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Abstract

Separate and Conquer training for binary classification greedily builds a linear decision tree from the root to the leaf. This
training scheme stems from the context of rule learning where a single rule is not expressiveness enough to serve as full
prediction model. When we apply kernel methods a single model usually suffices. Nonetheless, it might advantageous
to use multiple models that apply to different parts of the input space in this context too. Single SVM-models have the
short-coming that there one parameter only to trade-off regularization and error. This can be inappropriate if the classes
are intermingled to different degree in different part of the input space. We try a margin-driven, kernel-based separate
and conquer algorithm iteratively builds a list of partial models by means of a C-SVM-like objective with asymmetric
losses. False-negatives can be undone by subsequent partial models, therefore we use a weaker loss on the class the
model is to detect. Experimental results show that model lists obtained with this training scheme can indeed compensate
weak kernels, though only for some of the probed data sets. They also document the main flaw of the scheme: it is
likely to happen that taking out parts of the input space produce hard residual problems instead of alleviating them as
intended.
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1 Introduction

Separate and conquer learning (seco) [12], or covering algorithm [11], is a generic rule learning training scheme for
classification. A seco model is a list of rules, or more generally, a list of partial models each covering another part of
the input space. In terms of vector-like inputs a rule corresponds to a partially open, multi-dimensional interval in the
original feature space. A single rule is usually not sufficiently expressive for successful discrimination. Therefor, one has
to build a list of rules: a positive response of a rule on a test point is taken as predicting the class associated with that
rule, while negative response means no commitment, and the test point is passed to the next rule. The last rule is obliged
to make prediction.

With this work we want to investigate whether separate and conquer learning can be applied with kernel based partial
models instead of rule-like partial models. The main issue in designing such a training algorithm is to generate hyper-
planes that represent reasonable cuts, e.g. partial models. We do so by minimizing objectives with asymmetric loss
functions that give little penalty to false-negatives because negatives does not mean a prediction. We apply that seco
algorithm on common binary data-sets in order to compare its performance to plain SVM-training. Our pretense was that
using multiple cuts should increase the performance at least if we use sufficiently weak kernels. Since the input model in
terms of the applied kernel in most cases can easily be fitted to the prediction task, this would not mean an amendment
in performance. But it would show that one can compensate to certain degree the weakness of a given input model by
applying lists of partial models.

It turns out that performance comparison of the proposed seco algorithm to the baseline of plain SVM-training is
inconclusive. For a fixed kernel, seco might yield an error-rate above or below the baseline depending on the data set.
But it is clear that the seco scheme does not beat for instance Gaussian kernel that are jointly tuned with the error-vs-
regularization trade-off-factor. We tried many variants of the seco scheme without finding a clear gain. Although there
are many more untested variants which are potentially perform better, we finally came to the conclusion that seco scheme
under study is not the wright way to go for potential benefits of problem decomposition along partial models.

Why should should we belief in benefits of partial models in context of kernel input representation anyway? With high
capacity kernel like radial basis functions separability is not an issue. Rather, one has to find the suited degree of inertia
in terms of a good combination of window size and weighting of regularization versus error penalty. This parameter
selection is usually done through trial and error on sub-samples or, more elaborately, via bounds on the generalization
error which are not tight but nonetheless predictive, see for instance [6]. Although the decision boundary is, at least for
smaller window sizes, mainly influenced by neighboring training points, there also is distant effect through the global
fitting of the inertia as part of training procedure. This distant effect is the greater the lower the capacity of the kernel
function is. A potential advantage of partial model is that it allows individual adaption of inertia for different parts of the
induced feature space.

However, there is no obvious way to find the parts of the feature space that should covered by separate models and
we can only provide a simple and greedy scheme for detecting such. Furthermore, beside any positive effect it may have,
feature space separation can also harm generalization. Errors in a subspace that already has been cut off are not relevant,
but removed training points could also have positive influence on the subsequent decision border within the uncut area,
if they were not removed from the training set.

There are many approaches to build partial models on binary classification. We only mention some of them and
entirely omit methods that typically are referred in the context of ensemble methods. In [13] the authors apply an
external hierarchical clustering algorithm that lays a partition tree over the input space in advance. The models for
assigning the test instance to a leaf partition and subsequently to an output class are trained in a second step. A similar
approach can be found in [8]. In contrast to such approaches and also to the one presented here, [3] jointly trains the
partition and classification models by means of an objective on the global model. The penalty term of the objective has
one variable factor for each level of the partition tree what prohibits standard dualization for more than one inner node.
An instance based approach is presented in [9]. The k nearest neighboors of the test instance are selected as training
set to which a linear SVM is applied. The distances are the euclidean distances in the input where the attributes are
weighted by factors obtained from attribute-wise variance analysis. The training consists of joint tuning of the number
k, the SVM-trade-off-parameter, as well as an parameter in the calculation of the distance weights.

In the first part of section 2 we give a formal introduction to separate and conquer training and fix the frame training
scheme as used for this work. We then make an excursion to large margin framework that is supplemented by an
subsection on some notions on kernels. In the subsections 2.5 and 2.6 track back to our seco scheme by fixing the
way of supplying candidate submodels and selecting one them. Section 3 is reserved for the heuristics for optimizing
the asymmetric objective given in subsection 2.5 and which we for searching candidate submodels. In section 4 we
begin with another excursion on bounds for SVM-trade-off parameters. Subsequently we report on the experimental
results for comparing the proposed algorithm with plain SVM-training and on additional experiments to light out the
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phenomenon of poor performance on residual problems. The final section contains a short conclusion that revisits the
main characteristics of the training algorithm discussed in this work.
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2 Partial Models

2.1 Seco Model: Sequence of One-sided Partial Models

We consider seco learning for binary classification. The training algorithm maps a training set A⊂X ×Y , with arbitrary
input space X and outputs from Y = {±1}, to a global model ω that corresponds to a binary classifier ω: X → Y .
For sake of lean notation we denote the model and the corresponding classifier by the same symbol and assume unique
inputs such that the outputs are functional dependent on the inputs. ω is aimed to agree with the test set E ⊂X ×Y if
A and E stems from the same source.

The global model is a list of signed partial models ω =
�

(α1, s1), . . . , (αr , sr), (αa, sa)
�

for indefinite r ≥ 0. A signed
partial model (α, s) consists of a binary model α and a sign s ∈ {±1}. The sign specifies the semantics of αs output. If
α(x) = +1, the true label y(x) is predicted as ŷ(x) = s. If, on the other hand, α(x) = −1, the partial model makes
no commitment on the class of x . We refer to the class +s as target class of (α, s) and to −s as its default class. We say
such partial model is one-sided opposed two a common two-sided binary model where both possible outputs represent a
commitment on the estimated label.

To compute ω(x) on a test instance x we subsequently apply the partial models to it. The sign s of the first partial
model with α(x) = +1, thereby making a commitment, is taken as prediction of ω. If non of the first r partial models
makes an commitment, the output equals the prediction of last partial model, ω(x) = saαa(x). That is, the last partial
model is taken as two-sided model making a commitment in any case and we can fix its sign as sa = +1. Since the
one-sided partial models somehow cut off a part of the feature space we also refer to them as cuts.

For trainingω, we subsequently train its partial models. The covered points, e.g. those on that the current partial model
makes a commitment, are removed from the training set before the next partial model is build, hence the name separate
and conquer. The next model only refers to that part of the input space that has not been covered by the previous models,
its output on the already covered part has no relevance.

