
Technische Universität Darmstadt
Knowledge Engineering Group

Hochschulstrasse 10, D-64289 Darmstadt, Germany

http://www.ke.informatik.tu-darmstadt.de

Technical Report TUD–KE–2007–04

Eyke Hüllermeier, Johannes Fürnkranz

On Minimizing the Position Error
in Label Ranking

A short version of this paper appeared as:
Eyke Hüllermeier, Johannes Fürnkranz. On Minimizing the Position Error in Label Ranking,

Proceedings of the 18th European Conference on Machine Learning (ECML-07),
Springer-Verlag, 2007.

On Minimizing the Position Error in Label Ranking

Eyke Hüllermeier eyke@mathematik.uni-marburg.de

Department of Mathematics and Computer Science, Marburg University

Johannes Fürnkranz juffi@ke.informatik.tu-darmstadt.de

Department of Computer Science, TU Darmstadt

Abstract

Conventional classification learning allows a classifier to make a one shot decision in
order to identify the correct label. However, in many practical applications, the problem is
not to give a single estimation, but to make repeated suggestions until the correct target
label has been identified. Thus, the learner has to deliver a label ranking, that is, a ranking
of all possible alternatives. In this paper, we discuss a loss function, called the position
error, which is suitable for evaluating the performance of a label ranking algorithm in this
setting. Moreover, we propose “ranking through iterated choice”, a general strategy for
extending any multi-class classifier to this scenario. Its basic idea is to reduce label ranking
to standard classification by successively predicting a most likely class label and retraining
a model on the remaining classes. We demonstrate empirically that this procedure does
indeed reduce the position error in comparison with a conventional approach that ranks
the classes according to their estimated probabilities. Besides, we also address the issue of
implementing ranking through iterated choice in a computationally efficient way.

1. Introduction

The main interest in the context of classification learning typically concerns the correctness
of a prediction: A prediction is either correct or not and, correspondingly, is rewarded in the
former and punished in the latter case. The arguably best-known loss function reflecting
this problem conception is the misclassification or error rate of a classifier, that is, the
probability of making an incorrect prediction. In many cases, however, error rate and
variants thereof are not ideal performance measures. Just to given an example, in ordinal
classification, where the class labels are taken from a totally ordered scale, the classification
rate does not distinguish between a prediction A which is wrong and a prediction B which
is even more wrong since, according to the ordering of the labels, A is between B and the
true target label [10]. This is related to cost-sensitive learning, with the difference that one
is not given numerical cost values but only knows that certain misclassifications are more
expensive than others.

In this paper, we are interested in another scenario which motivates a generalization
of the misclassification rate. As an illustration, consider a fault detection problem which
consists of identifying the cause for the malfunctioning of a technical system. Suppose that
a classifier has been trained to predict the true cause, e.g., on the basis of certain sensor
measurements serving as input attributes (see, e.g., [1] for an application of that type).
Now, if it turned out that a predicted cause is not correct, one cannot simply say that the

1

classification process terminated with a failure. Instead, since the cause must eventually be
found, alternative candidates must be tried until the problem is fixed.

What is needed in applications of this type is not only a prediction in the form of a
single class label but instead a ranking of all candidate labels. In fact, a ranking suggests a
simple (trial and error) search process, which successively tests the candidates, one by one,
until the correct cause is found. An obvious measure of the quality of a predicted ranking
is a loss function that counts the number of futile trials made before the target label is
identified. In Section 2 of this paper, we shall look at measures of that type in more detail.

Apart from a suitable loss function, one needs a learner that produces label rankings as
outputs. In this regard, the most obvious idea is to use a scoring classifier which outputs
a score for each label, which is then used for sorting the labels. In particular, one may
use a probabilistic classifier that estimates, for every candidate label λ, the conditional
probability of λ given the input ~x. Intuitively, probabilistic ranking (PR), i.e., ordering the
labels according to their respective probabilities of being the target label, appears to be a
reasonable approach.

