
Exploiting Code-Redundancies in
ECOC for Reducing its Training
Complexity using Incremental and
SVM Learners
Technical Report TUD-KE-2010-06
Version 1.1, July 13th 2010

Sang-Hyeun Park, Lorenz Weizsäcker, Johannes Fürnkranz
Knowledge Engineering Group, Technische Universität Darmstadt

Knowledge
Engineering

http://www.ke.informatik.tu-darmstadt.de
http://www.tu-darmstadt.de

Abstract

We study an approach for speeding up the training of error-correcting output codes (ECOC) classifiers. The key idea is to
avoid unnecessary computations by exploiting the overlap of the different training sets in the ECOC ensemble. Instead
of re-training each classifier from scratch, classifiers that have been trained for one task can be adapted to related tasks
in the ensemble. The crucial issue is the identification of a schedule for training the classifiers, which maximizes the
exploitation of the overlap. For solving this problem, we construct a classifier graph in which the nodes correspond to
the classifiers, and the edges represent the training complexity for moving from one classifier to the next in terms of the
number of added training examples. The solution of the Steiner Tree problem is an arborescence in this graph, which
describes the learning scheme with the minimal total training complexity. We experimentally evaluate the algorithm with
Hoeffding trees, as an example for incremental learners, where the classifier adaptation is trivial, and with SVMs, where
we employ an adaptation strategy based on adapted caching and weight re-use, which guarantees that the learned model
is the same as per batch learning.

1

Contents

1 Introduction 3

2 Error-Correcting Output Codes 4

3 Redundancies within ECOC 5
3.1 Code Redundancy . 5
3.2 Exploitation of Code Redundancies . 5

3.2.1 Generation of Training Graph . 6
3.2.2 Greedy Computing of Steiner Trees . 7

3.3 Incremental Learning with Training Graph . 8
3.4 SVM Learning with Training Graph . 8

3.4.1 Reuse of Weights . 8
3.4.2 Cache Strategy . 9

4 Experimental Evaluation 10
4.1 Experimental Setup . 10
4.2 Hoeffding Trees . 10
4.3 LibSVM . 10

5 Related Work 15

6 Conclusion 16

A Appendix 17
A.1 LibSVM Results . 17

2

1 Introduction

Error-correcting output codes (ECOC) (Dietterich and Bakiri, 1995) are a well-known technique for handling multiclass
classification problems, i.e., for problems where the target attribute is a categorical variable with k > 2 values. Their key
idea is to reduce the k-class classification problem to a series of n binary problems, which can be handled by a 2-class
classification algorithm, such as a SVM or a rule learner. Conventional ECOC always use the entire dataset for training
each of the binary classifiers. Ternary ECOC (Allwein et al., 2000) are a generalization of the basic idea which allows
to train the binary classifiers on subsets of the training examples. For example, pairwise classification (Friedman, 1996;
Fürnkranz, 2002), which trains a classifier for each pair of classes, is a special case of this framework.

For many common general encoding techniques, the number of binary classifiers may exceed the number of classes by
several orders of magnitude. This allows for greater distances between the code words, so that the mapping to the closest
code word is not compromised by individual mistakes of a few classifiers. For example, for pairwise classification, the
number of binary classifiers is quadratic in the number of classes. Thus, the increase in predictive accuracy comes with a
corresponding increase in computational demands at classification time. In previous work (Park and Fürnkranz, 2009),
we focused on fast ECOC decoding methods, which tackled this problem. For example, for the special case of pairwise
classification, the quadratic complexity can be reduced to O(k log k) in practice.

In this paper, we focus on the training phase, where overlaps of training instances in highly redundant codes are
reduced without altering the models. This is done by identifying shared subproblems in the ensemble, which need to
be learned only once, and by rescheduling the binary classification problems so that these subproblems can be reused as
often as possible. This approach is obviously feasible in conjunction with incremental base learners, but its main idea
is still applicable for the more interesting case when SVMs are used as base learners, by reusing computed weights of
support vectors from related subproblems and applying an adapted ensemble caching strategy.

At first, we will briefly recapitulate ECOC with an overview of typical code designs and decoding methods (section 2)
before we discuss their redundancies and an algorithm to exploit them in Section 3. The performance of this algorithm
is then evaluated for Hoeffding trees and for SVMs as base classifiers (Section 4). Finally, we will conclude and elaborate
on possible future directions.

3

2 Error-Correcting Output Codes

Error-correcting output codes (Dietterich and Bakiri, 1995) are a well-known technique for converting multi-class prob-
lems into a set of binary problems. Each of the k original classes receives a code word in {−1,1}n, thus resulting in a
k× n coding matrix M . Each of the n columns of the matrix corresponds to a binary classifier, where all examples of a
class with +1 are positive, and all examples of a class with −1 are negative. Ternary ECOC (Allwein et al., 2000) are an
elegant generalization of this technique which allows 0-values in the codes, which correspond to ignoring examples of
this class.

As previously mentioned, the well known one-against-one and one-against-all decomposition schemes for multiclass
classification are particular codes within the framework of ECOC. Other well-known general codes include:

Exhaustive Ternary Codes cover all possible classifiers involving a given number of classes l. More formally, a (k, l)-
exhaustive ternary code defines a ternary coding matrix M , for which every column j contains exactly l values, i.e.,
∑

i∈K |mi, j | = l. Obviously, in the context of multiclass classification, only columns with at least one positive (+1) and
one negative (−1) class are meaningful. These codes are a straightforward generalization of the exhaustive binary
codes, which were considered in the first works on ECOC (Dietterich and Bakiri, 1995), to the ternary case. Note that
(k, 2)-exhaustive codes correspond to pairwise classification.

In addition, we define a cumulative version of exhaustive ternary codes, which subsumes all (k, i)-codes with i = 2 . . . l
, so up to a specific level l. In this case, we speak of (k, l)-cumulative exhaustive codes. For a dataset with k classes,
(k, k)-cumulative exhaustive codes represent the set of all possible binary classifiers.

Random Codes are randomly generated codes, where the probability distribution of the set of possible symbols {−1, 0,1}
can be specified. The zero probability parameter rzp ∈ [0,1], specifies the probability for the zero symbol, p({0}) = r,
whereas the remainder is equally subdivided to the other symbols: p({1}) = p({−1}) = 1−r

2
. This type of code allows

to control the degree of sparsity of the ECOC matrix. In accordance with the usual definition, we speak of random dense
codes if rzp = 0, which relates to binary ECOC.

4

3 Redundancies within ECOC

3.1 Code Redundancy

Many code types specify classifiers which share a common code configuration. For instance, in the case of exhaustive
cumulative k-level codes, we can construct a subclassifier by setting some +1 bits and some −1 bits of a specified classifier
to zero. Clearly, the resulting classifier is itself a valid classifier that occurs in the ECOC matrix of this cumulative code.
Furthermore, every classifier f of length l < k, is subclassifier of exactly 2 · (n− l) classifiers with length l + 1, since
there are n− l remaining classes and each class can be specified as positive or negative. Such redundancies also occur
frequently in random codes with a probability of the zero-symbol smaller than 0.5, and therefore also in the special
case of random dense codes, where the codes consists only of +1 and −1 symbols. On the other hand, the widely used
one-against-one code has no code redundancy, and the redundancy of the one-against-all code is very low.

In general, the learning of a binary classifier is independent of the explicit specification, which class of instances is
regarded as positive and which one as negative. So, from a learning point of view, the classifier specified by a column
~mi = (m1i , . . . , mki) is equivalent to −~mi .