2.2 Training Algorithm: Supply and Select

The seco training scheme below is generic as includes two subroutines, candidate supply and candidate assessment which
we discuss later. But beside these two compounds this is the scheme as applied in the experiments. Here, you should
read ω as the list of partial models build so far, and, correspondingly, A as the those training examples that have not yet
been covered. For training the next partial model, we first build a set of candidate models and then select one based on
an assessment function.

• build next cut c = (α, s)

– candidate supply: build a set C of candidates cuts

– candidate assessment: select a cut c from C according to a real valued selection criterion

– assess stopping criteria:

* low coverage: c covers less than 1/16 of the previously uncovered points

* beggarly leftovers: c lets less then 32 points uncovered for either of the classes

* easy task: the problem A can be solved in a two-sided manner with an cv-error below 1/32

• if neither stopping criterion is fulfilled append c to ω, remove covered points from A and repeat

• otherwise drop c and finalize ω by (αa,+1) with αa trained in a two-sided manner

The stopping criteria are arbitrary tightenings of two needed conditions: If we allowed no coverage, we would run in
infinite loop and if a class is not present in the uncovered set, we cannot train the final model. Note that this finalization
strategy is conservative in the sense that if the design of the cuts turns out to be too close or, the other way round, too
greedy, the final model still can fill in.

By time of being, the distinction between candidate supply and candidate assessment is rather informal. The first breaks
down the infinite set of possible partial models to a small set of candidates and the later makes a final choice therefrom.

The candidates are build by heuristic optimization on different objectives each. If we were certain about the objective,
we would assume the optimizer to be the best candidate. But we do not know what the right objective is and therefor
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try many of them and outsource the final decision to candidate assessment. The set of candidates is spanned by four
dimension. First, there are two possible target classes. Second, the generic objective has an open parameter. Third, we
additionally try different relatives weights on the different penalties for margin violations by target and default training
points. Fourth, the objectives have local optima. We account for with an heuristics optimization but also by applying a
small number of different starting points.

Once candidate supply has provided the pre-selection, candidate assessment calculates a selection value on each
candidate and we take the minimizer as next partial model.

2.3 Large Margin Framework

The general model type considered in this work are linear combinations on pair-wise similarities likewise kernel-based
SVM-training. A candidate partial models minimizes a target function Q which is a weighted sum of a quadratic reg-
ularization term and the average loss on the training points according to margin-based loss functions. The one-sided
character of partial models is reflected by loss-asymmetry: the loss on default class L− is some standard loss such as
Hinge-loss while the loss on the target class L+ is constant for negative margin values.

The losses are non-increasing functions of the functional margin m(x) = y(x)s f (x) where s is the given partial model
and f (x) is a real-valued score on x that we aim to be ≥ 0 iff the test input x belongs to the target class such we can use
h(x) = sign(s f (x)) as predictor. We fix f as

f (x) = g(x)−τ g(x) = βTK(A, x). (2.1)

g(x) and τ are called relative score and threshold respectively. The values K(A, x) = (κ( x̄ , x)) x̄∈A compare x to the
training points with respect to a similarity function κ: X ×X → [0,1] where we take greater value as greater similarity.
For given κ, sign s, and trade-off parameter C > 0, a candidate partial model (α, s), α= (β ,τ), is obtained by minimizing
an objective of the form

Q(α) = R(β) + C
∑

t∈{−,+}

1

|At |

∑

x∈At

L t (m(x)) , m(x) = s y(x) f (x). (2.2)

A− and A+ hold the training inputs that belong to the default and the target class respectively. R(β) is called regulizer. It
grows in the scale of β such that we cannot obtain smaller Q simply by increasing that scale and thereby decreasing L±.

Independent of the concrete κ, L· and R one can consider this as large margin training since the error term with de-
creasing loss functions pushes towards large values for functional margins m(x). But the training scheme gets additional
large-margin character and also becomes more well-rounded if we apply further restrictions on these three ingredients
κ, L± and R. For more detailed information on the following we refer to section 2.2 and 4.2. in [14].

Consider the set of feasible relative score functions that are based on finite training sets:

G =
⋃

X⊂X ,|X |<∞

G(X ) (2.3)

with

G(X ) = {g | g(x) = βTK(X , x), β ∈ R|X |}. (2.4)

In extension of the notation K(·, ·) we write K(X , X̄ ) for the real matrix (κ(x , x̄))x∈X , x̄∈X̄ as well as K(X ) for the vector of
functions (κ(x , ·))x∈X . If we demand κ is to be a kernel in the sense that, for any finite X , the kernel matrix K(X , X ) is
positive semi-definite, we can define a dot product on G. For g, ḡ ∈ G with g = βTK(X ) and ḡ = β̄TK(X̄ ) it is given as

〈g, ḡ〉= β̄TK(X , X̄ )β̄ . (2.5)

The relative score function g is now an element of a well-rounded dot-product space induced by the kernel κ. For any
x ∈ X , the relative score on x becomes the product of the model and xs representer k(x , ·) in G: g(x) = 〈g, k(x , ·)〉.
Also, this give us a metric ||g|| =

�

〈g, g〉
�1/2 and thereby a scale σ = ||g|| of the model. The inverse γ = 1/||g|| can be

seen as model margin in the following sense. For the normalized model ḡ = g/σ, τ̄= τ/σ we have

m(x) = 1⇔〈 ḡ, k(x , ·)〉= τ̄± γ. (2.6)

In other words, x has functional margin 1 if the projection of the its representer on g has distance γ to the normalized
threshold and the distance δ(x) = 〈 ḡ, k(x , ·)〉 − τ̄ has the geometric interpretation as distance to the decision boundary.
If we set L· to vanish for m≥ 1, a point x makes no loss contribution if k(x , ·) is on the wright side of boundary and δ(x)
exceeds the model margin γ.
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Representer Theorem
If we set R = 〈g, g〉, it can be seen that we wont obtain smaller Q by considering any relative score in G instead of

restricting ourself to G(A) (see Theorem 4.3 in [14]). In other words, we build the minimizer over F(A) = { f = g − τ |
g ∈ G(A),τ ∈ R} and get the minimizer of the larger and more well-rounded F = { f = g − τ | g ∈ G,τ ∈ R}. The first
formulation of this so-called representer theorem was given in [10]. In order to obtain this result, you decompose the
optimum f into the threshold τ, the projection gG of g = f −τ on G(A) and the rest g⊥ = f − gG−τ. For the loss terms,
the rest is irrelevant, and by Pythagoras’ theorem the quadratic regulizer can only decrease by dropping the orthogonal
rest. Note that, opposed to common usage, we do not need to build the closure of G for this result since G(A) has as a
finite number of dimensions.

Kernel Transform
For our experiments we use an variant of the objective (2.2) that can somehow facilitate the optimization. Let M be a

root of K = K(A, A) and B the pseudo-inverse of M . They can be obtained from sparse eigenvalue decomposition UTDU of
K where the diagonal matrix D holds only the non-zeros eigenvalues and U the corresponding normalized eigenvectors
as rows. Then, M = D1/2UT and B = D−1/2U . We get an equivalent objective over (β̄ ,τ) by setting g(x) = β̄TBK(A, x)
and R= β̄Tβ̄ . The regulizer becomes a bit simpler and number of parameter to be optimized may be smaller, if the rank
q of K is smaller than |A|. As in principal component analysis we can also deliberately drop rows of U that correspond to
smaller eigenvalues.

