
A Moderately Successful
Attempt to Train Chess
Evaluation Functions of
Different Strengths
Technical Report TUD-KE-2010-07
Philip Paulsen, Johannes Fürnkranz
Knowledge Engineering Group, Technische Universität Darmstadt

Knowledge
Engineering

http://www.ke.informatik.tu-darmstadt.de
http://www.tu-darmstadt.de




Abstract

In this paper, we report the results of experiments in which we trained four chess evaluation functions on games of weak
chess players in four different rating groups, with the goal of reproducing computer players of that strength. Although
the differences in playing strength between the players loosely correlates to the playing strength of the training data, this
goal could not be achieved because the differences are much too small, and sometimes spurious. Nevertheless, the results
are interesting because the learned functions exhibit a clear and systematic difference in some of the learned positional
parameters (e.g., the importance of open ranks and lines), and show some unexpected but consistent differences to
previous results (e.g., a much lower value for the queen).

0 A somewhat shorter version of this paper appeared in the Proceedings of the ICML-10 Workshop on Machine Learning and Games.



1 Introduction

In strategy games, opponent modeling typically addresses the goal of forming a model of the opponent’s playing strategies
in order to be better able to exploit his or her weaknesses. The motivation for the work reported in this paper is a
different one: we do not want to make the opponent stronger, we want it to play at the same skill level as the player. We
think that this is the first study following this goal in the realm of strategy games, in particular in the game of chess.

Commercial chess programs often have simple means of adjusting the playing strength by limiting the thinking time,
the search depth, or by inserting random moves or blunders. We intend to follow a different path using machine learning
techniques: we learn chess evaluation functions from games of players of different skill levels (all of them at the beginner’s
to amateur level), and compare the functions both qualitatively as well as in match play. As we will see, we have not
been entirely successful with respect to the goal of modeling players with different strengths for reasons which will be
discussed below. Nevertheless, we believe that the results of our experiments are quite interesting.

In section 2, we start with a brief description of the chess program that was used in the learning experiments focusing
on the features that it uses in its evaluation function. The preference learning algorithm used for training these features
is described in Section 3, the training data in Section 4. The main part of the paper is an elaborate discussion of the
results in Section 5.

2



2 The Chess Program

For our experiments, we used Tom Kerrigan’s Simple Chess Program (TSCP) 1.811, which is particularly easy to use and
modify. Its main focus is on conceptually clear programming, not on playing strength and speed, which were also not our
primary objectives. It uses a standard alpha-beta negamax search with some quiescence search. According to two rating
lists2 it has a playing strength of approximately 1700, but it is unclear how this strength relates to the playing strengths
of the players of the collected games, because computer ratings and human ratings develop in largely independent pools
of players, so that their scales need not be comeasurable.

TSCP uses a simple linear evaluation function of the form

h(P) =
∑

f

w f · f (P), (2.1)

where f (P) ∈ {0,1} are elementary feature values that are computed for a given chess position P, and w f are their
weights. These weights will later be automatically tuned in the learning phase. For brevity, we omit the board P from
the notation wherever it is clear from the context. In particular, whenever two moves mi(P) and m j(P) refer to the same
position, we omit their position argument P.

Table 2.1: Features and features weights used in TSCP’s evaluation function.

Piece Values Positional Features
double pawn −10

pawn 100 isolated pawn −20
bishop 300 backward pawn −8
knight 300 passed pawn 20
rook 500 open file 15
queen 900 half-open file 10

rook on 7th rank 20

The features and weights used in TSCP are shown in Table 2.1. In addition, it uses the piece-square values tables,
which are visualized in Figure 2.1. Such tables are commonly used in chess programs and indicate a bonus (or malus)
for positioning the pieces at a certain square. As can be seen, the simple tables used in TSCP encode simple heuristics
like “develop your pieces” (the original squares of the pieces are bright), “castle” (the target squares of the king after
castling are dark, and the intermediate squares bright), or “center your pieces” (which is reasonable for the knight, but
rather questionable for the bishop). There are no piece-square tables for rook and queen, and there is a separate table
for the king in the endgame, where it typically becomes a very active piece.3

1 http://www.tckerrigan.com/Chess/TSCP
2 http://www.computerchess.org.uk/ccrl/404/ and http://wbec-ridderkerk.nl/ (edition 15)
3 In TSCP, an endgame begins if the sum of the opponent’s piece values (except pawns) drops below 1200.