Formally, code redundancy can be defined as follows:

Definition 1 (Code Redundancy). Let fi and f j be two classifiers and (m1i , . . . , mki) and (m1 j , . . . , mk j) their corresponding
(ternary) ECOC columns. We say fi and f j are p−redundant, if for a ∈ {1 . . . k},

p =max(#{a |mai = ma j , mai 6= 0},#{a |mai =−ma j , mai 6= 0})

Let d = max(dH(~mi , ~m j), dH(−~mi , ~m j)), where dH is the Hamming distance. Two classifiers fi and f j are p-redundant,
if and only if k− p = d −#{a ∈ {1 . . . k} |mai = 0 ∧ ma j = 0}. Thus, in essence, classifier redundancy is the opposite
of Hamming distance except that bit positions with equal zero values are ignored. For convenience, similarly to the
symmetric difference of sets, we denote for two classifiers fi and f j the set of classes which are only involved in one of
their code configurations mi and m j as fi

a
f j . More precisely, fi

a
f j = {ca | a ∈ {1 . . . k}∧ |mai |+ |ma j |= 1}. In addition,

we speak of a specified classifier, if there exists a corresponding code-column in the given ECOC matrix.

3.2 Exploitation of Code Redundancies

Code redundancies can be trivially exploited by incremental base learners, which are capable of extending an already
learned model on additional training instances. Then, repeated iterations over the same instances can be avoided, since
shared subclassifiers only have to be learned once. The key issue is to find a training protocol that maximizes the use of
such shared subclassifiers, and therefore minimizes the redundant computations. Note that the subclassifiers do not need
to be specified classifiers, i.e., they do not need to correspond to a class code in the coding matrix.

This task may be viewed as a graph-theoretic problem. Let G = (V, E) be a weighted directed graph with V =
{nr} ∪ { fi} ∪ { fs}, i.e., each classifier fi and each possible subclassifier fs are in the set of nodes V . Furthermore, the
special root node nr is connected to every other node ni ∈ V with the directed edge (nr , ni). Besides, for each two
non-root nodes ni and n j , there exists a directed edge (ni , n j), if and only if ni is subclassifier of n j . The weight of these
edges is f j

a
fi . For all edges (nr , ni), which are incident to the root node, the weight is the number of training instances

involved in classifier fi .
To elaborate, incident edges to the root node depict classifiers which are learned by batch learning. All other edges

(ni , n j), which are edges between two (sub)-classifiers, represent incremental learning steps. Based on the learned model
of classifier fi , the remaining training instances of f j

a
fi are used to learn classifier f j . The multiple possible paths to

one particular classifier represents the possible ways to learn it. Each of these paths describe a different partitioning
of training costs, represented by the number of edges (number of partitions) and edge weights (size of the partitions).
Considering only one classifier, the cost for all paths are identical. But, by considering that paths of different redundant
classifiers can overlap, and that shared subpaths are trained only once, the total training cost can be reduced. Another
view at this graph is the following: every subgraph of G which is an arborescence consisting of all specified classifiers is
a valid scheme for learning the ensemble, in the sense that it produces exactly the specified set of classifiers.

In this context, our optimization problem is to find a minimum-weight subgraph of G including all classifier nodes fi ,
which relates to minimizing the processed training instances for the set of specified classifiers and therefore total training

5

|B||B|

|A|+ |B|+ |C|

|B|+ |C|

|A|+ |B|+ |C|

|A|

|A|+ |C|

n2 ≈ AB|C

n4 ≈ A|C

n1 ≈ A|BC

nr

n3 ≈ B|C

Figure 3.1: A sample training graph. Three classifiers f1 = A|BC , f2 = AB|C and f3 = B|C are specified. The non-specified
classifier f4 = A|C is added because it is the maximal common subclassifier of f1 and f2. For each edge ei j = (ni , n j) the
weights depict the training effort for learning classifier f j based on classifier fi (|A| is the number of training instances of
class A).

complexity of the ECOC ensemble. Note, this problem is known in graph theory as Steiner problem in a directed graph,
which is NP-hard (Wong, 1984).

Figure 3.1 shows an example of such a training graph for a 3-class problem, where three classifiers f1 = A|BC , f2 =
AB|C and f3 = B|C are specified by a given ECOC matrix. 1 The standard training scheme, which learns each classifier
separately, can be represented as a subgraph G1 ⊆ G consisting of V1 = {nr , n1, n2, n3} and E1 = {er1, er2, er3}. This
scheme uses 2|A| + 3|B| + 3|C | training instances in total. An example where fewer training instances are needed is
G2 = (V1, E2) with E2 = {er1, er3, e32}, which exploits that classifier f2 can be incrementally trained from f3, resulting in
training costs 2|A|+ 2|B|+ 2|C |. Another alternative is to add a non-specified classifier f4 = A|C to the graph, resulting
in G3 = (V, E3) with E3 = {er4, e41, e42, er3} with training costs |A|+3|B|+2|C |. It is easy to see that either G2 or G3 is the
optimal Steiner Tree in this example and that both process fewer training examples than the standard scheme. Whether
G2 or G3 is optimal, depends on whether |A|> |B|.

Since the optimal solution is in general hard to compute, we use a greedy approach. We first have to generate the
training graph. Then, we iteratively remove local non-optimal edges, starting from the leaf nodes (specified classifiers)
up to the root. Both methods are described in detail in the following subsections.

3.2.1 Generation of Training Graph

We consider an algorithm which is particularly tailored for exhaustive and exhaustive cumulative codes. Let F be the set
of all classifiers f of a specific length l, which is successively decreased from k down to 2. For each pair (fi , f j) ∈ F × F
the maximal common subclassifier fs is determined and eventually integrated into the graph. Then, these classifiers are
marked as processed (seen(f) = 1) and are not considered in the following steps of the generation algorithm. Level l
is decreased and the algorithm repeats. The processed classifiers can be ignored, because for the systematic codes (exh.
and exh. cumulative) all potential subclassifiers can be constructed using its immediate subclassifiers. This algorithm
does not find all edges for random codes or general codes, but only for their inherent systematic code structures. For the
sake of efficiency and also considering that we employ a greedy Steiner Tree Solving procedure afterwards, we neglect
this fact.

A pseudo code is given in Algorithm 1. Note that there, the set F is populated with classifiers of length greater equal
than l instead of exactly l, considering the special case that there can be multiple levels with zero classifiers or only one
classifier. Also, classifiers should only be flagged as processed if they were actually checked at least once. The complexity
of this version is exponential, but it will be later reduced to quadratic in combination with the greedy Steiner Tree
algorithm.

In the beginning, for each specified classifier fi a corresponding node ni is generated in the graph and connected with
the root node by the directed edge (nr , ni). In the main loop, which iterates over l = k down to 2, for each pair (fi , f j) of

1 A, B, C are symbol representatives for classes and A|B describes the binary classifier which discriminates instances of class A against B.

6

Algorithm 1 Training Graph Generation

Require: ECOC Matrix ~M = (mi, j) ∈ {−1,0, 1}k×n, binary classifiers f1, . . . , fn
1: V = {nr}, E =∅
2: for each fi do
3: V = V ∪ {ni} # Integration of all classifiers
4: eri = (nr , ni)
5: w(eri) = I(fi)
6: E = E ∪ {eri}
7: for l = k downto 2 do
8: F = {n ∈ V\{nr} | length(n)≥ l , seen(n) = 0} # level-wise subclassifier generation
9: for each pair (ni , n j) ∈ F × F with i 6= j do

10: ns = intersection(ni , n j) # generate shared subclassifier of fi and f j
11: if ns is valid then
12: if ns /∈ V then
13: V = V ∪ {ns} # classifier is new
14: ers = (nr , ns)
15: w(ers) = I(fs)
16: E = E ∪ {ers}
17: esi = (ns, ni) , es j = (ns, n j)
18: w(esi) = I(fs

a
fi)

19: w(es j) = I(fs
a

f j)
20: E = E ∪ {esi , es j}
21: ∀n ∈ F.seen(n) = 1 # mark as processed, see also note in text
22: return G = (V, E, w)

Algorithm 2 Greedy Steiner Tree Computation
Require: Training Graph G = (V, E, w), binary classifiers f1, . . . , fn

1: let Q be an empty FIFO-queue
2: V̂ =∅, Ê =∅
3: for each fi do
4: Q.push(ni) , V̂ = V̂ ∪ {ni}
5: while !Q.isEmpty() do
6: ni =Q.pop()
7: (nx , ni) = argmin(na ,ni)∈E w((na, ni))
8: Ê = Ê ∪ (nx , ni) , V̂ = V̂ ∪ {nx}
9: if nx 6= nr then

10: Q.push(nx)
11: return G̃ = (V̂ , Ê, w)

classifiers of length l the maximum common subclassifier fs is determined. If it is valid (i.e., it is non-zero and contains
at least one positive and one negative class), two cases are possible:

• a corresponding node to fs already exists in the tree: fi and f j are included to the set of childs of fs, that means,
two directed edges esi and e js with weights I(fi

a
fs), I(f j

a
fs) respectively are created, where I(.) denotes the

total number of training instances for a given code configuration.