In Section 3, we show that this approach is indeed optimal in a particular sense. De-
spite this theoretical optimality, however, an implementation of the approach turns out to
be intricate in practice, mainly because estimating conditional probabilities is a difficult
problem. In fact, it is well-known that most classification algorithms commonly used in the
field of machine learning do not produce accurate probability estimates, even though they
may have a strong hit rate. This motivates an alternative approach, to be introduced in
Section 3.2, that we call ranking through iterated choice (RIC). The idea of this method is to
employ a (multi-class) classifier as a choice function which, given a set of candidate labels
and related training data, selects the most promising among these candidates. Roughly
speaking, a label ranking is then obtained by repeated classification: In every iteration, the
learning algorithm removes this label, and retrains a classifier for the remaining labels. Due
to the retraining, RIC obviously comes along with an increased complexity. To overcome
this problem, an efficient implementation of this approach, which is based on pairwise de-
composition techniques, is proposed in Section 3.3. Experimental results, showing that RIC
does indeed improve accuracy in comparison with PR, are presented in Section 4. Finally,
we conclude the paper with a brief summary.

2. Label Ranking and Position Error

In this section, we will first formally define the label ranking problem (Section 2.1), discuss
position error (Section 2.2) and some extensions (Section 2.3) as loss functions for this type
of problem. We also briefly recapitulate related work in ranking (Section 2.4).

2.1 Label Ranking

We consider a learning problem which involves an input space X and an output set L =
{λ1 . . . λm} consisting of a finite number of class labels. Assuming X × L to be endowed
with a probability measure, one can associate a vector

p~x = (P(λ1 | ~x) . . . P(λm | ~x)) (1)

2

of conditional class probabilities with every input ~x ∈ X , where P(λi | ~x) = P(λi = λ~x)
denotes the probability that ~x belongs to class λi.

Given a set of training examples D = {(~x1, λ~x1
) . . . (~xn, λ~xn

)} ⊂ (X × L)n, the learning
problem is to induce a “label ranker”, which is a function that maps any input ~x to a total
order of the class labels, i.e., a complete, transitive, and asymmetric relation ≻~x on L; here,
λi ≻~x λj means that λi precedes λj in the ranking associated with ~x. Formally, a ranking
≻~x can be identified with a permutation τ~x of {1 . . . m}, e.g., the permutation τ~x satisfying

λ
τ−1

~x
(1) ≻~x λ

τ−1

~x
(2) ≻~x . . . ≻~x λ

τ−1

~x
(m). (2)

Here, τ~x(i) = τ~x(λi) is the position of label λi in the ranking.

2.2 The Position Error

So far, we introduced the problem of predicting a label ranking in a formal way, but did
not discuss the semantics of a predicted ranking. In fact, one should realize that such a
ranking can serve different purposes. Needless to say, this point is of major importance for
the evaluation of a predicted ranking.

In hitherto existing approaches to label ranking [7, 5], the quality of a prediction is
measured in terms of a similarity or distance measure for rankings; for example, a commonly
used measure for comparing a predicted ranking (permutation) τ~x and a true ranking τ∗

~x is
the Spearman rank correlation. Measures of that type take the position of all labels into
account, which means, e.g., that swapping the positions of the two bottom labels is as bad
as swapping the positions of the two top labels.

Measures such as Spearman rank correlation quantify, say, the ranking error of a predic-
tion. In this paper, we are interested in an alternative type of measure, which is especially
motivated by practical performance tasks where a prediction is used in order to support the
search for a true target label. As outlined in the introduction, an obvious loss function in
this context is the number of labels preceding that label in the predicted ranking. Subse-
quently, a deviation of the predicted target label’s position from the top-rank will be called
a position error. Note that, while a ranking error relates to the comparison of two complete
label rankings τ~x and τ∗

~x , the position error refers to the comparison of a label ranking τ~x

and a true class λ~x.
More specifically, we define the position error of a prediction τ~x as

PE(τ~x, λ~x)
df
= τ~x(λ~x),

i.e., by the position of the target label λ~x in the ranking τ~x. To compare the quality of
rankings of different problems, it is useful to normalize the position error for the number of
labels. This normalized position error is defined as

NPE(τ~x, λ~x)
df
=

τ~x(λ~x) − 1

m − 1
∈ {0, 1/(m − 1) . . . 1}. (3)

The position error of a label ranker is the expected position error of its predictions, where
the expectation is taken with respect to the underlying probability measure on X ×L.