(a) Pawn (b) Knight (c) Bishop (d) King (e) King in endgame

Figure 2.1: Piece square value tables of TSCP. Darker squares indicate higher values for pieces at this square.

3

http://www.tckerrigan.com/Chess/TSCP
http://www.computerchess.org.uk/ccrl/404/
http://wbec-ridderkerk.nl/


3 Training

The key idea for using a set of games for training an evaluation function is to interpret the move mi(P) played by a
player in a certain position P as a preference statement mi � m j for all j 6= i, i.e., it is assumed that a player plays mi

because s/he prefers it over all alternatives m j . Moreover, we assume that a player prefers a move because s/he prefers
the position resulting from this move over all positions that can be reached via alternative moves, i.e.,

mi �m j⇔ Pi � P j

where Pi =mi(P) is the position resulting from making move mi in position P.
These preference statements Pi � P j are then used for training the ranking support vector machine of Joachims

(2002).1 Its key idea is to reinterpret the preference statements as constraints on the evaluation function, i.e.,

Pi � P j⇔ h(Pi)> h(P j).

Thus we have an object ranking problem.2 As the function h is linear, the latter part is equivalent to

h(Pi − P j) =
∑

f

w f · f (Pi − P j)

=
∑

f

w f ·
�

f (Pi)− f (P j)
�

> 0

Thus, essentially, the training of the ranking SVM corresponds to the training of a classification SVM on the pairwise
differences Pi − P j between positions Pi and P j (Joachims, 2002).

A remaining problem is how to integrate the learning into the search algorithm. In particular, we have to face the
problem that the characteristics of the position at the root node of the search are often completely different from the
characteristics of the positions at the leaf, which are those that are actually evaluated with the evaluation function h.
Thus, we do not want to adapt the evaluation of the root position, but the evaluation of the so-called dominant position
of the search, i.e., the leaf position in the search tree from which the evaluation has been propagated back to the root
of the search tree. To this end, each of the positions Pi in the training data is encoded with the features of the position
d(Pi) encountered in the principal variation starting with m(Pi). This problem has already been recognized and solved
by Samuel (1959) but seemed to have been forgotten later on. It was rediscovered independently in the context of
reinforcement learning by (Beal & Smith, 1997) and (Baxter et al., 1998).

1 Available from http://svmlight.joachims.org. We used SV M l i ght in preference mode, i.e., svm_learn -z p. The optimized and faster
SV M rank was not yet available at the time of the experiments.

2 For a clarification of preference learning and ranking scenarios, we refer the reader to (Fürnkranz & Hüllermeier, 2010b,a).

4

http://svmlight.joachims.org


4 Data

For training evaluation functions with different strengths, we collected game protocols of players with approximately
1000, 1200, 1400, and 1600 Elo rating points.1 The choice of these rating ranges was primarily motivated by the fact
that we intended to weaken TSCP, whose strength was listed with 1700 rating points (but on a separate computer rating,
which may not be entirely comparable to the human rating pool).

The games were selected from a 3.5 million game database,2 so that the white player had one of the four ratings
above, with a tolerance of ± 25 points. From each game, we extracted all positions that occurred after intervals of 10
plies (5 moves). For each such position, we trained the ranking SVM so that it will prefer the position after the played
move over all alternative positions. On average, we had about 29 alternatives (negative examples) for each position
(positive example). Table 4.1 shows the number of games, position, and generated training examples. Note that we
imposed an upper limit on the number of games for playing strength 1600. As described above, each training position
was characterized with 332 features, which are summarized in Table 4.2.