• There exists no corresponding node to the subclassifier fs: fs is integrated into the tree by creating a corresponding
node and by linking it to the root node with edge ers of weight I(fs). In addition, the same steps as in the first case
are applied.

3.2.2 Greedy Computing of Steiner Trees

A Steiner Tree is, essentially, a minimum spanning tree of a graph, but it may contain additional nodes (which, in our
case, correspond to unspecified classifiers). Minimizing the costs is equivalent to minimizing the total number of training
examples that are needed to train all classifiers at the leaf of the tree from its root. As mentioned previously, we tackle
this problem in a greedy way.

7

Let fi be a specified classifier and Ei the set of incident incoming edges. We compute the minimum-weight edge
and remove all other incoming edges. The outgoing node of this minimum edge is stored to repeat the process on this
node afterwards, e.g. by adding it into a FIFO-queue. This is done until all classifiers and connected subclassifiers
have been processed. Note, some subclassifiers are never processed, since all outgoing edges may have been removed.
A pseudocode of this simple greedy approach is depicted in algorithm 2. In the following, we will refer to it as the
min-redundant training scheme, and to the calculated approximate Steiner Tree as Ĝ.

This greedy approach can be combined with the generation method of the training graph, such that the resulting
Steiner Graph is identical and such that the overall complexity is reduced to polynomial time. Recall the first step of the
generation method: all pairs of classifiers of length k are checked for common subclassifiers and eventually integrated
into G. After generating O(n2) subclassifiers, for each classifier fi (of length k) the minimal incoming edge2 is marked.
All unmarked edges and also the corresponding outgoing nodes, if they have no other child, are removed. In the next
step of the iteration, l = k − 1, the number of nodes with length l − 1 are now at most n, since only maximally n new
subclassifiers were included into the graph G. This means, for each level, O(n2) subclassifiers are generated, where
the generation/checking of a subclassifier has cost of Θ(k), since we have to check k bits. So, in total, each level costs
O(n2 · k) operations. And, since we have k levels, the total complexity is O(k2 · n2). The implementation of the combined
greedy method is straight-forward, so we omit a pseudocode and we will refer to it as GSTEINER.

3.3 Incremental Learning with Training Graph

Given a Steiner Tree of the training graph, learning with an incremental base learner is straight-forward. The specific
training scheme is traversed in preorder depth-first-manner, i.e. at each node, the node is first evaluated and then its
subtrees are traversed in left-to-right order. Starting from the root node, the first classifier f1 is learned in batch mode. In
the next step, if f1 has a child, i.e. f1 is subclassifier of another classifier f2, f1 is copied and incrementally learned with
instances of f2

a
f1, yielding classifier f2 and so on.

After the learning process, all temporary learned classifiers, which served as subclassifiers and are not specified in the
ECOC matrix, are removed, and the prediction phase of the ECOC ensemble remains the same.

In this paper, we use Hoeffding Trees (Domingos and Hulten, 2000) as an example for an incremental learner. It is a very
fast incremental decision tree learner with anytime properties. One of its main features is that its prediction is guaranteed
to be asymptotically nearly identical to that of a corresponding batch learned tree. We used the implementation provided
in the Massive Online Analysis Framework (Bifet et al., 2010).

3.4 SVM Learning with Training Graph

While incremental learners are obvious candidates for our approach to save training time, the problem actually does
not demand full incrementality because we always add batches of examples corresponding to different classes to the
training set. Thus, the incremental design of a training algorithm might retard the training compared to an algorithm
that can naturally incorporate larger groups of additional instances. Therefore, we decided to study the applicability of
this approach to a genuine batch learner, and selected the Java-implementation of LIBSVM Chang and Lin (2001). The
adaption of this base learner consists of two parts: First, the previous model (subclassifier) is used as a starting point for
the successor model in the training graph, and second, the caching strategy is adapted to this scenario.

3.4.1 Reuse of Weights

A binary SVM model consists of a weight vector ~α containing the weights αi for each training instance (~x i , yi) and a
real-valued threshold b. The latter is derived from ~α and the instances without significant costs. The weights α are
obtained as the solution of a quadratic optimization problem with a quadratic form αT (~y T K~y)α that incorporates the
inputs through pairwise evaluations Ki j = k(~x i , ~x j) of the kernel function k. The first component to speed up the training
is to use the weights α of the parent model as start values for optimizing the child weights ᾱ. That is, we set ᾱi = αi , if
instance i belongs to the parent model and ᾱi = 0 otherwise.

The mutual influence of different instances on their respective weights is twofold. There is a local mutual influence
due to the fact that an instance can stand in the shadow of another instance closer to the decision boundary. And there
is a weaker, global mutual influence that also takes effect on more unrelated instances communicating through the error
versus regularization trade-off in the objective.

2 The weights of the edges are identical to the corresponding ones in the fully generated training graph, since it only depends on the total
number of training instances, computable by the code configuration of the subclassifier, and not on the actual partitioning.

8

If we add additional instances to the training set we might expect that there is only a modest alternation of the old
weights, because many of the new instances will have little direct effect on the local influence among previous instances.
On the other hand, if the new instances do interfere with some subsets of the previous instances, the global influence
can strongly increase as well. In any case, we are more interested in the question whether the parent initialization of the
weights does speed up the optimization step.

3.4.2 Cache Strategy

It is well-known that caching of kernel evaluations provides significant speed-up for the learning with SVMs (Joachims,
1999). LIBSVM uses a Least-Recently-Used (LRU) Cache, which stores columns of the matrix K respective its signed variant
Q = ~y T K~y . Since we use an ensemble of classifiers which potentially overlap in terms of their training instances and
therefore also in their matrices K , it is beneficial to replace their local caches, which only keep information for each
individual classifier, with an ensemble cache, which allows to transfer information from one classifier to the next.

Typically, each classifier receives a different subset of training instances Tl ⊂ T , specified by its code configuration. In
order to transfer common kernel evaluations Kab from classifier fi to another classifier f j , the cached columns have to be
transformed, since they can contain evaluations of irrelevant instances. Each Kab has to be removed, if instances a or b
are not contained in the new training set and also the possible change in the ordering of instances has to be considered in
the columns. The main difficulty is the implementation of an efficient mapping of locally used instance ids to the entire
training set and its related transformation steps, otherwise, the expected speed-up of an ensemble caching strategy is
undone.

Two ensemble cache strategies were evaluated, which are based on the local cache implementation of LIBSVM. The first
one reuses nearly all reusable cached kernel evaluations from one classifier to another. For each classifier, two mapping
tables ma(.) and mo(.) are maintained, where ma associates each local instance number with its corresponding global
instance number in order to have a unique addressing used in the transformation step. The table mo is the mapping table
from the previous learning phase. Before using the old cache for the learning of a new classifier, all cached entries are
marked (as to be converted). During querying of the cache two cases can occur:

• a cached column is queried: If the entry is marked, the conversion procedure is applied. Using the previous and
actual mapping table mo, ma, the column is transformed to contain only kernel evaluations for relevant instances,
which can be done in O(|mo| · log |mo|). Missing kernel evaluations are marked with a special symbol, which are
computed afterwards. In addition, the mark is removed.

