggers.com/an-attempt-to-understand-boosting-algorithms/
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|cach< 27

mmax< 6100

mmax< 1750

mmax< 2500

chmax< 4.5

syct< 110

syct>=360

chmin< 5.5

cach< 0.5

chmin>=1.5

mmax< 1.4e+04

mmax< 2.8e+04

cach< 96.5

mmax< 1.124e+04

chmax< 14

cach< 56

1.09

1.33

1.35

1.411.54

1.28

1.53

1.69

1.761.87

1.971.83

2.042.23

2.322.272.67

Regression Tree

Based on a slide by Richard Lawton
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Other Trees

 Model Trees
 use a linear model for making the predictions
 growing of the tree is as with Regression Trees
 mapping function gets piecewise linear

 Gradient Boosting trees
 ensemble of trees, where each subsequent tree 

corrects previous predictions (→ Boosting)
 can use aleatory losses like MSE, logistic loss, ... 
 splits determined by gain on 

gradient statistics
 regularization via tree size and model 

parameters in objective function

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
Simon Peter Bohlender, Dynamic Multilabel Classification using Gradient Boosted Trees
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Summary

 Classification Problems require the prediction of a discrete target value
 can be solved using decision tree learning
 iteratively select the best attribute and split up the values according to 

this attribute
 Regression Problems require the prediction of a numerical target value
 can be solved with regression trees and model trees
 difference is in the models that are used at the leafs
 are grown like decision trees, but with different splitting criteria

 Some Advantages of decision trees
 non-linearity → fast predictors
 natural support for categorical data
 interpretability: comprehensible by humans
 robustness: due to good heuristics and by using ensembles 

 Overfitting is a serious problem!
 simpler, seemingly less accurate trees are often preferable
 evaluation has to be done on separate test sets
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Tools

 Online tool for exercising: http://www.aispace.org/exercises/exercise7-a-1.shtml
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