Table 4.1: Characteristics of the training data.

Elo # games # positions # examples
1000 3.000 20.732 614.246
1200 5.499 39.170 1.185.524
1400 10.499 75.196 2.325.861
1600 10.500 75.114 2.352.536

Table 4.2: Features used for characterizing a position

Number Feature
1 – 5 material value for 5 different pieces
6 – 69 piece value table for pawns (46 values)

70 – 133 piece value table for knights (64 values)
134 – 197 piece value table for bishop (64 values)
198 – 261 piece value table for king (64 values)
262 – 325 piece value table for king in endgame
326 – 332 special values (cf. Table 2.1)

1 Elo ratings are a commonly used rating scale for chess players. Roughly, players with 1000 Elo points are beginners, with 1600 average club
players, with 2000 strong club players, with 2400 grandmasters, and with 2800 world champion. The rating scale is designed so that a 200
points difference roughly corresponds to a winning probability of 0.75 for the stronger player (Elo, 1978).

2 Available from http://chessdb.sourceforge.net/

5

http://chessdb.sourceforge.net/


5 Results

In the following, we report the results of the trained functions, first an evaluation of the accuracy of the move predictions,
then a qualitative analysis of the learned functions, and finally results from match play.

5.1 Move Prediction

Table 5.1 shows the results of a ξα-estimation of the predictive performance of the trained SVMs.1 It seems that the
correct move can be predicted reasonably well for all different training sets. About 2/3 of the correct moves (moves that
were actually made and thus labeled as positive) are correctly predicted as having a positive label, and about 3/4 of the
predictions for a positive label are correct.

Table 5.1: Run-time and ξα-estimates of error, recall, and precision of the trained SVMs.

Elo run-time error recall precision
1000 24,098 34.46% 66.96% 72.42%
1200 17,251 33.26% 67.84% 73.30%
1400 87,603 33.55% 67.28% 72.74%
1600 86,638 33.40% 67.18% 72.89%

5.2 Piece Values

Figure 5.1 shows the learned feature weights for the four learned evaluation functions. Before we look at the results
in more detail, we note that in general, the very low variance between the values of the four independently trained
functions is quite encouraging and supports the view that the observed regularities and differences are not due to chance
phenomena.

For some of the pieces, the learned values are quite consistent with those found in (Beal & Smith, 2000) and (Droste &
Fürnkranz, 2008). For example, we can see in Figure 5.1(a) that a bishop is only worth about 2 1

2
pawns (usually 3), and

a rook equals only a pawn and a bishop (usually 2P + 1B). This correspondence to previous results is not self-evident,
because the values obtained in these publications have been learned from completely different data (strong master vs.
weak amateur games) and with an entirely different learning algorithm (reinforcement vs. supervised learning).

However, other results differ a bit from common chess knowledge. For example, in the above-mentioned publications a
bishop always had a somewhat higher value than the knight, which corresponds to common chess wisdom that although
both pieces are approximately worth 3 pawns, a bishop should not be traded for a knight because a bishop has a much
higher mobility. For this reason, former World Champion Bobby Fischer has, e.g., given the value 3.25 for a bishop
(Fischer et al., 1972). In our results, knights were consistently learned to have a somewhat higher value in all four playing
strengths. Although the difference is rather small (approximately 10 points on average), its consistent appearance lets us
assume that this is systematic, and that weaker players tend to give a somewhat higher value to knights, or at least are
more willing to trade bishops for knights.