• an uncached column is queried: If the free size of the cache is sufficient, the column is computed and normally
stored. Otherwise, beforehand, the least recently used entry is repeatedly removed until the cache has sufficient
free space.

Since the columns are converted only on demand, unnecessary conversions are avoided and their corresponding entries
are naturally replaced by new incoming kernel evaluations due to the LRU strategy. But, this tradeoff has the disadvantage
that kernel evaluations that have been computed and cached at some point earlier may have to be computed again if they
are requested later. The marked entries are carried maximally only over two iterations, otherwise it would be necessary
for each additional iteration to carry another mapping table. We denote this ensemble caching method as Short-Term
Memory (STM). One beneficial feature is the compatibility to any training scheme, in particular to the standard and the
min-redundant training scheme.

The second ensemble caching method is particularly tailored to the use with a min-redundant training scheme. It
differs from the previous one only in its transformation step. Recall that the learning phase traverses the subgraph in
preorder depth-first manner. That means that during the learning procedure only the following two cases can occur:
either the current classifier fi is the child of a subclassifier f j , or the current classifier is directly connected with the root
node.

This information can be used for a more efficient caching scheme. For the first case, the set of training instances of
fi is superset of f j , i.e. T j ⊆ Ti . That means, |T j | rows and columns can be reused and also importantly without any
costly transforming method. The columns and rows have to be simply trimmed to size |T j | for the reuse in the current
classifier. Trimming is sometimes necessary, since they can contain further kernel evaluations from previously learned
sibling nodes, i.e. nodes which share the same subclassifier f j . So, the cache for the current classifier is prepared by
removing Qab with a > |T j | ∨ b > |T j |. In the second case, we know beforehand that no single kernel evaluation can be
reused in the actual classifier. So, the cache is simply cleared. We denote this ensemble cache method as Semi-Local (SL)
cache, since it is successively extended along one path (local) and shares some subset with branches along a path (semi).

9

4 Experimental Evaluation

4.1 Experimental Setup

As we are primarily concerned with computational costs and not with predictive accuracy, we applied pre-processing
based on all available instances instead of building a pre-processing model on the training data only. First, missing values
were replaced by the average or majority value for numeric or ordinal attributes respectively. Second, all numeric values
were normalized, such that the values lie in the unit interval.

Our experiment consisted of following parameters and parameter ranges:

• 6+2 multiclass classification datasets from the UCI repository (Frank and Asuncion, 2010), where 6 relatively
small datasets in terms of instances (up to ca. 4000) were used in conjunction with LIBSVM and two large-scale
datasets, pokerhand and cov t ype consisting of 581,012 and 1,025, 010 instances, were used with Hoeffding
Trees. The number of classes lie in the range between 4 and 11.

• 3 code types: exhaustive k−level codes, exhaustive cumulative k−level codes, random codes of up to length 500
with k = 3,4 and rzp = 0.2,0.4

• 2 learn methods: min-redundant and standard training scheme

• 2 base learners: incremental learner Hoeffding Trees and batch learner LIBSVM (no parameter tuning, RBF-
kernel) for which following parameters were evaluated:

– 3 cache methods: two ensemble cache methods, namely STM and SL, and the standard local cache of
LIBSVM

– 4 cache sizes: 25%, 50%, 75%, 100% of the number of total kernel evaluations

All experiments with LIBSVM were conducted with 5-fold cross-validation and for Hoeffding Trees a training-test split of
66% to 33% was used. The parameters of the base learners were not tuned, because we were primarily interested in
their computational complexity.1

4.2 Hoeffding Trees

Table 4.1 shows a comparison between the standard training scheme and the greedy computed min-redundant scheme
with respect to the total amount of training instances. It shows that even with the suboptimal greedy procedure a
significant amount of training instances can be saved. In this evaluation, the worst case can be observed for dataset
cov t ype with 3-level exhaustive codes, for which the ratio to the standard training scheme is 22%. In absolute numbers,
this relates to processing 3.8 million training instances instead of 17.2 million. In summary, the improvements range
from 78% to 98% or in other words, 4 to 45 times less training instances are processed.

Table 4.2 shows the corresponding total training time. It shows that the previous savings w.r.t. the number of training
instances do not transfer directly to the training time. One reason is that the constant factor in the linear complexity
of Hoeffding Trees regarding the number of training instances decreases for increasing number of training instances.
Furthermore, some overhead is incurred for copying the subclassifiers before each incremental learning step. In total,
exploiting the redundancies yields a run-time reduction of about 44.6%− 85.8%.

The running-time for GSTEINER (constructing the graph and greedily finding the Steiner tree, without evaluation of the
classifiers) is depicted in Table 4.3. For the systematic code types, exhaustive and its cumulative version, the used time
is in general negligible compared to the total training time. The only exception is for dataset pokerhand with random
codes and rzp = 0.2: About 106 seconds were used and contributes therefore one-fifth to the total training time in this
case.

4.3 LibSVM

Table 4.4 shows a comparison of training times between LIBSVM and its adaptions with weight reusing and ensemble
caching strategies. M1 and M2 use the standard training scheme, where M1 is standard LIBSVM with local cache and

1 Tuning of the SVM parameters of the base learners can be relevant here because it may affect the effectiveness of reusing and caching of
models. However, this would add additional complexity to the analysis of total cost and was therefore omitted to keep the analysis simple.

10

Table 4.1: Total number of processed training instances of standard and min-redundant training scheme. The italic values
show the ratio of min-redundant training to standard training. The datasets pokerhand and cov t ype consist of 581,012
and 1,025, 010 instances respectively, from which 66% was used as training instances.

dataset standard min-redundant standard min-redundant

EXHAUSTIVE CUMULATIVE CODES

l = 3 l = 4
pokerhand 79,151,319 9,429,611 (0.119) 476,937,435 10,479,451 (0.022)

cov t ype 19,556,868 3,807,748 (0.195) 73,242,388 5,354,720 (0.073)

EXHAUSTIVE CODES

l = 3 l = 4
pokerhand 73,062,756 9,429,591 (0.129) 397,786,116 10,478,523 (0.026)

cov t ype 17,256,060 3,796,818 (0.220) 53,685,520 5,191,055 (0.097)

RANDOM CODES

rzp = 0.4 rzp = 0.2
pokerhand 258,035,711 10,205,330 (0.040) 311,051,271 8,990,547 (0.029)

cov t ype 153,519,616 6,744,692 (0.044) 95,483,532 5,300,005 (0.056)

Table 4.2: Training time in seconds. This table shows training performances of exhaustive cumulative, exhaustive and
random codes for the standard and the min-redundant learning scheme. The italic values shows the ratio of min-
redundant training to standard training.

dataset standard min-redundant standard min-redundant

EXHAUSTIVE CUMULATIVE CODES

l = 3 l = 4
pokerhand 261.27 127.33 (0.487) 1530.06 542.57 (0.355)

cov t ype 118.70 40.89 (0.344) 463.09 93.71 (0.202)

EXHAUSTIVE CODES

l = 3 l = 4
pokerhand 236.52 131.12 (0.554) 1337.00 522.18 (0.391)

cov t ype 101.50 34.65 (0.341) 330.97 83.58 (0.253)

RANDOM CODES

rzp = 0.4 rzp = 0.2
pokerhand 896.41 356.43 (0.398) 1089.99 537.11 (0.493)

cov t ype 1106.48 157.61 (0.142) 695.84 107.12 (0.154)

M2 uses the ensemble caching strategy STM. M3 and M4 utilize a min-redundant training scheme with STM and SL
respectively. The underlined values depict the best value for each dataset and code-type combination. The results
confirm that the weight reuse and ensemble caching techniques can be used to exploit code redundancies for LIBSVM.
For exhaustive codes and its cumulative variant, M4 dominates all other approaches and achieves an improvement of
31.4%− 78.4% of the training time. However, the results for random codes are not so clear.