ν -SVM
The objective (2.2) is a asymmetric variant of the commonly C-SVM. The C-SVM has a sister called ν-SVM [14].

Although both are equivalent in terms of expressiveness and will under normal conditions yield same error rates, the
latter is much more recommendable from conceptional point of view: it clearly separates the rule of regularization in
term of small model margin, and regularization in terms of balanced model entries. Unfortunately, we cannot use ν-
SVM-style objective here because we need the margin to be linear in the arguments of Q, otherwise we cannot apply the
smoothing technique we need to achieve an heuristic minimization, sf. section 3.

2.4 Base-, Unit-, and Outer-Kernel

The kernels we apply in this work have two factors. First, we apply a parameter-free unit kernel κU : X ×X → [0,1].
Then, we map that value in unit interval again by a unary outer mapping ρa : [0,1]→ [0,1] that depend on a parameter
a.

κ(x , x̄) = ρa(κU(x , x̄)) (2.7)

To obtain the unit kernel we start from base kernel κ0 that defines the data or is provided along with the data. In case of
vector data, X = Rd , the base kernel is κS that applies the canonical dot product on the entry-wise standardized inputs.

κ0(x , x̄) = κS(x , x̄) = 〈x ′, x̄ ′〉 x ′ = (x −µ)/σ (2.8)

µ and σ are both in Rd and hold the entry-wise mean and standard deviation over the training set respectively. The
division by σ is understood entry-wise too and in case the an entry has zero standard deviation the normalized entry is
set to zero itself.

We then normalize the base kernel to the normalized kernel κN

κN(x , x̄) = κ0(x , x̄)/
�

κ0(x , x)κ0( x̄ , x̄)
�1/2 (2.9)

with values in [−1,1]. For vector data we can instead normalize the standardized inputs them-self, x ′ 7→ x ′/||x ′||. Finally,
we apply a linear transform obtaining κU that has values in the unit-interval.

κU(x , x̄) =
�

κN(x , x̄) + 1
�

/2 (2.10)

This κU fulfills condition for being a kernel given in section 2.3. The final transform does not affect definiteness as a
matrix with identical, non-negative entries always has a real root. It might, however, change the rank of the kernel
matrix.

We say that the down-stream ρ is a outer kernel iff κ = ρ ◦ κ̄ is kernel whenever κ̄ is. Not every mapping on the unit
interval has this property but we do not have a characterization of outer kernels. The two following functions are outer
kernels on the unit interval.

ρpol
a (t) = ta ρexp

a (t) = (a
t − 1)/(a− 1) (2.11)
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In case of the polynomial outer kernel ρpol this is clear because the set of kernels is closed under multiplication. For the
exponential outer kernel ρexp you can apply theorem 13.4 in [14] along with the series expansion of ρexp.

See figure 4.2 for plots of both outer kernels for different parameters a. Both are convex bijections on the unit interval
starting at (0,0) and ending in (1,1). In both cases a greater parameter a means that the graph make a deeper and
sharper curve, e.g. gets closer to the point (1, 0).

Note that exponential kernel κexp = ρexp ◦ κU does not equal the Gauss kernel κGauss(x , x̄) = exp(−c||x − x̄ ||2), c > 0,
even for normalized x , x̄ . The main difference is that we want κexp to start at 0 while the value of the Gaussian kernel is
at least 1/e for normalized inputs. We can obtain the Gauss kernel on standardized and normalized inputs by applying
ρc(t) = exp(4c(t − 1)) on unit kernel values.

We conclude this subsection with an informal discussion on base vs outer kernel. The base kernel initiates the pairwise-
similarity view on the data. It holds the gross of the domain knowledge. One can argue that domain knowledge might
help choosing a well-performing outer kernel. But we promote the view that the base kernel covers the domain knowledge
while the purpose of the outer kernel is to add a parameter to the similarity measure that gives the model additional
capacity. The parameter a is tuned along with the trade-off parameter C and this joint tuning is an indispensable part of
the training. However, only a is part of the mode in the sense that it is needed at test time.

The demand on ρ of being an outer kernel is motivated by the aim of the geometrical interpretation of the model as
hyper-plan in a space induced by κ which give us, as among others, the notion of model margin. It seems rather unlikely,
however, that we would harm the performance by choosing some reasonable family of outer mappings that are not outer
kernels. In order to study this, one could probe peace-wise linear outer mapping with ρ(1) = 1 and one or two increasing
but otherwise arbitrary support points. This would mean that a has two or four compounds which would dramatically
increase training time but it still could be tackled with tuning by grid search. We do not follow this direction here.

(a) (b)

Figure 2.1: Plot (a) shows ρpol
a with a = 1, . . . 16, plot (b) shows ρexp

a with a = 2k, k = 1, . . . 16. Both function types
can be used as outer kernel. It would be very surprising, however, if not having this property affected the
performance.
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2.5 Candidate Supply: Asymmetric Loss Functions

As mentioned in in section 2.2 we seek for valuable candidates by heuristic optimization of different objectives. We fixed
the generic form of the objectives in section 2.3 and further specified them section 2.4 by setting the type of kernels. Now
we set the concrete margin based loss functions. We have to translate the concept one-sided partial models into concrete
concrete asymmetric losses. There many ways to do this and we have not got good conclusions on this topic yet. In the
following we present some simplistic thoughts. A rigorous analysis or empirical studies thereon is not part of this work.

False positive classification cannot be undone, in contrast uncovered target points which may be hit by subsequence
partial model of same sign. Therefore, we want a loss design that defends negatives from margin violation more than
the positives. A simple mean to achieve this is by bounding the loss on the target class by a constant. This can also be
interpreted as a linear reward on coverage since the total target loss becomes multiple of the fraction of uncovered target
points.

What should be the behavior in a imaginary heads-up situation? Think about a single negative that faces a single
positive point, both lying on the correct side of the separating plane but still inside a given margin and the plane is
orthogonal to the line connecting the two points. In such situation we might not want the plane not to be pushed in
either direction which translates into equal derivations of L− and L+ for margin in the unit interval or at least within a
part of it.

As additional directive we restrict to continuous loss functions in order to obtain surface of the objective not too
ragged. We finally committed ourself to the loss pair shown in figure 4.1 that we considered as intelligible, and checked
on development data sets that this choice can at least compete with other variants.

In the experiments we probe, however, different relative weights on the two loss function, e.g. the target loss is
multiplied by different positive factors. This means that we introduce a parameter on the loss pair that controls certain
aspect of the interplay of the two losses, such as the behavior in heads-up situations, and but that is not fixed in advance.

(a) (b)

Figure 2.2: The loss function for the default class (a) and the target class (b) respectively. There are other ways to set the
loss-pair but in the final experiments we used this combination.
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(a) (b)

Figure 2.3: 2-dimensional toy training data sets and the corresponding linear cuts (black lines). The cuts numbered ac-
cording to their order in the sequence. The green and the red line indicate the functional unit margin. The
green line is on the positive side relative two the sign of the cut. In (a) you can see how the cut (line 0) is too
greedy: it tries to cover more red point at cost smaller margin and greater margin violations. This problem
does not affect cut 2 and 3 in (b) because the cut 0 and 1 have already removed the points on top and bottom
side.