Noticeable are also the comparably low values for rook and queen. For example, a rook is typically worth 5 pawns,
while we here observe only about 3.3 pawns. Interestingly, this has also been observed in (Droste & Fürnkranz 2008;
Table 1), where a rook is worth about 3.6 pawns. More striking is the low value of the queen with slightly more than 5
pawns, which is unprecedented. This can also not been explained with a possibly too high value for the pawn, because
the queen’s value is also degraded in comparison to the other pieces. For example, its value is only slightly more than
two minor pieces (bishop or knight), and a little less than a minor piece and a rook. Typically, it is considered to be worth
three minor pieces, or a rook, a minor piece, and a pawn.

It is unclear how to interpret this deviation, but our best guess is that games of weak chess players are much more
erratic than games of strong chess players. While the advantage of a minor piece is typically more than enough to
guarantee victory among stronger players, weak players have a much higher probability of blundering even after a strong

1 ξα-error is an upper bound on the leave-one out cross-validation error, but has the advantage that it can be easily computed from a trained
SVM without the need for performing additional training via cross-validation (Joachims, 2000).

6



(a) piece values (b) pawn evaluation

(c) rook evaluation

Figure 5.1: Development of evaluation function weights

advantage, like the win of a queen. Maybe this is reflected in these learned piece values. The slight increase of the
queen’s value at the transition from 1400 to 1600 is consistent with that hypothesis, but additional evidence is needed to
back up this hypothesis.

5.3 Positional Features

Figure 5.1(b) shows the evolution of the pawn-related features. We first observe, encouragingly, that the sign has always
been learned correctly, i.e., good (passed pawns) and bad features (double, isolated, and backward pawns) have been
recognized as such. The most striking difference to the manually set values of Table 2.1 is the much higher value of a
double pawn. We do not have any value for comparison, but it is well-known that the heuristic “avoid double pawns” is
typically highly over-rated by weaker players.

Most interesting are the results on the evolution on the rook-related features (Figure 5.1(c)). In all three cases, the
importance of these positional features, which together essentially encode the rooks’ mobility and their potential to
invade the enemy camp, show a consistent increase in importance. This result is quite plausible and it is tempting to
assume that this reflects the increased playing strength of the players.

However, it is not entirely clear, whether common misconceptions of weaker players (e.g., over-rating double pawns,
under-rating the importance of free lines for the rooks) can be found in the game traces. This would imply that, if a
certain feature is deemed overly important by a player, it actually receives a higher importance in game play. While such
self-fulfilling prophecies are not entirely implausible (one can, e.g., imagine that a weak player tries harder to avoid a
double pawn than a stronger player, so that he will only get a double pawns in much weaker positions, and their influence
on the outcome is, indeed, higher), we have to keep in mind that this is all speculation.

An alternative interpretation is simply that as playing strength increases, positional features like open files have a
stronger and stronger influence on the final outcome of the game, whereas the results of weaker players are primarily
dominated by tactical blunders such as losing a piece.

7



Dataset Pawn Knight Bishop King Endgame King

1000

1200

1400

1600

Figure 5.2: Learned piece-square value tables for four different playing strengths. Dark squares indicate a high positive
value for a piece at this square, bright squares a high negative value, and medium gray a neutral value.

5.4 Piece-Square Tables

Figure 5.2 shows a graphical visualization of the learned piece-square tables for the four playing strengths.2 Some of
the values appear to have a high variance, which happens primarily for piece-square combinations that rarely occur in
practical play, and do thus rarely ever occur in the training games. For example, most of the king’s positions only occur
a few times, which may cause a few erratic values like the high value for the king at c5 for the 1400 rating function.
However, most of the values are perfectly sensible, and one can clearly recognize typical chess heuristics such as “move
the center pawns in the opening”, “advanced pawns are dangerous for the opponent”, “a knight on the rim is grim”, the
bishop fianchetto on g2, the king in the center is dangerous in the opening (castle quickly!) but essential in the endgame.
Overall, these values are quite reasonable, but, again, similar to the results of the piece values, no clear patterns can be
detected over an increase in playing strength.