For the datasets v owel and yeast both methods employing the min-redundant training schemes (M3 and M4) use
significantly more time. This can be explained with the relative expensive cost for generating and solving the Steiner
Tree in these cases, as depicted in Table 4.5 (89 and 52 sec for vowel and yeast). Contrary to the the results on optdigi ts,
for these datasets the tree generation and solving has a big impact on the total training time. Nevertheless, this factor is
decreasing for increasing number of instances, since the complexity of GSTEINER only depends on k and n. Besides, based
on the results with various cache sizes (cf. tables A.1, A.2 and A.3 in the Appendix), the cache size has a greater impact
on the training time for random codes than for the systematic ones. Table 4.6 shows as an example the performance for
random codes with a cache size of 75%. Notice the reduction of the training time for the different methods in comparison
to Table 4.4, where a cache size of 25% was used. M4 achieves the best efficiency increase and by subtracting the time
for generating and solving the tree, M4 dominates again all other methods.

Table 4.7 shows the number of optimization iterations of LIBSVM, which can be seen as an indicator of training
complexity. The ratio values are averaged over all datasets and show that the reuse of weights in the pseudo-incremental
learning steps lead to a reduction of optimization iterations.

Once again, the effect on the ensemble caching strategy can be seen in Table 4.8, showing a selection of the results,
here for cache sizes 25% and 75%. The first column of each block describes the number of kernel evaluation calls. The

11

Table 4.3: GSTEINER running time in seconds.
EXH. CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2
pokerhand 0.82 4.63 4.56 3.57 22.09 105.97
cov t ype 0.24 3.01 0.14 0.17 0.67 0.52

consistent reduction for min-redundant schemes M3 and M4 is accredited to the weight-reusing strategy. Interestingly,
this number is still smaller in the case of random codes, where temporary additional subclassifiers are generated, which
are not specified in the ECOC matrix, though the ratio is closer to the baseline. The second column of each block shows
the actual computed kernel evaluations. Except for random codes with rzp = 0.2 and cache size=25% all methods using
an ensemble cache strategy (M2, M3 and M4) outperform the baseline of LIBSVM with a local cache. Among these three
methods, M3 and M4 both outperform M2 in absolute terms, but not relative to the number of calls. For the special case
(random codes, rzp = 0.2, M3, M4), one can again see the increased gain of a bigger cache size for the min-redundant
training schemes.

Even though all ensemble caching strategies almost always outperform the baseline in terms of hit-miss measures, the
corresponding time complexities of Table 4.4 show that only M4, which uses a min-redundant training scheme and the
SL caching strategy, is reliably reducing the total training time. The rather costly transformation cost of STM is the cause
for the poor performance of M2 and M3.

12

Table 4.4: Training time in seconds. This table shows training performances for exhaustive cumulative, exhaustive and
random codes using a cache size of 25%.

optdigits page-blocks segment solar-flare-c vowel yeast

EXHAUSTIVE CUMULATIVE CODES

l = 3
M1 92.28± 0.36 8.73± 0.19 6.56± 0.05 3.47± 0.07 5.80± 0.02 5.43± 0.03
M2 80.70± 0.37 8.32± 0.37 6.00± 0.03 4.30± 0.08 4.90± 0.02 5.62± 0.02
M3 76.93± 0.60 6.90± 0.18 6.94± 0.05 3.13± 0.16 6.28± 0.04 5.77± 0.03
M4 53.37± 0.40 2.93± 0.27 4.19± 0.05 1.70± 0.25 3.51± 0.01 2.98± 0.02

l = 4
M1 833.12± 14.98 24.66± 0.43 33.98± 0.21 18.61± 0.35 47.61± 0.08 40.42± 0.09
M2 666.02± 1.54 21.19± 0.80 28.69± 0.14 22.94± 0.52 36.72± 0.08 41.19± 0.11
M3 680.75± 8.23 18.30± 0.51 36.91± 0.39 15.08± 1.71 51.61± 0.15 41.79± 0.10
M4 410.44± 6.08 5.32± 0.53 17.18± 0.13 8.59± 1.27 25.26± 0.06 22.01± 0.10

EXHAUSTIVE CODES

l = 3
M1 87.42± 0.35 7.63± 0.39 6.02± 0.03 3.17± 0.05 5.51± 0.03 5.11± 0.02
M2 75.28± 0.29 6.76± 0.12 5.48± 0.03 3.95± 0.07 4.58± 0.03 5.28± 0.01
M3 75.61± 1.04 7.09± 0.27 6.91± 0.04 3.13± 0.14 6.25± 0.03 5.83± 0.05
M4 53.13± 0.39 2.90± 0.21 4.13± 0.03 1.71± 0.25 3.48± 0.02 3.00± 0.02

l = 4
M1 735.76± 9.63 15.31± 0.49 27.13± 0.31 15.14± 0.28 41.78± 0.09 34.99± 0.08
M2 570.69± 1.93 12.72± 0.45 22.76± 0.13 18.72± 0.42 31.92± 0.06 35.73± 0.06
M3 646.6± 11.98 16.39± 0.44 34.24± 0.36 14.69± 1.59 49.75± 0.10 41.09± 0.10
M4 397.79± 5.07 4.76± 0.46 15.88± 0.09 8.45± 1.17 24.55± 0.10 21.71± 0.06

RANDOM CODES

rzp = 0.4
M1 1654.0± 22.6 25.7± 1.1 156.5± 1.7 34.7± 1.5 37.5± 0.6 46.9± 1.2
M2 1424.4± 32.8 24.3± 0.5 162.9± 0.8 46.1± 1.9 39.7± 0.7 52.1± 1.3
M3 1609.2± 44.3 22.6± 0.3 190.6± 3.8 39.9± 5.4 65.8± 2.3 79.1± 2.0
M4 1378.8± 34.4 5.7± 0.3 140.6± 3.0 25.9± 3.7 57.1± 2.5 64.5± 2.4

rzp = 0.2
M1 2634.6± 59.5 10.2± 0.3 123.0± 0.9 48.2± 2.0 49.6± 0.4 67.2± 1.2
M2 2281.7± 29.6 8.6± 0.5 129.7± 1.4 63.2± 3.1 53.0± 0.4 74.1± 1.3
M3 3049.0± 48.3 12.7± 0.2 157.9± 1.4 57.6± 13.3 153.0± 2.0 157.5± 2.1
M4 2594.0± 64.8 3.6± 0.2 128.5± 2.4 39.1± 9.4 144.6± 1.7 144.0± 2.2

Table 4.5: GSTEINER running time for random codes in seconds.
optdigits page-blocks segment solar-flare-c vowel yeast

rzp = 0.4 8.93 < 0.01 0.12 0.50 15.10 8.56
rzp = 0.2 53.60 < 0.01 0.12 1.26 89.34 52.80

Table 4.6: Training time in seconds of random codes using a cache size of 75%.

optdigits page-blocks segment solar-flare-c vowel yeast

RANDOM CODES, CACHE=75%
rzp = 0.4

M1 1603.4± 22.2 25.8± 0.5 153.7± 1.5 34.3± 1.5 36.0± 0.6 45.6± 1.1
M2 1317.4± 16.3 23.0± 0.4 136.9± 1.0 45.1± 1.9 35.9± 0.6 51.2± 1.3
M3 1364.6± 53.6 22.4± 0.2 148.7± 1.3 35.8± 4.5 60.9± 2.0 82.6± 2.2
M4 1162.6± 27.6 5.5± 0.3 70.3± 0.4 7.9± 0.8 42.8± 2.0 27.4± 1.2

rzp = 0.2
M1 2507.0± 33.8 10.3± 0.3 119.8± 1.2 47.6± 2.0 47.6± 0.4 65.3± 1.2
M2 1826.2± 21.3 8.5± 0.6 98.7± 0.6 61.3± 3.1 44.3± 0.4 70.6± 1.2
M3 2093.7± 38.6 12.4± 0.2 116.9± 0.8 51.0± 11.0 139.9± 1.8 163.7± 2.6
M4 1632.5± 40.2 3.9± 0.1 56.8± 0.3 10.0± 1.6 118.6± 1.6 87.7± 2.2

13

Table 4.7: Comparison of LIBSVM Optimization iterations. The values show the ratio of optimization iterations of a
min-redundant training scheme with weight reusing to standard learning.