2.6 Candidate Assessment: Last Cut Error Contribution

Within candidate supply we get around stating the quality of a cut to some extend, but when it comes to candidate
assessment we have to define some explicit criterion to prefer one cut to another. It is not clear to us how such criterion
should look like. A cut is a partial model that we have to judge by its contribution to the effectiveness of the global
model. It is understood that a cut should not cover non-target points as far as possible. Cutting also aims to alleviate
the job on the uncovered points, but whether a concrete cut does so depends the subsequent partial models which are
not accessible at selection time. We therefore simplify reasoning in the spirit of the greediness of seco and judge any
candidate as if was the last within the global model.

At first place, we define the target criterion that is based on test set. Since such value is unaccessible at training time,
we also have to provide viable criterion that estimates the value of the target-criterion. One could also apply a criterion
that is not associated to any target. The main advantage of an estimator-target break-down is that it supports separate
evaluation of the selection scheme and that we can run experiments relative to this estimation subtask, see experimental
section.

Assuming that the candidate cut is, in the sequence of partial models, followed only by the final symmetric model,
a proximate target selection criterion is the contribution to the total error that is given by one-sided cut-error and the
residual error of the subsequent model on the uncovered part. Both refer the current test set E that hold only those points
from the original test set that are not covered by previous cuts.

• cut error ec: fraction of test points that are covered but do not belong to the target class over all test points

• residual error er: error on uncovered test points of the residual model trained with uncovered training points

For the definition of the residual error we assume that the training of the final model is deterministic. Otherwise, we
replace it by its expectation over the random bits.

The two error parts are weighted according to the fraction of points on which on which errors can be made. We
denote these weights correspondingly to the error rates by pc and pu. They are the fraction of point in E that are covered,
respectively uncovered by c. All together we take last cut error contribution of c as target criterion.

et = pcec + prer. (2.12)

In order to obtain a simple viable criterion therefor we use estimators for the four ingredients as follows. The weights
are estimate by corresponding weights on the training set. Similarly, we estimate ec by training error. A better estimation

10



based on the margin violations is set aside until we see how bad it is and whether a better estimation has the potential to
provide gain to the overall performance. For the residual error, situation is a different. In any case we have to train the
residual model to which the target criterion refers to. Since this training includes the adaption of the trade-off parameter
via cross validation we already have reasonable cv-estimation of the residual error.

11



3 Heuristic Optimization through Iterative Smoothing

Our goal is to find a model (β∗, b∗) such that Q(β∗, b∗) is local minimum on Q and the global minimum is not much
smaller. To this end we follow the lines of [5] by applying a continuation method which we expect to provide a sufficiently
low local minimum. We do not characterize here what we mean exactly by much smaller and sufficiently low.

The continuation method is simple and can be seen as a expectation driven simulated anealing, see for instance [16]
for a brief explanation of the latter. The objective is iteratively optimized under decreasing level of smoothing and the
solution is used as starting point for the subsequent iteration. In the following we the ansatz for smoothing and derive a
close form smoothed objective as well as for its derivatives. The latter is important for efficient gradient descent.

At first place we incorporate the threshold b into β by adding constant compound −1 to the vectors K(x) of transform
inputs. This simplifies notation and unbinds the symbol b that we use otherwise later. We should keep in mind, however,
that we still want to exclude the threshold from regularization and therefor denote by β̄ the weights without the additional
compound that corresponds to the threshold.

Let n be the number of dimensions of the transformed inputs and let t be a (n+ 1)-dimensional random variable that
has normal distribution N(0,σ) with independent components of zero mean and standard deviation σ. The smoothed
objective eQ is the expectation of the objective Q when we add iid Gaussian noise to β .

eQσ(β) = E
t∼N(0,σ)

Q(β + t) (3.1)

The greater the deviation σ is the more smoothed becomes the objective. Now assume that we further have given an
appropriate decreasing sequence of standard deviation σ1 > . . .> σr . The heuristic to find a good model work as follows.

We start with arbitrary vector β0 and iteratively compute β i = argminβ
i−1

β

�

eQσi
(β)
�

where the superscript indicates the
starting point for local minimization. We finally chose β∗ = β r .

For efficient computation of the optimizer we want a closed forms for the smoothed objective eQ and its first and
second derivatives. On the other side, we also want to try different loss functions L within the objective since it is not
obvious how they should be chosen. A solution to this conflict is to consider a view base functions that serve as piecewise
loss-compounds and for which we can prepare the smoothing in advance. This way we obtain closed forms for a set loss
functions that is sufficiently broad for the purpose of this work.

3.1 Generic Smoothed Objective

At first place, let us state the smoothed version of the regularization term R(β). Correspondingly to β̄ let t̄ be the noise
variable without the last compound. Since the noise components are independent the mixed terms of the smoothed
regulizer vanish: eR(β) = Et

�

(β̄ + t̄)TK(β̄ + t̄)
�

= β̄TKβ̄ + Et

�

t̄TK t̄
�

. By the decomposition K = UTDU the latter

addend simplifies to Et

�

t̄TDt̄
�

= σ2tr(K) where tr(K) the sum over the eigenvalues of K .

eR(β) = β̄TKβ̄ +σ2tr(K) (3.2)

In order to tread the loss term we assume a given input x such that we can deal with a scaled kernel representation
x̄ = K(x)/(lσ), l = ||K(x)||, and a relative sign s̄ = s y(x) that is positive iff x belongs to the target class. For an arbitrary
margin based loss Ls the smoothed loss term is the expected loss on mt that is the margin m under noise t.

eLs(x) = E
t∼N(0,σ)

�

L(mt)
�

mt = s̄l(β + t)T x̄ = m+ s̄lσ x̄T t (3.3)

x̄ has length 1/σ such that x̄T t follows N1, the standard normal distribution. Hence, we can replace the randomized
margin by mt = s̄lσt +m where t now is one-dimensional and denote by E the expectation with respect to t ∼ N1.

eLs(x) = E
�

Ls(mt)
�

mt = s̄lσt +m (3.4)

To solve the expectation (3.4) for a sufficiently broad set of loss functions we split the domain of the loss function into
a sequence of consecutive parts

�

I0, . . . , Ik−1
�

=
�

(−∞, e1), [e1, e2), . . . , [ek−1,∞)
�

with ei < ei+1 and define k separate
loss parts Ls

i that vanish outside the respective interval Ii such that the loss decomposed into the parts

eLs(x) =
∑

i

eLs
i (x) (3.5)
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and we can compute the smoothing for the parts separately.
Assume the i-th part covers the interval [q, r) and we want h= Ls

i to have the shape on [q, r) that some base function
h̄ reveals on the interval [q̄, r̄) but with additional factor c and offset d.

h(m) = ch̄(am+ b) + d (3.6)

where a = (r̄ − q̄)/(r − q) and b = −qa + q̄ are chosen correspondingly to the borders of the two intervals. The
corresponding smoothed loss part is

eh(m) = E
�

Jq ≤ mt < rK h(mt)
�

(3.7)

= E
�

Jq̄ ≤ amt + b < r̄K ch̄(amt + b) + d
�

(3.8)

=

(

E
�

Jq̆ ≤ t < r̆K ch̄(āt + b̄) + d
�

s̄ =+1

E
�

Jr̆ < t ≤ q̆K ch̄(āt + b̄) + d
�

s̄ =−1
(3.9)

= s̄

∫ r̆

q̆

�

ch̄(āt + b̄) + d
�

p(t)dt (3.10)

with

q̆ = (q̄− b̄)/ā r̆ = (r̄ − b̄)/ā ā = as̄σl b̄ = am+ b (3.11)

and p being the density of N1. With F being distribution function of N1 and defining H as the indefinite integral

H(t) = H(t, ā, b̄) =

∫

h̄(āt + b̄)p(t)dt (3.12)

we get the generic smoothed loss part

eh = s
�

c
�

H(r̆, ā, b̄)−H(q̆, ā, b̄)
�

+ d
�

F(r̆)− F(q̆)
�

�

. (3.13)

In the border cases of the intervals I0 and Ik−1 we apply improper values q̆ =−∞ and r̆ =∞ by evaluating the respective
limits limt→−∞ H(t) and limt→+∞ H(t).