5.5 Match Play

While the above qualitative results looked quite encouraging, the final test, of course, has to be to see how the four
different evaluation functions fare in competition. For performing round robin tournaments between the players we used
the Galis Winboard Tournament Manager.3 We played three series of 100 games between each pair of opponents, each
series for search depths 1, 2, and 4 ply (plus quiescence search). For search depths 2 and 4 we also included the original
TSCP program into the comparison, making up for a total of 300+400+400= 1,100 games for each of the four variants.
Table 5.2 shows the results.

For a 1-ply search, the results are dominated by a large number of draws, which were caused by frequent three-move
repetitions. We had expected, that for this search depth, the advantage of a better heuristic should be most apparent.

The expected effect then showed, to some extent, for a 2-ply search. Here we can clearly observe a decrease in playing
strength that correlates with our expectations, except that no difference could be observed for the evaluation functions at
the 1200 and 1400 level, and that there are some minor outliers in the pairwise comparisons (e.g., the 1400 evaluation

2 The exact numerical values can be found in the appendix of (Paulsen, 2009).
3 http://wbec-ridderkerk.nl/html/downloada/Galis.html

8

http://wbec-ridderkerk.nl/html/downloada/Galis.html


Table 5.2: Results of the four trained functions against each other and against TSCP’s functions. The winner is shown in
the columns (e.g., 1600 scores 63.5 points against 1000 in the 2-ply setting).

1 ply
1000 1200 1400 1600

1000 — 49.5 50.5 45.0
1200 50.5 — 54.0 53.0
1400 49.5 46.0 — 50.0
1600 55.0 47.0 50.0 —
∑

155.0 142.5 154.5 148.0
+ 35 12 18 19
= 240 261 273 258
− 25 27 9 23

2 ply
1000 1200 1400 1600

1000 — 59.0 56.0 63.5
1200 41.0 — 54.0 57.0
1400 44.0 46.0 — 61.0
1600 36.5 43.0 39.0 —
TSCP 36.5 37.0 36.5 43.5
∑

158.0 185.0 185.5 225.0
+ 130 171 167 210
= 56 28 37 30
− 214 201 196 160

4 ply
1000 1200 1400 1600

1000 — 68.5 58.0 53.0
1200 31.5 — 46.5 61.5
1400 42.0 53.5 — 54.0
1600 47.0 38.5 46.0 —
TSCP 22.0 35.5 38.0 26.5
∑

142.5 196.0 188.5 195.0
+ 121 174 171 173
= 43 44 35 44
− 236 182 194 183

Total
1000 1200 1400 1600

∑

455.5 523.5 528.5 568.0
+ 286 357 356 402
= 339 333 345 332
− 475 410 399 366

functions scores worse than the 1200 function against both 1000 and 1600). However, the differences in playing strength
are much too small in comparison to the differences in playing strength from the original games. A difference of 200 Elo
rating points should correspond to a winning percentage of roughly 75%, whereas even 1600 wins somewhat less than
2/3 of its games against 1000, which corresponds to a difference in playing strength of approximately 100 rating points.

For 4-ply search, the results are quite irregular again, with all functions from 1200 to 1600 performing roughly at
the same level, with only the 1000 evaluation function being clearly inferior. A possible reason for this could be that
differences in the evaluation functions become less and less important with increasing search depths. However, this is
somewhat contradicted by the fact that TSCP’s original function performs much better in the 4-ply tests than it did in the
2-ply tests.

In summary (bottom part of the table), we can observe differences in the learned functions which correlate roughly
with our expectations, but the magnitude of the differences is considerably smaller than we hoped for.

9



5.6 Internet Play

As a final test, we let the four players loose on the free internet chess server FICS,4 where they can meet competition of
varying strengths, primarily human but also computers. All programs played in two different modes, blitz (time controls
3 minutes or 5 minutes for an entire game, or 2 minutes with a 12 seconds increment per move) and standard (15 or
20 minutes for the game). In both cases we played with a search depth limitation to 1 ply and without such a limitation
(the depth was then chosen dynamically to fit the chosen time controls). Thus, each evaluation function was run in four
different configurations.