EXH. CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2
0.673 0.576 0.768 0.745 0.701 0.773

Table 4.8: Cache efficiency and min-redundant training scheme impact: averaged mean ratio values of kernel evaluation
calls (first column) and actual computed kernel evaluations (second column) to the baseline: standard LIBSVM (M1).
The values of M1 are set to 1 and the following values describe the ratio of corresponding values of M2, M3 and M4 to
M1.

EXH.CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2

CACHE = 25%
M2 1.00 0.68 1.00 0.61 1.00 0.66 1.00 0.60 1.00 0.83 1.00 0.84
M3 0.78 0.56 0.71 0.52 0.87 0.63 0.88 0.67 0.84 0.83 0.95 1.01
M4 0.78 0.56 0.71 0.51 0.87 0.63 0.88 0.65 0.84 0.83 0.95 1.00

CACHE = 75%
M2 1.00 0.59 1.00 0.48 1.00 0.56 1.00 0.44 1.00 0.64 1.00 0.56
M3 0.78 0.43 0.71 0.34 0.87 0.47 0.88 0.42 0.84 0.41 0.95 0.47
M4 0.78 0.44 0.71 0.32 0.87 0.48 0.88 0.41 0.84 0.42 0.95 0.49

14

5 Related Work

In (Blockeel and Struyf, 2003), an efficient algorithm for cross-validation with decision trees is proposed, which tightly
integrates cross-validation into the learning procedure of trees yielding a reduction of the total complexity. This approach
also exploits training set overlaps, but focuses on a different effect, namely that in this case the generated models tend
to be similar, such that often identical test nodes are generated in the decision tree during the learning process. This
approach is not applicable here, since during the incremental learning steps, the inclusion of new classes may lead
to significant model changes. Here, a genuine incremental learner or in the case of LIBSVM different approaches are
necessary. However, the main idea, to reduce redundant computations is followed also here.

Pimenta et al. (2007) consider the task of optimizing the size of the coding matrix so that it balances effectivity and
efficiency. Our approach is meant to optimize efficiency for a given coding matrix. Thus, it can also be combined with
their approach if the resulting balanced coding matrix is code-redundant.

15

6 Conclusion

We studied the possibility of reducing the training complexity of ECOC ensembles with highly redundant codes such
as exhaustive cumulative, exhaustive and random codes. We proposed an algorithm for generating a so-called training
graph, in which edges are labeled with training cost and nodes represent (sub-)classifiers. By finding an approximate
Steiner Tree of this graph in a greedy manner, the training complexity can be reduced without changing the prediction
quality. An initial evaluation with Hoeffding Trees, as an example for an incremental learner, yielded time savings in
the range of 44.6% to 85.8%. Subsequently, we also demonstrated how support vector machines can be adapted for
this scenario by reusing weights and by employing an ensemble caching strategy. With this approach, the time savings
for LIBSVM ranged from 31.4% to 78.4%. In general, we can expect higher gains for incremental base learners whose
complexity grows more steeply with the number of training instances. The presented approach is useful for all considered
high-redundant code types, and also for random codes, for which the impact of the GSTEINER algorithm decreases with
increasing training instances. In addition, the generation of a min-redundant training scheme could be seen as a pre-
processing step, such that it is not counted or only counted once for the total training time of an ECOC ensemble, since a
generated training scheme for a particular dataset and code type can be reused and is independent of the base learner..

However, this approach has its limitations. GSTEINER can be a bottleneck for problems with a high class count, since
its complexity is O(n2 · k2) and the length n for common code types such as exhaustive codes grow exponentially in
the number of classes k. And, this work considers only highly redundant code types, which are not unproblematic.
First, usually in conjunction with ECOC ensembles, one prefers diverse classifiers, which are contrasting the redundant
codes in our sense. The more shared code configurations exist in an ensemble, the less independent are its classifiers.
Secondly, these codes are not as commonly used as the low-redundant decompositions schemes one-against-all and
one-against-one.

Acknowledgments

This work was supported by the German Science Foundation (DFG).

16

A Appendix

A.1 LibSVM Results

Table A.1: Training time in seconds of exhaustive cumulative codes with l = 3 and l = 4. For the first block (rows 1-8)
the cache size is set to 25% of the total size. The following blocks depict the values for a cache size of 50,75 and 100%.

EXHAUSTIVE CUMULATIVE CODES

optdigits page-blocks segment solar-flare-c vowel yeast

l = 3
M1 92.28± 0.36 8.73± 0.19 6.56± 0.05 3.47± 0.07 5.80± 0.02 5.43± 0.03
M2 80.70± 0.37 8.32± 0.37 6.00± 0.03 4.30± 0.08 4.90± 0.02 5.62± 0.02
M3 76.93± 0.60 6.90± 0.18 6.94± 0.05 3.13± 0.16 6.28± 0.04 5.77± 0.03
M4 53.37± 0.40 2.93± 0.27 4.19± 0.05 1.70± 0.25 3.51± 0.01 2.98± 0.02

l = 4
M1 833.12± 14.98 24.66± 0.43 33.98± 0.21 18.61± 0.35 47.61± 0.08 40.42± 0.09
M2 666.02± 1.54 21.19± 0.80 28.69± 0.14 22.94± 0.52 36.72± 0.08 41.19± 0.11
M3 680.75± 8.23 18.30± 0.51 36.91± 0.39 15.08± 1.71 51.61± 0.15 41.79± 0.10
M4 410.44± 6.08 5.32± 0.53 17.18± 0.13 8.59± 1.27 25.26± 0.06 22.01± 0.10

l = 3
M1 91.95± 0.28 8.86± 0.34 6.42± 0.04 3.43± 0.06 5.66± 0.02 5.44± 0.02
M2 81.83± 0.21 8.16± 0.25 6.04± 0.04 4.26± 0.08 4.91± 0.03 5.48± 0.03
M3 77.07± 0.98 6.96± 0.18 6.94± 0.04 2.98± 0.13 6.30± 0.02 5.87± 0.03
M4 53.49± 0.35 2.97± 0.34 4.20± 0.03 1.10± 0.04 3.54± 0.03 1.85± 0.02

l = 4
M1 830.01± 9.43 24.18± 0.38 32.92± 0.34 18.44± 0.35 46.35± 0.07 40.21± 0.16
M2 670.60± 2.83 21.77± 0.87 28.84± 0.16 22.42± 0.59 37.00± 0.09 39.60± 0.07
M3 674.78± 10.01 18.24± 0.42 36.82± 0.43 13.82± 1.49 51.67± 0.23 42.01± 0.08
M4 409.74± 4.44 5.20± 0.34 17.17± 0.13 3.65± 0.30 25.70± 0.07 10.18± 0.03