Compared with the conventional misclassification rate, the position error differentiates
between “bad” predictions in a more subtle way: In the case of a correct classification, both

3

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 1: Exemplary C-distributions for two classifiers.

measures coincide. In the case of a wrong top label, however, the misclassification rate is
1, while the position error assumes values between 1 and m, depending on how “far away”
the true target label actually is.

As most performance measures, the position error is a simple scalar index. To charac-
terize a label ranking algorithm in a more elaborate way, an interesting alternative is to
look at the mapping

C : {1 . . . m} → R, k 7→ P (τ~x(λ~x) ≤ k) . (4)

According to its definition, C(k) is the probability that the target label is among the top
k labels in the predicted ranking. In particular, C(1) corresponds to the conventional
classification rate. Moreover, C(·) is monotone increasing, and C(m) = 1. Formally, the
mapping (4) is nothing else than the cumulative probability function of a random variable,
namely the position of the target label, and the position error is the corresponding expected
value. Of course, on the basis of the C-distribution (4), only a partial order can be defined
on a class of learning algorithms: Two learners are incomparable in the case of intersecting
C-distributions. Fig. 1 shows an example of that kind. The first learner (solid curve) is
a good classifier, as it has a high classification rate. Compared with the second learner
(dashed curve), however, it is not a good ranker, as its C-distribution has a rather flat
slope.

2.3 Extensions of the Position Error

Depending on the concrete application scenario, various extensions and generalizations of
the position error are conceivable. For example, imagine that, for what reason ever, it is
essential to have the target label among the top k candidates in a predicted ranking. This
goal might be captured most easily by means of a simple 0/1-loss function which yields 0
if PE(τ~x, λ~x) ≤ k and 1 otherwise. More generally, one can use a (non-decreasing) weight
function w : {1 . . . m} → R and define the following weighted (transformed) version of the
position error:

PE(τ~x, λ~x)
df
= w (τ~x(λ~x)) .

4

Obviously, the standard position error is obtained for w(i) ≡ i, while the above 0/1-loss is
recovered for the special case where w(·) is given by w(i) = 0 for i ≤ k and w(i) = 1 for
i > k. Moreover, the normalized position error (3) can be modeled by the weighting scheme
w(i) = (i − 1)/m.

Another interesting extension is related to the idea of cost-sensitive classification. In this
respect, one usually associates a cost-value with each pair of class labels (λi, λj), reflecting
the cost incurred when erroneously predicting λi instead of λj. In the context of our scenario,
it makes sense to associate a cost value c(i) with each individual label λi, reflecting the cost
for verifying whether or not λi is the correct label. Then, the cost induced by a predicted
label ranking τ~x is given by the cost for testing the target label plus the labels preceding
the target in the ranking:

τ~x(λ~x)∑

i=1

c(τ−1
~x (i)).

Finally, we note that the idea of the position error can of course be generalized to multi-
label (classification) problems which assume several instead of a single target label for each
instance. In this connection, it makes a great difference whether one is interested in having
at least one of the targets on a top rank (e.g., since finding one solution is enough), or
whether all of them should have high positions (resp. none of them should be ranked low).
In the latter case, it makes sense to count the number of non-target labels ranked above
the lowest target label (an application of that type has recently been studied in [3]), while
in the former case, one will look at the number of non-target labels placed before the
highest-ranked target label.

2.4 Related Work on Ranking

Before proceeding, we briefly comment on related work on ranking in the field of machine
learning, especially since the term “ranking” is used in different ways in the literature. As
mentioned previously, the problem of label ranking has already been addressed in other
works, albeit within a different problem setting (minimizing a ranking error versus mini-
mizing a position error). Even though we use the same name for both settings, they should
be well distinguished [8].

Alternatively, the term “ranking” has been used in the sense of object ranking or “learn-
ing to order things” (see, e.g., [2]). Here, the problem is to learn a function that, given a
subset of objects O from a reference set X as input, outputs a ranking of these objects.
Training data typically consists of exemplary pairwise preferences of the form ~x ≻ ~x′, with
~x, ~x′ ∈ X . As a key difference between object and label ranking, note that the latter as-
sociates a ranking of a fixed number of labels with every instance ~x, whereas the former is
interested in ranking the instances themselves.