Table 5.3 shows the results after about 1000 Blitz games and ca. 500 Standard games for each search depth. The
results essentially confirm the findings of the previous section: only the 1000 player is reliably worse than the others,
whereas the differences between the other three are spurious, and within the regular variance of chess ratings.5

Table 5.3: Results of play on the FICS chess server under varying time controls and search depths. The last column shows
the average rating difference to the 1000 player.

1 ply flexible depth avg.
Blitz Stnd Blitz Stnd ±

1000 1088 1348 1839 2003 0.00
1200 1143 1383 1874 2075 +49.25
1400 1122 1397 1891 2043 +43.75
1600 1105 1398 1898 2029 +38.00

4 http://www.freechess.org/
5 Ratings on chess servers are updated incrementally after each game. The number of gained or lost rating points depends on the result

(win/draw/loss), on the rating difference to the opponent, and a factor that is adapted dynamically by a method proposed by Glickman
(1999). Typical rating changes after a won game are 5 to 15 points for established players, but may be considerably higher for newbies.

10

http://www.freechess.org/


6 Related Work

For general surveys on machine learning in chess and other games, we refer to (Skiena, 1986; Fürnkranz, 1996, 2001;
Fürnkranz, To appear). Our supervised training procedure is quite similar to comparison training, a preference-based
training protocol that has been used in the early phases of the TD-Gammon project for training a backgammon evaluation
function (Tesauro, 1989). Comparison Training but was soon replaced with temporal difference learning (Tesauro, 1992),
which turned out to be considerably more successful for learning an evaluation from self play. Consequently, evaluation
functions for chess and chess variants have typically also been trained with variants of reinforcement learning (Baxter
et al., 2000; Beal & Smith, 2000, 2001; Droste & Fürnkranz, 2008). A notable exception is reported in (Tesauro, 2001),
where a variant of the comparison training technology was applied to improving the chess evaluation function of Deep
Blue, and made a crucial difference in the famous 1997 DEEP BLUE vs. Kasparov match.

To our knowledge, Carmel & Markovitch (1993) were the first to try to automatically learn a model of the opponent’s
move selection process (for the game of checkers). Their learning approach is quite similar to our use of Rank-SVMs, but
they use linear programming for finding a set of weights that satisfy the preference-based move constraints. They learn
different evaluation functions for different search depths, and propose a simple heuristic for guessing the opponent’s
search depth. An adaptation of this technique to our experimental setup with players of varying strength is a nice task
for future work.

Their primary goal was to improve the playing strength of the program by improving the player’s own search algorithm
with the ability to incorporate a model of to the opponent’s play (Carmel & Markovitch, 1998). While such opponent
modeling algorithms are less important in perfect information games, they are often crucial in games with imperfect
information such as poker (Billings et al., 1998; Southey et al., 2009) or even simple games like rock-paper-scissors
(Billings, 2000; Egnor, 2000).

However, the intention behind our experimental setup is somewhat orthogonal to opponent modeling: we do not want
to improve the playing skill of the player, but instead we want to fit the playing strength of the automated player to the
skill level of a human player. This is particularly important for computer games, where dynamic difficulty adjustment
is a crucial issue (Hunicke & Chapman, 2004). For example, Missura & Gärtner (2009) study the task of recognizing a
player’s skill level, and assigning her to a suitable prototype player, which has been formed by clustering previous player
interactions with the system.

11



7 Conclusions

In this paper we reported the results of a study that aimed at adjusting the parameters of a chess evaluation function to
the skill level of a class of human players in a database of games. In the light of the results of match play among the
learned players and the results against a variety of players on the free internet chess server, we have to conclude that this
goal could not be achieved.