l = 3
M1 91.70± 0.20 8.82± 0.31 6.41± 0.05 3.42± 0.05 5.51± 0.03 5.35± 0.02
M2 79.64± 0.27 8.23± 0.34 6.00± 0.04 4.22± 0.10 4.89± 0.03 5.45± 0.03
M3 76.47± 0.81 6.89± 0.13 6.92± 0.04 2.97± 0.13 6.28± 0.04 5.86± 0.01
M4 52.94± 0.55 2.80± 0.04 4.19± 0.03 1.09± 0.03 3.52± 0.02 1.83± 0.03

l = 4
M1 823.97± 6.22 24.46± 0.58 32.88± 0.29 18.36± 0.32 45.8± 0.09 39.74± 0.10
M2 653.97± 2.70 21.12± 0.91 28.57± 0.12 22.18± 0.58 36.61± 0.06 38.99± 0.10
M3 664.03± 7.39 17.92± 0.44 36.81± 0.38 13.78± 1.48 51.55± 0.15 42.13± 0.10
M4 403.34± 5.69 4.99± 0.14 17.09± 0.12 3.56± 0.27 25.52± 0.05 8.84± 0.07

l = 3
M1 94.26± 0.39 8.82± 0.12 6.39± 0.04 3.41± 0.05 5.59± 0.03 5.40± 0.02
M2 82.03± 0.28 8.11± 0.27 5.98± 0.03 4.22± 0.09 4.90± 0.02 5.51± 0.04
M3 76.93± 0.90 7.05± 0.11 6.93± 0.03 3.01± 0.12 6.33± 0.04 5.94± 0.02
M4 54.00± 0.23 2.82± 0.19 4.20± 0.02 1.11± 0.03 3.58± 0.02 1.88± 0.02

l = 4
M1 832.16± 7.05 23.93± 0.55 32.62± 0.19 18.28± 0.29 46.04± 0.11 39.90± 0.07
M2 674.43± 1.59 20.66± 0.22 28.47± 0.15 22.19± 0.57 36.74± 0.11 39.07± 0.10
M3 675.52± 5.52 17.52± 0.08 36.84± 0.32 13.89± 1.50 51.97± 0.14 42.50± 0.07
M4 406.10± 5.52 4.98± 0.26 16.99± 0.13 3.69± 0.28 25.97± 0.07 9.17± 0.03

17

Table A.2: Training time in seconds of exhaustive explicit codes with l = 3 and l = 4. For the first block (rows 1-8) the
cache size is set to 25% of the total size. The following blocks depict the values for a cache size of 50, 75 and 100%.

EXHAUSTIVE EXPLICIT CODES

optdigits page-blocks segment solar-flare-c vowel yeast

l = 3
M1 87.42± 0.35 7.63± 0.39 6.02± 0.03 3.17± 0.05 5.51± 0.03 5.11± 0.02
M2 75.28± 0.29 6.76± 0.12 5.48± 0.03 3.95± 0.07 4.58± 0.03 5.28± 0.01
M3 75.61± 1.04 7.09± 0.27 6.91± 0.04 3.13± 0.14 6.25± 0.03 5.83± 0.05
M4 53.13± 0.39 2.90± 0.21 4.13± 0.03 1.71± 0.25 3.48± 0.02 3.00± 0.02

l = 4
M1 735.76± 9.63 15.31± 0.49 27.13± 0.31 15.14± 0.28 41.78± 0.09 34.99± 0.08
M2 570.69± 1.93 12.72± 0.45 22.76± 0.13 18.72± 0.42 31.92± 0.06 35.73± 0.06
M3 646.6± 11.98 16.39± 0.44 34.24± 0.36 14.69± 1.59 49.75± 0.10 41.09± 0.10
M4 397.79± 5.07 4.76± 0.46 15.88± 0.09 8.45± 1.17 24.55± 0.10 21.71± 0.06

l = 3
M1 87.46± 0.19 7.64± 0.41 5.90± 0.04 3.13± 0.05 5.39± 0.02 5.13± 0.02
M2 76.09± 0.28 6.81± 0.38 5.45± 0.03 3.87± 0.08 4.58± 0.03 5.13± 0.02
M3 75.05± 0.42 7.00± 0.31 6.89± 0.03 2.98± 0.12 6.29± 0.03 5.95± 0.02
M4 53.04± 0.08 2.82± 0.24 4.14± 0.03 1.10± 0.04 3.55± 0.02 1.90± 0.03

l = 4
M1 732.33± 6.23 15.51± 0.35 26.38± 0.22 14.87± 0.27 40.87± 0.06 34.86± 0.06
M2 582.49± 1.65 12.48± 0.59 22.52± 0.15 17.97± 0.48 31.92± 0.04 33.82± 0.06
M3 644.21± 11.06 16.24± 0.33 33.94± 0.35 13.57± 1.31 49.56± 0.11 41.76± 0.08
M4 394.8± 4.05 4.73± 0.42 15.70± 0.09 3.55± 0.26 24.62± 0.07 9.95± 0.05

l = 3
M1 87.47± 0.10 7.48± 0.23 5.88± 0.03 3.16± 0.05 5.25± 0.04 5.09± 0.03
M2 76.06± 0.19 6.95± 0.21 5.46± 0.03 3.90± 0.09 4.61± 0.01 5.15± 0.03
M3 76.83± 0.78 7.09± 0.19 6.88± 0.03 2.98± 0.13 6.30± 0.02 5.97± 0.02
M4 52.98± 0.76 2.80± 0.19 4.12± 0.04 1.12± 0.02 3.55± 0.04 1.90± 0.02

l = 4
M1 732.28± 9.55 14.99± 0.47 26.52± 0.28 15.05± 0.26 40.72± 0.11 34.64± 0.09
M2 581.33± 1.28 12.26± 0.46 22.56± 0.12 18.19± 0.47 32.08± 0.06 33.71± 0.09
M3 653.98± 8.21 15.89± 0.41 34.06± 0.30 13.6± 1.30 49.96± 0.14 42.10± 0.11
M4 396.06± 3.55 4.55± 0.20 15.73± 0.11 3.60± 0.23 24.74± 0.13 8.93± 0.05

l = 3
M1 86.62± 0.28 7.56± 0.32 5.90± 0.03 3.15± 0.04 5.20± 0.01 5.05± 0.03
M2 74.97± 0.20 6.61± 0.06 5.47± 0.03 3.89± 0.09 4.59± 0.03 5.12± 0.02
M3 75.69± 0.66 7.12± 0.25 7.03± 0.05 3.05± 0.13 6.39± 0.04 6.15± 0.01
M4 53.81± 0.39 3.01± 0.10 4.28± 0.03 1.16± 0.04 3.65± 0.02 2.08± 0.02

l = 4
M1 727.85± 9.47 15.17± 0.33 26.94± 0.22 15.10± 0.27 40.3± 0.08 34.39± 0.06
M2 567.74± 1.38 12.56± 0.45 22.81± 0.15 18.14± 0.51 31.92± 0.08 33.51± 0.09
M3 653.31± 10.18 15.93± 0.22 34.78± 0.32 13.78± 1.33 50.52± 0.21 43.47± 0.08
M4 404.88± 5.08 5.31± 0.10 16.68± 0.08 3.79± 0.27 25.52± 0.09 10.63± 0.05

18

Table A.3: Training time in seconds of random codes with rzp = 0.4 and rzp = 0.2. For the first block (rows 1-8) the cache
size is set to 25% of the total size. The following blocks depict the values for a cache size of 50, 75 and 100%.