Yet another use of the term “ranking”, which is less related to this work, refers to order-
ing of classified examples (in the dichotomous case) according to the scores they received
[9]: The higher (lower) the score, the more safely an example can be classified as positive
(negative). A good ranker, in this sense, is a classifier that well separates between positive
and negative examples, i.e., that systematically ranks positive examples ahead of negative
ones. This type of ranking performance has been studied in the context of ROC analysis.

5

3. Minimizing the Position Error

What kind of ranking procedure should be used in order to minimize the risk of a predicted
ranking with respect to the position error as a loss function? As mentioned before, an
intuitively plausible idea is to order the candidate labels λ according to their probability
P(λ = λ~x) of being the target label. In fact, this idea is not only plausible but also provably
correct. Even though the result is quite obvious, we state its formally as a theorem.

Theorem 1 Given a query instance ~x ∈ X , ranking the labels λ ∈ L according to their
(conditional) probabilities of being the target class λ~x yields a risk minimizing prediction
with respect to the position error (3) as a loss function. That is, the expected loss

E(τ~x) =
1

m − 1

m∑

i=1

(i − 1) · P (τ~x(λ~x) = i)

becomes minimal for any ranking ≻~x such that P(λi = λ~x) > P(λj = λ~x) implies λi ≻~x λj .

Proof: This result follows almost by definition. In fact, note that we have

E(τ~x) ∝
m∑

i=1

P (τ~x(λ~x) > i)

and that, for each position i, the probability to excess this position when searching for the
target λ~x is obviously minimized when ordering the labels according to their (conditional)
probabilities. � �

3.1 Conventional Conditioning

According to the above result, the top rank (first position) should be given to the label λ⊤

for which the estimated probability is maximal. Regarding the second rank, recall the fault
detection metaphor, where the second hypothesis for the cause of the fault is only tested in
case the first one turned out to be wrong. Thus, when having to make the next choice, one
principally has additional information, namely that λ⊤ was not the correct label. Taking this
information into account, the second rank should not simply be given to the label with the
second highest probability according to the original probability measure, say, P1(·) = P(·),
but instead to the label that maximizes the conditional probability P2(·) = P(· |λ~x 6= λ⊤)
of being the target label given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) may appear meaningless from a ranking point
of view, since standard probabilistic conditioning yields

P2(λ) =
P1(λ)

1 − P1(λ⊤)
∝ P1(λ) (5)

for λ 6= λ⊤, and therefore does not change the order of the remaining labels. And indeed,
in case the original P(·) is a proper probability measure and conditioning is performed
according to (5), the predicted ranking will not be changed at all.

6

3.2 Empirical Conditioning

One should realize, however, that standard conditioning is not an incontestable updating
procedure in our context, simply because P1(·) is not a “true” probability measure over the
class labels. Rather, it is only an estimated measure coming from a learning algorithm,
perhaps one which is not a good probability estimator. In fact, it is well-known that
most machine learning algorithms for classification perform rather poorly in probability
estimation, even though they may produce good classifiers. Thus, it seems sensible to
perform “conditioning” not on the measure itself, but rather on the learner that produced
the measure. What we mean by this is retraining the learner on the original data without
the λ⊤-examples, an idea that could be paraphrased as “empirical conditioning”.

This type of conditioning depends on the data D and the model assumptions, that is,
the hypothesis space H from which the classifier is taken. To emphasize this dependence
and, moreover, to indicate that it concerns an estimated (“hat”) probability, the conditional
measure P2(·) could be written more explicitly as

P2(·) = P̂(· |λ~x 6= λ⊤,D,H).

To motivate the idea of empirical conditioning, suppose that the estimated probabilities
come from a classification tree. Of course, the original tree trained with the complete data
will be highly influenced by λ⊤-examples, and the probabilities assigned by that tree to the
alternatives λ 6= λ⊤ might be inaccurate. Retraining a classification tree on a reduced set
of data might then lead to more accurate probabilities for the remaining labels, especially
since the multi-class problem to be solved has now become simpler (as it involves fewer
classes).