Nevertheless, we have also seen evidence that the learned functions were, indeed, of different strengths, albeit at a
much smaller scale. Larger performance differences could only be observed by variations in the search depths, not by
minor variations in the evaluation function. In retrospect, this result is not entirely unexpected, because fine-tuning an
evaluation function of a chess program is a difficult, time-consuming process with small gains. In a sense, we have now
complemented this knowledge with the experience that one can also not do much harm, even if one deliberately tries to
construct a weak (but still sensible) evaluation function.

As a side result of this study, we also note that supervised training of ranking SVMs on game playing data seems to
work. Even though some aspects of the learned evaluation functions looked surprising (e.g., the low value of the queen),
the low variance in the four learned functions reassures us that this is not due to chance. We speculated about possible
reasons for these unexpected results, but further studies are necessary to obtain a definite answer.

Acknowledgments

We would like to thank the people whose freely available software we used, most notably Thorsten Joachims for SVM-light, Tom
Kerrigan for TSCP, Shane Hudson and David Kirkby for Scid/ChessDB, Tim Mann for XBoard and WinBoard, Nikola Bacic for the
Galis Winboard Tournament Manager, Leo Dijksman for the WBEC Ridderkerk Web-site, and the maintainers of FICS for countless
hours of serious fun.

12



Bibliography

Baxter, J., Tridgell, A., and Weaver, L. A chess program that learns by combining TD(lambda) with game-tree search. In Proceedings
of the 15th International Conference on Machine Learning (ICML-98), pp. 28–36, Madison, WI, 1998. Morgan Kaufmann. 4

Baxter, J., Tridgell, A., and Weaver, L. Learning to play chess using temporal differences. Machine Learning, 40(3):243–263,
September 2000. 11

Beal, D. F. and Smith, M. C. Learning piece values using temporal difference learning. International Computer Chess Association
Journal, 20(3):147–151, September 1997. 4

Beal, D. F. and Smith, M. C. Temporal difference learning for heuristic search and game playing. Information Sciences, 122(1):3–21,
2000. Special Issue on Heuristic Search and Computer Game Playing. 6, 11

Beal, D. F. and Smith, M. C. Temporal difference learning applied to game playing and the results of application to Shogi. Theoretical
Computer Science, 252(1-2):105–119, 2001. Special Issue on Papers from the Computers and Games 1998 Conference. 11

Billings, D. The first international RoShamBo programming competition. International Computer Games Association Journal, 23(1):
42–50, March 2000. 11

Billings, D., Papp, D., Schaeffer, J., and Szafron, D. Opponent modeling in poker. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98), pp. 493–498, Madison, WI, 1998. AAAI Press. 11

Carmel, D. and Markovitch, S. Learning models of opponent’s strategy in game playing. In Epstein, S. L. and Levinson, R. A. (eds.),
Proceedings of the AAAI Fall Symposium on Intelligent Games: Planning and Learning, number FS-93-02, pp. 140–147, Menlo Park,
CA, 1993. The AAAI Press. Technical Report FS-93-02. 11

Carmel, D. and Markovitch, S. Pruning algorithms for multi-model adversary search. Artificial Intelligence, 99(2):325–355, March
1998. 11

Droste, S. and Fürnkranz, J. Learning the piece values for three chess variants. International Computer Games Association Journal,
31(4):209–233, December 2008. 6, 11

Egnor, D. Iocaine Powder. International Computer Games Association Journal, 23(1):33–35, March 2000. Resarch Note. 11

Elo, A. E. The Rating of Chessplayers, Past and Present. Arco, New York, 2nd edition, 1978. 5

Fischer, R. J., Margulies, S., and Mosenfelder, D. Bobby Fischer Teaches Chess. Bantam Books, 1972. 6

Fürnkranz, J. Machine learning in computer chess: The next generation. International Computer Chess Association Journal, 19(3):
147–160, September 1996. 11

Fürnkranz, J. Machine learning in games: A survey. In (Fürnkranz & Kubat, 2001), chapter 2, pp. 11–59. 11