RANDOM CODES

optdigits page-blocks segment solar-flare-c vowel yeast

rzp = 0.4
M1 1654.0± 22.6 25.7± 1.1 156.5± 1.7 34.7± 1.5 37.5± 0.6 46.9± 1.2
M2 1424.4± 32.8 24.3± 0.5 162.9± 0.8 46.1± 1.9 39.7± 0.7 52.1± 1.3
M3 1609.2± 44.3 22.6± 0.3 190.6± 3.8 39.9± 5.4 65.8± 2.3 79.1± 2.0
M4 1378.8± 34.4 5.7± 0.3 140.6± 3.0 25.9± 3.7 57.1± 2.5 64.5± 2.4

rzp = 0.2
M1 2634.6± 59.5 10.2± 0.3 123.0± 0.9 48.2± 2.0 49.6± 0.4 67.2± 1.2
M2 2281.7± 29.6 8.6± 0.5 129.7± 1.4 63.2± 3.1 53.0± 0.4 74.1± 1.3
M3 3049.0± 48.3 12.7± 0.2 157.9± 1.4 57.6± 13.3 153.0± 2.0 157.5± 2.1
M4 2594.0± 64.8 3.6± 0.2 128.5± 2.4 39.1± 9.4 144.6± 1.7 144.0± 2.2

rzp = 0.4
M1 1628.3± 25.2 26.2± 0.8 156.2± 1.1 34.6± 1.4 36.8± 0.7 46.3± 1.2
M2 1337.3± 25.7 24.0± 1.0 143.3± 1.0 45.7± 1.9 37.3± 0.7 51.8± 1.3
M3 1431.6± 22.2 22.2± 0.5 156.7± 1.6 36.2± 4.6 62.7± 2.1 80.5± 1.9
M4 1174.1± 21.0 5.8± 0.2 78.3± 1.0 8.1± 0.8 45.9± 2.2 50.8± 2.4

rzp = 0.2
M1 2581.3± 46.5 10.3± 0.6 120.9± 1.3 47.9± 2.0 48.6± 0.4 66.3± 1.2
M2 1832.1± 19.5 8.7± 0.3 105.1± 0.7 62.0± 3.2 48.8± 0.4 72.6± 1.3
M3 2118.8± 54.5 12.6± 0.3 125.7± 1.0 51.7± 11.3 144.5± 1.9 158.4± 2.0
M4 1663.3± 43.8 3.8± 0.3 64.8± 1.3 10.3± 1.5 126.6± 1.8 124.3± 2.0

rzp = 0.4
M1 1603.4± 22.2 25.8± 0.5 153.7± 1.5 34.3± 1.5 36.0± 0.6 45.6± 1.1
M2 1317.4± 16.3 23.0± 0.4 136.9± 1.0 45.1± 1.9 35.9± 0.6 51.2± 1.3
M3 1364.6± 53.6 22.4± 0.2 148.7± 1.3 35.8± 4.5 60.9± 2.0 82.6± 2.2
M4 1162.6± 27.6 5.5± 0.3 70.3± 0.4 7.9± 0.8 42.8± 2.0 27.4± 1.2

rzp = 0.2
M1 2507.0± 33.8 10.3± 0.3 119.8± 1.2 47.6± 2.0 47.6± 0.4 65.3± 1.2
M2 1826.2± 21.3 8.5± 0.6 98.7± 0.6 61.3± 3.1 44.3± 0.4 70.6± 1.2
M3 2093.7± 38.6 12.4± 0.2 116.9± 0.8 51.0± 11.0 139.9± 1.8 163.7± 2.6
M4 1632.5± 40.2 3.9± 0.1 56.8± 0.3 10.0± 1.6 118.6± 1.6 87.7± 2.2

rzp = 0.4
M1 1647.5± 26.7 26.6± 0.9 159.0± 0.9 35.7± 1.5 36.9± 0.7 47.7± 1.2
M2 1339.9± 22.6 24.5± 0.6 145.6± 1.4 46.5± 2.0 36.7± 0.6 52.6± 1.3
M3 1417.0± 45.0 22.7± 0.3 154.4± 1.7 36.4± 4.5 62.4± 2.0 85.5± 2.3
M4 1117.5± 27.6 5.5± 0.3 74.0± 0.8 8.0± 0.8 43.1± 1.9 21.3± 0.3

rzp = 0.2
M1 2568.4± 45.0 10.9± 0.2 124.4± 0.5 49.6± 2.0 49.1± 0.4 68.7± 1.3
M2 1836.6± 20.2 8.8± 0.5 105.3± 0.9 63.2± 3.2 44.9± 0.3 71.5± 1.1
M3 2052.3± 110.0 13.0± 0.2 121.0± 0.7 51.9± 10.9 143.6± 2.6 168.9± 2.5
M4 1600.0± 56.3 3.5± 0.1 59.6± 0.5 10.2± 1.6 119.3± 1.6 65.1± 0.9

19

Table A.4: Accuracy performance of ECOC with various code types.

optdigits page-blocks segment solar-flare-c vowel yeast

EXHAUSTIVE CUMULATIVE CODES

l = 3
97.24± 0.37 91.63± 0.32 88.31± 0.88 85.16± 0.12 29.09± 4.89 45.35± 2.11

l = 4
97.14± 0.29 91.63± 0.32 88.14± 0.88 85.16± 0.12 27.37± 4.20 45.21± 2.11

EXHAUSTIVE CODES

l = 3
97.17± 0.40 91.63± 0.32 88.61± 1.14 85.16± 0.12 31.01± 2.73 45.28± 2.04

l = 4
97.03± 0.32 91.39± 0.30 88.48± 0.96 85.16± 0.12 27.17± 4.09 45.08± 2.10

RANDOM CODES

rzp = 0.4
96.23± 0.60 91.39± 0.30 86.97± 1.18 85.16± 0.12 34.65± 4.45 48.99± 3.76

rzp = 0.2
96.21± 0.74 91.08± 0.25 87.10± 1.18 85.16± 0.12 38.69± 3.95 49.52± 4.17

20

Bibliography

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for margin classifiers.
Journal of Machine Learning Research (JMLR), 1:113–141, 2000. 3, 4

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis http://sourceforge.net/projects/moa-
datastream/. Journal of Machine Learning Research (JMLR), 2010. 8

H. Blockeel and J. Struyf. Efficient algorithms for decision tree cross-validation. Journal of Machine Learning Research
(JMLR), 3:621–650, 2003. 15

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm. 8

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial
Intelligence Research (JAIR), 2:263–286, 1995. 3, 4

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 71–80, Boston, MA, USA, 2000. ACM. 8

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.ics.uci.edu/ml. 10

J. H. Friedman. Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford
University, Stanford, CA, 1996. 3

J. Fürnkranz. Round robin classification. Journal of Machine Learning Research (JMLR), 2:721–747, 2002. 3

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods - Support Vector Learning, chapter 11, pages 169–184. MIT Press, Cambridge, MA, 1999. 9

S.-H. Park and J. Fürnkranz. Efficient decoding of ternary error-correcting output codes for multiclass classification.
In W. L. Buntine, M. Grobelnik, D. Mladenić, and J. Shawe-Taylor, editors, Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD-09), volume Part II,
pages 189–204, Bled, Slovenia, 2009. Springer-Verlag. 3

E. Pimenta, J. Gama, and A. Carvalho. Pursuing the best ecoc dimension for multiclass problems. In D. Wilson and
G. Sutcliffe, editors, FLAIRS Conference, pages 622–627. AAAI Press, 2007. 15

R. Wong. A dual ascent approach for steiner tree problems on a directed graph. Mathematical Programming, 28(3):
271–287, oct 1984. 6

21

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml

	1 Introduction
	2 Error-Correcting Output Codes
	3 Redundancies within ECOC
	3.1 Code Redundancy
	3.2 Exploitation of Code Redundancies
	3.2.1 Generation of Training Graph
	3.2.2 Greedy Computing of Steiner Trees

	3.3 Incremental Learning with Training Graph
	3.4 SVM Learning with Training Graph
	3.4.1 Reuse of Weights
	3.4.2 Cache Strategy

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Hoeffding Trees
	4.3 LibSVM

	5 Related Work
	6 Conclusion
	A Appendix
	A.1 LibSVM Results