Fig. 2 shows a simpler example, where the hypothesis space H is given by the class of
decision stumps (univariate decision trees with only one inner node, i.e., axis-parallel splits
in the case of numerical attributes). Given the examples from three classes (represented,
respectively, by the symbols ⋄, ⋆, and •), the best model corresponds to the split shown in
the left picture. By estimating probabilities through relative frequencies in the leaf nodes
of the decision stump, one derives the following estimates for the query instance, which
is marked by a ⊕ symbol: P̂(⋄ |⊕) = 12/15, P̂(⋆ | ⊕) = 2/15, P̂(• |⊕) = 1/15; thus, the
induced ranking is given by ⋄ ≻ ⋆ ≻ •. Now, suppose that the top label ⋄ turned out to be
an incorrect prediction. According to the above ranking (and probabilistic conditioning),
the next label to be tested would be ⋆. However, when fitting a new model to the training
data without the ⋄-examples, the preference between ⋆ and • is reversed, because the
query instance is now located “on the • -side” of the decision boundary. Roughly speaking,
conditioning by “taking a different look” at the data, namely a look that suppresses the
⋄ examples, gives a quite different picture (shown on the right-hand side of Fig. 2) of the
situation. In fact, one should realize that, in the first model, the preference between ⋆ and
• is strongly biased by the ⋄-examples: The first decision boundary is optimal only because
it classifies all ⋄-examples correctly, a property that looses importance once it turned out
that ⋄ is not the true label of the query.

According to the above idea, a classifier is used as a choice function: Given a set of poten-
tial labels with corresponding training data (and a new query instance ~x), it selects the most
likely candidate among these labels. We refer to the process of successively selecting alterna-
tives by estimating top-labels from (conditional) probability measures P1(·), P2(·) . . . Pm(·)

7

⋄

⋄
⋄
⋄

⋄⋄

⋄
⋄

⋄
⋄

⋄

⋄

⋆

⋆

⋆

⋆

⋆

•

•

•

•⊕

⋆

⋆

⋆

⋆

⋆

•

•

•

•⊕

Figure 2: Example of empirical conditioning: The optimal model (decision stump) for the
complete training data (left) and the data omitting the examples of the top label
(⋄).

as ranking through iterated choice (RIC). As an important advantage, note that this ap-
proach can be used to turn any multi-class classifier into a label ranker. In principle, it is
not required that a corresponding classifier outputs a score, or even a real probability, for
every label. In fact, since only a simple decision in favor of a single label has to be made in
each iteration, any classifier is good enough. In this regard, let us note that, for the ease of
exposition, the term “probability” will subsequently be used in a rather informal manner.

Regarding its effect on label ranking accuracy, one may expect the idea of RIC to produce
two opposite effects:

• Information loss: In each iteration, the size of the data set to learn from becomes
smaller.

• Simplification: Due to the reduced number of classes, the learning problems become
simpler in each iteration.

The first effect will clearly have a negative influence on generalization performance, as
a reduction of data comes along with a loss of information. In contrast to this, the second
effect will have a positive influence: The classifiers will become increasingly simple, because
it can be expected that the decision boundary for separating m classes is more complex
than the decision boundary for separating m′ < m classes of the same problem. The hope
is that, in practice, the second (positive) effect will dominate the first one.

3.3 Efficient Implementation

An obvious disadvantage of RIC concerns its computational complexity. In fact, since
empirical conditioning essentially means classifying on a subset of L, the number of models
needed in (potentially) of the order 2|L|. To overcome this problem, we propose the use of
pairwise decomposition techniques.

The idea of pairwise learning is well-known in the context of classification [4], where it
allows one to transform a polychotomous classification problem, i.e., a problem involving
m > 2 classes L = {λ1 . . . λm}, into a number of binary problems. To this end, a separate

8

model (base learner) Mij is trained for each pair of labels (λi, λj) ∈ L, 1 ≤ i < j ≤ m; thus,
a total number of m(m − 1)/2 models is needed. Mij is intended to separate the objects
with label λi from those having label λj . Depending on the classifier used, an output Mij(~x)
can be interpreted, e.g., as the conditional probability

pij = P (λ~x = λi |λ~x ∈ {λi, λj}, ~x)

In a second step, an estimation of the probability vector (1), i.e., of the individual prob-
abilities pi = P(λ~x = λi | ~x), has to be derived from these pairwise probabilities. To this
end, different techniques have been developed (e.g., [6]). Here, we resorted to the approach
proposed in [11], which derives the pi as a solution of a system of linear equations, S, that
includes one equation for every label.