3.2 Derivatives

The derivatives can also be stated in a generic way. The dependence of the loss on β goes through q̆, r̆ and b̄. We can
eliminate the latter by b̄ = q̄− āq̆ = r̄ − ā r̆ since we evaluate H at q̆ and r̆ only. Let us look at the case t = q̆, the case
t = r̆ can treaded the same way. We substitute b̄ by q̄− āq̆ and obtain H̄(t) = H(t, ā, q̄− āt) on which we can apply the
chain rule.

dH(t)
dβ

=
dH̄(t)

dβ
=

dH̄(t)
dt

dt

dβ
=−

dH̄(t)
dt

x̄ (3.14)

By doing so twice we also get a pre-evaluated second derivative.

d2H(t)
d2β

=
d2H̄(t)

d2β
=

d2H̄(t)
d2 t

x̄T x̄ (3.15)

For given H stating the derivatives is now quite comfortable. All we have to do is to state the one-dimensional derivatives
of H̄. Afterwards, we might back-substitute b̄ where possible. Since the smoothing of a reasonable function will be
continuous, we can combine this proceeding with evaluation of the limits.

d limt→∞ H(t)
dβ

= lim
t→∞

dH(t)
dβ

(3.16)

To summarize we state the generic derivatives of a smoothed loss part eh where we use the ·′-notation to refer to the
derivatives. As pointed out above the first derivatives of H is given as dH̄/dt and second as by d2H̄/d2 t.

eh′ = −s
�

c
�

H ′(r̆, ā, b̄)−H ′(q̆, ā, b̄)
�

+ d
�

p(r̆)− p(q̆)
�

�

x̄ and (3.17)

eh′′ = s
�

c
�

H ′′(r̆, ā, b̄)−H ′′(q̆, ā, b̄)
�

+ d
�

p′(r̆)− p′(q̆)
�

�

x̄ x̄T (3.18)
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3.3 Linear and Quadratic Solutions

There are not very many base function for which we know how to get an analytical solution of the integral (3.12). Beside
Gaussian density function itself we can only state H for monomials if we want to support arbitrary ā and b̄. Possibly,
more base functions can be supplied with more mathematical knowledge but we should not forget that there are other
server issues in with proposed training scheme. After all, we can combine the loss from the base function in a piecewise
manner. In the following we give the solution of (3.12) for linear and quadratic h̄.

For h̄(t) = t we obtain the first moment of the normal distribution by substitution. Let c = (2π)−1/2.

∫

t p(t)dt = −c

∫

−t exp(−t2/2)dt (3.19)

= −c

∫

exp(s)ds, s =−t2/2 (3.20)

= −p(t) (3.21)

In order to solve the smoothed error on the base function h̄(t) = t2 we further need the second moment that can be
obtained as follows.

∫

t2 p(t)dt = −
∫

t p′(t)dt (3.22)

= −t p(t) + F(t) (3.23)

(a) (b)

Figure 3.1: The plots show the unsmoothed and the smoothed objective Q and eQ with losses depicted in figure 4.1 and
based on 32 random point from Rd , d = 32. The objectives are evaluated at v0+λv1 with random v0, v1 ∈ Rd

and λ along the x-axis. The two plots show the same objective based on different random points and different
evaluation vectors v0, v1. As you can see from the right plot, one has to decrease the smoothing carefully in
order to avoid bad local minima. In this work we use an ad-hoc scheme for setting the iterative smoothing
scales.
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4 Experiments

4.1 Bounds for Trade-Off Parameter

Choosing a good value for regularization-vs-error trade-off-factor C is an essential part of the C-SVM-training. In context
of binary SVM with symmetric loss different methods have been developed to set that parameter guided by bounds on
the generalization error. A common, though not very elegant method of setting C is to try different values and compare
the performance of the resulting model on a pre-test set that is taken out of the training set. This is usually done in
cross validation manner with a fold number of, say, 10 such that the trial training set is not much smaller than the entire
training set on which the chosen C finally is applied.

In the following we discuss ways to set a reasonable search interval when the C is set by pre-testing. This way we may
save computation cost and we get a better feeling as we do not totally surrender to trial and error. We derive two values
c0 and c1 from training data. c0 is a lower bound that holds under very weak assumptions. The second value, c1, can be
seen as upper bound for C but only under unrealistic assumptions. We rather consider c1 as good first guess for C around
which one should try different values. Though c0 is a real bound, it is also less relevant in practice, since we observe that
the best value with respect to the test set, C∗, can be expected to be within an interval of [2−5c1, 2+5c1] and the bound
c0 is below that range.

For both values we consider the case of Hinge-loss L(m) = max(0, 1−m). The ansatz for the bound c0 on C is that
we assume the model margin not to be greater than D/2 with D being the maximal distance between two points from
opposite classes. This give us a lower bound σ0 = 2/D on the model scale σ. For small C , the error is dominated by
the regulization term in the sense that the model will always be pushed to smaller scale. We write d f /d−s and d f /d+s
for derivatives of f with respect to the scalar s > 0 in negative (→ 0) and positive (→ ∞) direction respectively. For
sufficiently small C we have

−
dR

d−σ
> C

dE

d−σ
. (4.1)

This means dQ/d−σ < 0 and σ will shrink. The left hand side is 2σ ≥ 2σ0 = 4/D since we assume σ ≥ σ0 = 2/D.
The right hand side is bound from above by C dL/d−σ ≤ C Z with Z = maxx∈A ||K(x)|| because 〈β/σ, K(x)〉 ≤ ||K(x)||.
Hence, a sufficient condition for (4.1) is

C < c0 =
4

Z D
. (4.2)

The corresponding proceeding for an upper bound on C would be to find a c1 such that the absolute derivation of the
error term always is greater than that of the regulization term if C > c1. Unfortunately, there occur two problems. First,
we do not get an upper bound for the scale as easily as before. We can get one if we assume linear separability and that
the distance between the convex hulls of the two classes equals d. In such case, a geometric margin of d/2 is sufficient
and σ1 = 2/d upper bounds the scale of the optimal model. The minimal distance of two points from different classes
is not that bound since the distance of the convex hull can be smaller than that. Second, we need a lower bound on
z(x) = 〈β/σ, K(x)〉 which we cannot state in general since the the example representation can even be orthogonal to β .
If we also assume some lower bound z ≤ z(x) we correspondingly get

dR

d+σ
<−C

1

n

dE

d+σ
. (4.3)

Thus, sufficiently large here means
4n

zd
= c1 < C . (4.4)

The practical relevance of this discussion is limited. We derived a lower bound on C that holds for any data set and
kernel function. If we apply normalized a kernel, that bound will always be close to a fixed value since Z will be close 1
and D close to 2. For non-normalized kernels the bound may help. It should be noted, however, that the optimization for
small values of C , and in particular for too small values, come and low computational cost. Concerning the upper bound,
we have not derived true bound. It remains future work to define true upper bounds or deriving a good first guess on C
based on the kernel values or a subset thereof.
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Figure 4.1: Each plots represents one data set through cubic kernel with a given training-test-set partition. The x-axis
shows different values of log2 C . The green and the blue line indicate the training and test error respectively.
The yellow line is the logarithm of model margin divided by 16 for better fitting the plot. The pink line
shows the fraction of the margin violators within the training set. The vertical dashed line indicate the lower
bounds c0 on C . The training was done with LibSVM which puts an additional factor 1/2 in R and we have
correspondingly adapted the bound.