Fürnkranz, J. Machine learning and game playing. In Sammut, C. and Webb, G. I. (eds.), Encyclopedia of Machine Learning.
Springer-Verlag, To appear. 11

Fürnkranz, J. and Hüllermeier, E. (eds.). Preference Learning. Springer-Verlag, 2010a. 4, 13

Fürnkranz, J. and Hüllermeier, E. Preference learning: An introduction. In Preference Learning (Fürnkranz & Hüllermeier, 2010a).
To appear. 4

Fürnkranz, J. and Kubat, M. (eds.). Machines that Learn to Play Games. Nova Science Publishers, Huntington, NY, 2001. 13, 14

Glickman, M. E. Parameter estimation in large dynamic paired comparison experiments. Applied Statistics, 48:377–394, 1999. 10

Hunicke, R. and Chapman, V. Ai for dynamic difficulty adjustment in games. In Fu, D., Henke, S., and Orkin, J. (eds.), Proceedings of
the AAAI-04 Workshop on Challenges in Game Artifical Intelligence, pp. 91–96. AAAI Press, 2004. Technical Report WS-04-04. 11

Joachims, T. Estimating the generalization performance of an SVM efficiently. In Langley, P. (ed.), Proceedings of the 17th International
Conference on Machine Learning (ICML-2000), pp. 431–438, Stanford University, Stanford, CA, 2000. Morgan Kaufmann. 6

Joachims, T. Optimizing search engines using clickthrough data. In Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pp. 133–142. ACM Press, 2002. 4

13



Missura, O. and Gärtner, T. Player modeling for intelligent difficulty adjustment. In Gama, J., Costa, V. S., Jorge, A. M., and Brazdil,
P. (eds.), Proceedings of 12th International Conference on Discovery Science (DS-09), pp. 197–211, Porto, Portugal, 2009. Springer.
doi: 10.1007/978-3-642-04747-3_17. 11

Paulsen, P. Lernen unterschiedlich starker Bewertungsfunktionen aus Schach-Spielprotokollen. Master’s thesis, TU Darmstadt,
Knowledge Engineering Group, July 2009. URL http://www.ke.informatik.tu-darmstadt.de/lehre/arbeiten/diplom/
2009/Paulsen_Philip.pdf. Diplomarbeit. 8

Samuel, A. L. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3):
211–229, 1959. 4

Skiena, S. S. An overview of machine learning in computer chess. International Computer Chess Association Journal, 9(1):20–28,
1986. 11

Southey, F., Hoehn, B., and Holte, R. C. Effective short-term opponent exploitation in simplified poker. Machine Learning, 74(2):
159–189, 2009. doi: 10.1007/s10994-008-5091-5. 11

Tesauro, G. Connectionist learning of expert preferences by comparison training. In Touretzky, D. (ed.), Advances in Neural Infor-
mation Processing Systems 1 (NIPS-88), pp. 99–106. Morgan Kaufmann, 1989. 11

Tesauro, G. Temporal difference learning of backgammon strategy. Proceedings of the 9th International Conference on Machine
Learning, pp. 451–457, 1992. 11

Tesauro, G. Comparison training of chess evaluation functions. In (Fürnkranz & Kubat, 2001), chapter 6, pp. 117–130. 11

14

http://www.ke.informatik.tu-darmstadt.de/lehre/arbeiten/diplom/2009/Paulsen_Philip.pdf
http://www.ke.informatik.tu-darmstadt.de/lehre/arbeiten/diplom/2009/Paulsen_Philip.pdf

	1 Introduction
	2 The Chess Program
	3 Training
	4 Data
	5 Results
	5.1 Move Prediction
	5.2 Piece Values
	5.3 Positional Features
	5.4 Piece-Square Tables
	5.5 Match Play
	5.6 Internet Play

	6 Related Work
	7 Conclusions