RIC can then be realized as follows: First, the aforementioned system of linear equations
is solved, and the label λi with maximal probability pi is chosen as the top-label λ⊤. This
label is then removed, i.e., the corresponding variable pi and its associated equation are
deleted from S. To find the second best label, the same procedure is then applied to the
reduced system S′ thus obtained, i.e., by solving a system of m − 1 linear equations and
m − 1 variables. This process is iterated until a full ranking has been constructed.

This approach reduces the training effort from an exponential to a quadratic number of
models. Roughly speaking, a classifier on a subset L′ ⊆ L of classes is efficiently assembled
“on the fly” from the corresponding subset of pairwise models {Mij |λi, λj ∈ L′}. Or,
stated differently, the training of classifiers is replaced by the combination of associated
binary classifiers.

The hope that empirical conditioning improves accuracy in comparison with conven-
tional probabilistic conditioning is essentially justified by the aforementioned simplification
effect of RIC. Note that this simplification effect is also inherently present in pairwise learn-
ing. Here, the simplification due to a reduction of class labels is already achieved at the very
beginning and, by decomposing the original problem into binary problems, carried to the
extreme. Thus, if the simplification effect is indeed beneficial in the original version of RIC,
it should also have a positive influence in the pairwise implementation (RIC-P). These are
exactly the two conjectures to be investigated empirically in the next section: (i) Empirical
conditioning (RIC) pays off with respect to accuracy, and (ii) the increased efficiency of the
pairwise implementation, RIC-P, is achieved without sacrificing this gain in accuracy.

4. Empirical Results

In order to investigate the practical usefulness of empirical conditioning and the related RIC
procedure, we compare the corresponding strategy to the most obvious alternative, namely
ordering the class labels right away according to the respective probabilities produced by a
multi-class classifier (probabilistic ranking, PR). So, given any multi-class classifier, capable
of producing such probabilities, as a base learner, we consider the following three learning
strategies:

• PR: A ranking is produced by applying the base learner to the complete data set
only once and ordering the class labels according to their probabilities.

9

• RIC: This version refers to the ranking through iterated choice procedure outlined in
Section 3.2, using the multi-class classifier as a base learner.

• RIC-P: This is the pairwise implementation of RIC as introduced in Section 3.3
(again using as base learners the same classifiers as RIC and PR).

In connection with selecting the top-label or ordering the labels according to their prob-
ability, ties are always broken through coin flipping.

Table 1 shows the results that we obtained for a number of benchmark data sets from
the UCI repository and the StatLib archive1, using two widely known machine learning
algorithms as base learners: C4.5 and Ripper. For comparison purpose, we also derived
results for the naive Bayes (NB) classifier, as this is one of the most commonly used “true”
probabilistic classifiers. Note that, since conditional probabilities in NB are estimated
individually for each class, empirical conditioning is essentially the same as conventional
conditioning, i.e., RIC is equivalent to PR; this is why the results for RIC and RIC-P are
omitted.

1. http://www.ics.uci.edu/∼mlearn, http://stat.cmu.edu/

Table 1: Position error for conventional probabilistic ranking (PR), ranking through iter-
ated choice (RIC), and its pairwise implementation (RIC-P), using C4.5, Ripper,
and naive Bayes as base learners.

C4.5 Ripper NB
data m PR RIC RIC-P PR RIC RIC-P PR

abalone 28 4,650 4,004 3,552 4,667 4,358 3,500 4,346
anneal 6 1,023 1,028 1,024 1,031 1,028 1,017 1,150
audiology 24 2,310 2,186 3,190 2,394 3,274 3,270 3,102
autos 7 1,273 1,293 1,502 1,449 1,376 1,449 1,771
balance-scale 3 1,397 1,326 1,294 1,406 1,325 1,256 1,170
glass 7 1,547 1,486 1,449 1,612 1,486 1,463 1,855
heart-c 5 1,231 1,231 1,224 1,218 1,218 1,218 1,165
heart-h 5 1,197 1,197 1,197 1,187 1,187 1,187 1,16
hypothyroid 4 1,005 1,007 1,008 1,012 1,011 1,007 1,054
iris 3 1,073 1,053 1,053 1,067 1,073 1,073 1,047
lymph 4 1,270 1,250 1,236 1,284 1,277 1,297 1,189
primary-tumor 22 4,254 3,764 3,531 4,478 4,316 3,472 3,248
segment 7 1,135 1,042 1,042 1,131 1,075 1,060 1,258
soybean 19 1,205 1,113 1,085 1,220 1,123 1,073 1,136
vehicle 4 1,411 1,309 1,313 1,489 1,449 1,343 1,831
vowel 11 2,314 1,274 1,309 2,501 1,516 1,423 1,555
zoo 7 1,238 1,099 1,149 1,307 1,327 1,188 1,069
letter 26 2,407 1,279 1,202 2,168 1,375 1,188 2,515