4.2 Deep Access to Experimental Code

We use a new experimentation tool [7] that supports access to the experimental code that been used for producing the
experimental result. In the following plots and tables you find in the bottom-right corner hexadecimal string of length
ten, the so-called run-number. A run-number allows you to access the code as it was when the experiment producing the
respective result was run. We give a brief instruction how you execute such original code inspection. Unfortunately, the
tool is linux-only.

• Download and unpack the peewit from its homepage [7].

• In order to make it run you have to install pyhton, numpy, matplotlib, and git.

• Download and unpack the project-export that contains the experimental code for this work from [1].

• Create a file base_dir in the directory your_base_dir/projects/mdsc_sgo/.peewit/ that contains a single line
with the path to your_base_dir relative to your home-directory. This overwrites the base-dir that was used by
those who created the project.

• In order to have acces to the version history of peewit itself, you need to pull the peewit-repository from its host
at sourceforge.net. To this end, open mdsc_sgo/package/project_conf.py and add the call AR.pull_peewit()
at the end. This will turn your peewit-directory into local copy of the repo such that you can access the version of
peewit that was used for running the respective experiment.

• Now, go to the project-code in projects/mdsc_sgo/package and call the function restore on the archivist
instance in a position where it is sufficiently initialized. For instance you can do this at the very end of
project_conf.py. As argument take of the run-number that you can find in this section.
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In principal, the project-export is extensive enough that you can run the experiments again. However, for the main
experiments we used a remote cluster and you should have access to such in order to run them in a reasonable time. If
you want to do so, you further need to install ssh and unison for communication with the cluster head. Also, you have
to adapt the file project_conf.py to the settings of your cluster. Note, whatever changes you make in the project while
you are in a past state accessed by calling the restore-function will permanently vanish as soon as you make a valid call
of that function again.

4.3 Baseline

We start with standard binary SVM-experiments that we use as baseline. They are accomplished with LibSVM [4] using
the precomputed kernel values all based on the unit kernel as given in section 2.4. This allows a more direct comparison
to cut-based results where we can use identical kernels. For the asymmetric training we cannot afford tuning of kernel
parameters but we want to compare cut-based results to standard SVM-training with tuned parameters as well.

Table 4.3 shows the results for eight binary sets from [2]. We apply three polynomial outer kernel with fixed degree
of 1, 2, and 3 and as polynomial and exponential outer kernel with tuned degree and window size respectively. It is
noticeable that only in one case the kernel tuning clearly outperforms the polynomial kernel of degree 3.

The trade-off parameter C is probed on the values C = 2c , c = 4, . . . , 16. The kernel parameters are jointly tuned
with C over the values a = 1, . . . , 16, and a = 2b, b = −4, . . . , 8, for the polynomial and the exponential outer kernel
respectively.

poly_1 poly_2 poly_3 poly_g gauss_s

sonar 0.245 0.130 0.130 0.115 0.125
ionosphere 0.097 0.091 0.100 0.105 0.088
colic 0.174 0.179 0.163 0.166 0.174
heartstatlog 0.163 0.174 0.178 0.185 0.193
breast_cancer 0.304 0.287 0.273 0.273 0.273
clean1 0.145 0.067 0.057 0.059 0.051
diabetes 0.233 0.229 0.251 0.229 0.233
parkinsons 0.133 0.112 0.107 0.056 0.056

svm_et--9--leaf_final--main 9cd754dede

Table 4.1: The baseline results obtained from symmetric SVM-training using LibSVM. The left three columns refer to poly-
nomial outer kernel of degree 1, 2, and 3. The remaining two columns refer to training with polynomial and
exponential outer kernel where the kernel parameter is tuned jointly with the trade-off parameter C .

4.4 Runs with the Proposed Scheme

We run an experiment with the datasets used for the baseline experiment, see table 4.3, using the separate and conquer
scheme given in section 2.2. In the following we summarize details on scheme that have not been mentioned in previous
sections and also give additional information on the experimental settings.

For the candidate supply we probed both signs s = ±1, the weights C = 2k, k = 8, . . . , 15 along with an additional
factor C+ = 2k, k = −1, 0,1 with which we scaled the L+ on the target class relative to the loss L− on the default
class. That is the first term was multiplied by C and latter by CC+. Further, we computed for each of these parameter
setting four candidates stemming from independent random initializations of (β ,τ). In total we therefor selected from
168 = 2 · 7 · 3 · 4 candidates. Many of the model are run-away-models with great τ and small entries of β . They have an
objective value near zero as they have no coverage along with small regularization term.

In order to accomplish the optimization we chose a simple way with four iteration and a fixed sequence of window
sizes σ = (1/8)k, k = 0, . . . , 3. We used the eigenvalue decomposition of the kernel matrix as described at the end off
section 2.3 and dropped eigenvector that correspond to a eigenvalue smaller that t with

t = 2µ+b µ= avg
d∈D

log2 d, (4.5)

D being the set of eigenvalues and b = −4. Such cut-off is necessary because the computed eigenvalue are always
non-zero for numerical reasons and we cannot distinguish those numerical non-zeros from true small eigenvalues.
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error_plain error_total fraction_cut error_cut fraction_res error_res n_cuts

poly_1

sonar 0.255 0.139 0.399 0.058 0.601 0.219 2.625
ionosphere 0.091 0.097 0.402 0.026 0.598 0.141 1.875
colic 0.160 0.185 0.793 0.136 0.207 0.411 3.250
heartstatlog 0.182 0.180 0.648 0.082 0.352 0.349 4.125
breast_cancer 0.328 0.283 0.696 0.220 0.304 0.403 4.625
clean1 0.137 0.111 0.809 0.084 0.191 0.223 3.625
diabetes 0.236 0.217 0.474 0.074 0.526 0.352 6.250
parkinsons 0.138 0.161 0.476 0.031 0.524 0.283 2.500

poly_2

sonar 0.139 0.117 0.337 0.038 0.663 0.182 2.875
ionosphere 0.080 0.081 0.527 0.037 0.473 0.129 2.250
colic 0.174 0.184 0.601 0.098 0.399 0.322 2.875
heartstatlog 0.160 0.184 0.653 0.089 0.347 0.365 3.000
breast_cancer 0.276 0.258 0.686 0.168 0.314 0.448 3.625
clean1 0.061 0.053 0.546 0.030 0.454 0.101 2.500
diabetes 0.228 0.244 0.457 0.122 0.543 0.364 3.625
parkinsons 0.112 0.080 0.527 0.021 0.472 0.151 3.000

poly_3

sonar 0.125 0.091 0.404 0.043 0.596 0.114 3.875
ionosphere 0.094 0.073 0.524 0.028 0.476 0.121 2.250
colic 0.185 0.178 0.579 0.090 0.421 0.297 3.125
heartstatlog 0.167 0.176 0.618 0.115 0.382 0.288 4.125
breast_cancer 0.308 0.290 0.637 0.157 0.363 0.505 3.625
clean1 0.059 0.048 0.364 0.025 0.636 0.060 2.000
diabetes 0.237 0.258 0.547 0.150 0.453 0.434 3.375
parkinsons 0.081 0.087 0.351 0.015 0.649 0.144 2.750

etree_sgo--9cfsl1--eval_sequence--del_mins 08007735d9

Table 4.2: The first column error_plain is the baseline. The total error of the seco algorithm is given in the second column
error_total. The following columns show the decomposition of the error into cut error and error on the residual
problem. The fraction-columns indicate what fraction of the test set was cut and what fraction was not. The
last column gives the number of cuts. It is not integer because, as all column, it is averaged over the 8 cv-folds.

For the initial (β ,τ) we have independently drawn the entries from the interval [−8,8]. For gaining computation time
we passed an increased stopping threshold ε to the optimization engine for the greater smoothing window sizes . The
engine stops as soon as the l2-norm of gradient drops below that value.

Table 4.2 shows the test set error of the baseline along with the error of the proposed scheme that further is decom-
posed into cut error and residual error. The total error of the proposed scheme is sometimes below sometimes above the
baseline depending on the data set and the kernel. We cannot take a judgment from these result which training yield
better performance. When you compare the baseline result from table 4.3 with those given in table 4.2, you find that
they greatly diverge although they supposed to be identical. The explanation is that they were computed on machines
with different architecture (32 vs 64 bit) what, for reason we do not understand, has the same affect as using different
random seeds and hence different sub-sample selection in cross validation. It is displeasing to see that this make a great
difference in performance. We have not further inspected this phenomenon but it lets us take the results with a pinch of
salt.

4.5 Run Relative to Cut Error Estimation

The selection criterion by which we chose a cut from the set of candidate cuts takes two factors into account: the
estimated false-positive rate the cut makes itself and an estimation of the residual error obtained from cross-validation.
For the first factor we use the empirical error-rate on the training set as estimation. Since we not only have the counts
from the contingency table but also know functional and geometric margin, we might try to obtain better estimates by
taking those into account. For example we can use one-sided version of the error estimate given in [15].

But before we consider adaptions of those to be applied in our training scheme, we wanted to find what total perfor-
mance gain can we obtain if we found good estimates. To this end we run the seco-experiment again, but cheated in
estimating the cut error. We let the selection criterion take the test set cut error instead of its estimator obtained from
the training into account. Table 4.3 shows the result. We see that performance gain is rather modest and then dropped
the attempts to ameliorate estimation of the cut error.
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error_plain error_total fraction_cut error_cut fraction_res error_res n_cuts

poly_1

sonar 0.255 0.163 0.471 0.048 0.529 0.257 2.875
ionosphere 0.091 0.095 0.507 0.026 0.493 0.164 2.375
colic 0.160 0.187 0.704 0.073 0.296 0.443 3.625
heartstatlog 0.182 0.134 0.697 0.060 0.303 0.312 4.375
breast_cancer 0.328 0.243 0.707 0.126 0.293 0.548 5.625
clean1 0.137 0.080 0.656 0.025 0.344 0.191 3.625
diabetes 0.236 0.231 0.513 0.057 0.487 0.410 6.500
parkinsons 0.138 0.102 0.517 0.020 0.483 0.192 2.625

poly_2

sonar 0.139 0.138 0.394 0.029 0.606 0.207 2.875
ionosphere 0.080 0.078 0.464 0.020 0.536 0.128 2.375
colic 0.174 0.158 0.660 0.090 0.340 0.412 3.375
heartstatlog 0.160 0.191 0.700 0.097 0.300 0.410 3.750
breast_cancer 0.276 0.261 0.672 0.098 0.328 0.601 4.875
clean1 0.061 0.055 0.494 0.013 0.506 0.093 2.375
diabetes 0.228 0.217 0.419 0.073 0.581 0.368 4.500
parkinsons 0.112 0.103 0.580 0.016 0.420 0.198 2.875

poly_3

sonar 0.125 0.116 0.322 0.014 0.678 0.179 3.000
ionosphere 0.094 0.082 0.510 0.031 0.490 0.135 2.625
colic 0.185 0.164 0.402 0.035 0.598 0.266 2.375
heartstatlog 0.167 0.165 0.600 0.063 0.400 0.296 4.125
breast_cancer 0.308 0.264 0.731 0.140 0.269 0.594 5.000
clean1 0.059 0.046 0.393 0.004 0.607 0.072 2.125
diabetes 0.237 0.245 0.531 0.113 0.469 0.488 5.000
parkinsons 0.081 0.072 0.481 0.000 0.519 0.133 2.750

etree_sgo--10_cheat_ce--eval_sequence--del_mins_p2 61f8ce7248

Table 4.3: Likewise table 4.2. Here, we cheated by replacing the emprirical cut error of candidate cuts by the correspond-
ing test error. With this relativized run we probed the potential of better cut error estimation. The performance
gain of this cheat is rather modest.

4.6 Hard Residual Problems

There is a constant in all 24 data-kernel-combinations: whenever the error of the seco-scheme is greater than that of the
baseline, the residual error exceeds the baseline-error by at least 40 per cent. The residual problem is restricted to the
uncut area of the input space but otherwise is treaded in the very same manner as the original problem with respect to
training and testing. In this work we cannot give a final explanation for this observation but we in the following we want
do provide some discussion thereon.

We consider three explanations for the high error rate on the residual problem.

• small training set

• restriction to a part of the input space

• the difficult areas are left to the residual

Obviously, there are less training examples to build a model on the residual problem than for the original problem.
However, this explanation does not hold as can be seen from the results of another experiment that are given in table
4.4. In this experiment we created random cuts until we found on that covers at least 2/3 of the training points but lets
32 point uncovered for both classes. We then applied this cut obtaining a smaller residual problem. We then draw a
random sub-sample form the original problem with the same number of negatives and positives as the residual problem.
The performance of the model training on that small random sub-sample is given in the column error_sub in table 4.4.
The error rate is much closer to the baseline than the residual error in table 4.2 although the fractions of uncut training
points are similar.

The second explanation is a bit daring. It says that the cut nature of the residual problem make it harder in general. A
reason could be that for given number of training examples, extra examples outside the uncut area provide more valuable
training information for residual test points than additional example in the uncut area. Unfortunately, this explanation
is not only daring but also difficult to check. We can probe the performance with and without additional training point
in- and out-side the residual area. But by doing so we would change another parameter that we belief to have strong
influence to test error rate, namely the average distance of test point to, say the k = 10 nearest training points. We call
this measure example-distance (at k). In table 4.4 you find the columns error_res and error_sub holding the error rate
of residual model and a model from training on a random subset of the original problem and. The number of training
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points for the latter equals the number of training points for the residual problem but the example-distance is greater
since the training example now are spread over the entire input space. We take this explanation why the majority of
random subset models perform worse than the residual models. See figure 4.2 for distributions example distance at
k = inf. In any case we take from comparing those two error-rate columns to the residual errors of table 4.2 that the
restriction to cut subspace is not an explanation of the great residual errors that the proposed scheme reveals.