10

Table 2: Win/loss statistics for each pair of methods, using C4.5 (left) and Ripper (right)
as base learners.

PR RIC RIC-P PR RIC RIC-P

PR — 3/13 4/13 — 3/13 3/12
RI 13/3 — 7/8 13/3 — 2/13
RIC-P 13/4 8/7 — 12/3 13/2 —

For each data set and each method we estimated the mean (absolute) position error
using leave-one-out cross validation, except for the data set letter, for which we used the
predefined separation into training and test data. The results are summarized in Table 1.

From the win-loss statistics for NB in comparison with PR using, respectively, C4.5
(10/8) and Ripper (10/8), there is no visible difference between these multi-class classifiers
in terms of label ranking accuracy. Important are the win-loss statistics summarized in
Table 2. These results perfectly support the two conjectures raised above. First, RIC
significantly outperforms PR: According to a simple sign test for the win-loss statistic, the
results are significant at a level of 2%. Second, RIP-P is fully competitive to RIC (and
actually shows a better performance in the case of Ripper as a base learner).

5. Concluding Remarks

In the context of the label ranking problem, an interesting and practically relevant exten-
sion of conventional classification, we have discussed the position error as an alternative
loss function. To minimize this loss function, we proposed ranking through iterated choice
(RPC), a strategy that essentially reduces label ranking to repeated classification. In each
iteration, RPC performs empirical conditioning, which in turn requires the retraining of
classifiers. To avoid the need for training a potentially large number of models, we used a
pairwise implementation in which retraining is done implicitly, namely by combining the
outputs of certain pairwise models.

In an experimental study, RPC was compared to standard probabilistic ranking, where
the class labels are ranked according to the originally estimated probabilities. Our results
suggest that retraining (empirical conditioning) does indeed reduce the expected loss when
using standard multi-class classifiers as base learners, and that this gain in accuracy is
preserved by the pairwise implementation.

This work can be extended in various directions, both theoretically and practically. For
example, one important aspect of future work is to generalize our framework to variants of
the position error as outlined in Section 2.4.

Acknowledgements

This research is supported by the German Science Foundation (DFG).

11

References

[1] C. Alonso, JJ. Rodŕıguez, and B. Pulido. Enhancing consistency based diagnosis with
machine learning techniques. In Current Topics in AI, vol. 3040 of LNAI, 312–321.
Springer, 2004.

[2] W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

[3] K. Crammer and Y. Singer. A family of additive online algorithms for category ranking.
Journal of Machine Learning Research, 3:1025–1058, 2003.

[4] J. Fürnkranz. Round robin classification. J. of Mach. Learn. Res., 2:721–747, 2002.

[5] J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In Proc.
ECML-03, Cavtat-Dubrovnik, Croatia, 2003.

[6] T. Hastie and R. Tibshirani. Classification by pairwise coupling. In Proc. NIPS-97,
pages 507–513, 1998.

[7] S. Har-Peled, D. Roth, and D. Zimak. Constraint classification: a new approach to
multiclass classification. In Proc. ALT-02, pp. 365–379, Lübeck, 2002.

[8] E. Hüllermeier and J. Fürnkranz. Learning label preferences: Ranking error versus
position error. In Proc. IDA–2005, Madrid, 2005.

[9] F. Provost and P. Domingos. Tree induction for probabilistic ranking. Machine Learn-
ing, 52(3):199–215, 2003.

[10] J.D.M. Rennie and N. Srebro. Loss Functions for Preference Levels: Regression with
Discrete Ordered Labels. Proc. IJCAI Multidisciplinary Workshop on Advances in
Preference Handling. 2005

[11] T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classification
by pairwise coupling. J. Machine Learning Res., 5:975–1005, 2004.

12