Since the first two explanation for the bad residual performance are not sufficient we favor the last, most unpleasant
explanation. This basically means that at least in those e cases where the residual error high relative to the baseline the
cuts produce hard residual problems instead of alleviating them.

error_plain error_res error_sub fraction_res

poly_1

sonar 0.255 0.229 0.274 0.548
ionosphere 0.091 0.108 0.108 0.422
colic 0.160 0.207 0.201 0.484
heartstatlog 0.182 0.161 0.204 0.611
breast_cancer 0.328 0.333 0.329 0.545
clean1 0.137 0.142 0.181 0.507
diabetes 0.236 0.292 0.253 0.346
parkinsons 0.138 0.216 0.240 0.590

poly_2

sonar 0.139 0.159 0.221 0.591
ionosphere 0.080 0.124 0.117 0.407
colic 0.174 0.149 0.168 0.451
heartstatlog 0.160 0.148 0.185 0.574
breast_cancer 0.276 0.264 0.290 0.510
clean1 0.061 0.104 0.143 0.424
diabetes 0.228 0.215 0.267 0.501
parkinsons 0.112 0.180 0.137 0.560

poly_3

sonar 0.125 0.132 0.154 0.548
ionosphere 0.094 0.103 0.074 0.490
colic 0.185 0.151 0.174 0.438
heartstatlog 0.167 0.142 0.178 0.504
breast_cancer 0.308 0.295 0.287 0.509
clean1 0.059 0.090 0.122 0.506
diabetes 0.237 0.301 0.302 0.303
parkinsons 0.081 0.120 0.112 0.584

etree_rcrs--11--eval_rcrs--main 7831d8e5a4

Table 4.4: Comparing the performance of residual problem of a random cut with the an equal-sized random sub-sample
of the original problem. error_plain is the base line where the entire training set is used. error_res is the error
of model that was trained on examples that lie in half space defined by a random plane (fulfilling certain
constrains). error_sub refers to training with same number of example randomly drawn from the original
training set and fraction_res is the fraction of examples used for the latter two measures.
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Figure 4.2: The plots show distributions of distances between test points and training points for different data sets un-
der cubic outer kernel and averaged over the test points and samples. The blue lines represent the original
problems, the yellow lines the residual problems obtained from a random cut, and the green lines a random
subsample of the original problem with the same size as the residual problem. The broadminded reader may
consider the following interpretation: for lower distance the distance-distribution on the residual is more sim-
ilar to that of the original problem as the the cut is unlikely to remove small distances. For greater distances
on the other hand the restriction of measuring in one half space only loses influence if the number test and
training points is fixed.
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5 Conclusion

5.1 Motivations

In this work we tread a training scheme that builds a list of partial models that refer to the same kernel but cover distinct
parts of the input space. We see two motivations for such ensembles:

• non-expressive kernel: The used kernel might be discriminative for parts of the input space but not on the entire
space. The reason to chose such non-expressive kernel can either be a particular input spaces X for which
definition of suited base kernel is not evident, or, the observation that kernels with greater capacity do not increase
performance.

• heterogeneous inertia: Different parts of the input space may refer to subproblems of different difficulty in the sense
that different model margins can be obtained for given number of examples and given error. In such a case the
parameter that controls the trade-off between regularity and empirical error of the model should be set for those
subproblems individually. Otherwise the parts have to figure out a harmful compromise in setting the trade-off
parameter.

These two motivations remain a bit vague by the end of this project. We do not provide examples of inputs spaces
for which we are bound to non-expressive kernels. And we do not define what we mean by subproblem, the clarity of
this notion is somehow bounded by the clarity of the notion cluster. The motivation heterogeneous inertia assumes that
this notion of subproblems makes sense and that such subproblems exist in real data. One can look at the proposed
cutting scheme can method for supervised clustering but we believe that there are better means to detect subproblem
closer to classical clustering algorithms. If we further investigate the potential problem of single trade-off-parameters,
we approach it from a clustering perspective.

5.2 Algorithm and Code

We designed and implemented a margin-driven, kernel-based separate and conquer algorithm. The algorithm has a
subroutine candidate supply that shortlists the set of candidate cuts from uncountable infinite to a view hundred. Each
candidate is an optimum of an SVM-like but asymmetric objective that puts weak penalty on false-negatives as those can
be corrected by subsequent models. The non-monotone objective is minimized by an heuristics taken from [5].

Given those candidates cut another subroutine selects one from the candidate set according to a selection criterion
that tries to take potential alleviation on the residual problem into account by evaluation the hardness of the residual as
minimal cross-validation over different trade-off parameters.

The result show that odds are not bad that you can decrease the test error by applying the proposed scheme if you
bound to some given kernel. When the scheme uses fixed kernel is does not, however, outperform standard SVM-training
with joint trade-off-parameter and kernel tuning.

At the beginning of this project we did not know what would be suitable design for the pair of loss-functions. For this
reason we build a tool that allows the heuristic optimization with generic patch-work losses. This means that we can
freely define custom loss functions that divide the domain into an arbitrary number of segment on each of which the loss
can take the linear transform of the shape some base function take on some segment that again can be freely chosen.
We plan to clean up the code of this tool and make in on-line available, please ask for the code via email up to then,
or take out the code from the project export that is available available by now [1]. SVM-like training with custom loss
functions can be used for instance to study variation of symmetric SVM-training, semi-supervised training as done in [5],
or multiclass training with class-dependent losses.

5.3 Important Deficiencies

The analysis of the studied training becomes rather complex by the fact that scheme has different compounds each of
which comes with proper deficiencies. It is not clear which of them or what combination of them is most harmful. In the
following we list some important problems.
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Selection Criterion
The applied selection criterion is an approximation of an target-criterion. The latter is the one we aim to apply but

since it is unaccessible we fall back to an approximation. The approximation error might be an issue or not, but in any
case the target criterion is questionable itself. It assumes that the selected cut will be the last one. A more convincing
variant would be to estimate the residual error by cross validation based very seco scheme itself, what we considered as
unfeasible.

Coverage Driven Objective
The loss on the target class basically is the fraction of uncovered points. It has the role of an opponent to the Hinge-loss

on the default class. If we applied zero loss on the target class we would obtain no-coverage cuts only. We do not consider
great coverage as value by itself. Still, if we assume fixed given cut error and a fixed residual error greater the former,
a greater coverage means lower total error. But an incentive on coverage can also be problematic. Considers a simple
situation where the examples are all inside three spheres, one positive, two negatives, and the three touching each other
or have little overlap. In this situation it would be smarter to first separate one negative sphere from positive one and
then the remaining one. The proposed coverage driven objective, however, would find cuts that take large parts of both
negatives spheres at once.

Optimization Heuristics
The heuristics that we use to find good local minima of the candidate supply objective can easily fail. This happens if

the valley around the corresponding local minimum is rather small such that the minimum has little weight in smoothing
and is average out. Another issue of the heuristics is that by using random initialization we prefer minima close to the
origin because on average the origin is closest to a random vector. Intuitively however, the local minima that represent
cuts in the outer regions of the example set are the ones we should prefer.
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