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Abstract
Pairwise classification is a class binarization procedure that converts a multi-class problem into

a series of two-class problems, one problem for each pair of classes. While it can be shown that for
training, this procedure is more efficient than the more commonly used one-against-all approach,
it still has to evaluate a quadratic number of classifiers when computing the predicted class for
a given example. In this paper, we propose a method that allows a faster computation of the
predicted class when weighted or unweighted voting are used for combining the predictions of the
individual classifiers. While its worst-case complexity is still quadratic in the number of classes,
we show that even in the case of completely random base classifiers, our method still outperforms
the conventional pairwise classifier. For the more practical case of well-trained base classifiers, its
asymptotic computational complexity seems to be almost linear. We also propose a method for
approximating the full class ranking, based on the Swiss System, a common scheme for conducting
multi-round chess tournaments. Our results indicate that this adaptive scheme offers a better
trade-off between approximation quality and number of performed comparisons than alternative,
fixed schemes for ordering the evaluation of the pairwise classifiers.

1. Introduction

Many learning algorithms can only deal with two-class problems. For multi-class problems, they have
to rely on class binarization procedures that transform the original learning problem into a series
of binary learning problems. A standard solution for this problem is the one-against-all approach,
which constructs one binary classifier for each class, where the positive training examples are those
belonging to this class and the negative training examples are formed by the union of all other
classes.

An alternative approach, known as pairwise classification or round robin classification has re-
cently gained attention (Fürnkranz, 2002; Wu et al., 2004). Its basic idea is to transform a c-class
problem into c(c − 1)/2 binary problems, one for each pair of classes. This approach has been
shown to produce more accurate results than the one-against-all approach for a wide variety of
learning algorithms such as support vector machines (Hsu & Lin, 2002) or rule learning algorithms
(Fürnkranz, 2002). Moreover, Fürnkranz (2002) has also proved that despite the fact that its com-
plexity is quadratic in the number of classes, the algorithm can in fact be trained faster than the
conventional one-against-all technique.1 However, in order to obtain a final prediction, we still have
to combine the predictions of all c(c− 1)/2 classifiers, which can be very inefficient for large values
of c.

The main contribution of this paper is a novel solution for this problem. Unlike previous proposals
(such as (Platt et al., 2000); cf. Section 3.2) our approach is not heuristic but is guaranteed to produce
exactly the same prediction as the full pairwise classifier, which in turn has been shown to optimize
the Spearman rank correlation with the target labels (Hüllermeier & Fürnkranz, 2004b). In essence,

1. It is easy to see this, if one considers that in the one-against-all case each training example is used c times (namely
in each of the c binary problems), while in the round robin approach each example is only used c−1 times, namely
only in those binary problems, where its own class is paired against one of the other c− 1 classes.
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the algorithm selects and evaluates iterative pairwise classifiers using a simple heuristic to minimize
the number of used pairwise classifiers that are needed to determine the correct top rank class of the
complete (weighted) voting. We will describe and evaluate this algorithm in Section 3.

In Section 4, we will then investigate the case when we are not only interested in the prediction
of a single class, but in a ranking of all possible classes. For this case, we propose the so-called
Swiss System, an algorithm that is commonly used for organizing multi-round chess tournaments.
Its key idea is to always evaluate classifiers that have similar positions in the current, incomplete
ranking. Our results show that this algorithm offers a good trade-off between the number of evaluated
classifiers and the quality of the approximation of the complete ranking.

2. Pairwise Classification

In the following, we assume that a multi-class problem has c classes, which we denote with c1, . . . , cc.
A pairwise or round robin classifier trains a set of c(c−1)/2 binary classifiers Ci,j , one for each pair
of classes (ci, cj), i < j. We will refer to the learning algorithm that is used to train the classifiers
Ci,j as the base classifier. Each binary classifier is only trained on the subset of training examples
that belong to the classes ci and cj , all other examples are ignored for the training of Ci,j .

Typically, the binary classifiers are class-symmetric, i.e., the classifiers Ci,j and Cj,i are identical.
However, for some types of classifiers this does not hold. For example, rule learning algorithms will
always learn rules for the positive class, and classify all uncovered examples as negative. Thus,
the predictions may depend on whether class ci or class cj has been used as the positive class. As
has been noted in (Fürnkranz, 2002), a simple method for solving this problem is to average the
predictions of Ci,j and Cj,i, which basically amounts to the use of a so-called double round robin
procedure, where we have two classifiers for each pair of classes. We will use this procedure for our
results with Ripper.

At classification time, each binary classifier Ci,j is queried and issues a vote (a prediction for
either ci or cj) for the given example. This can be compared with sports and games tournaments,
in which each player plays each other player once. In each game, the winner receives a point, and
the player with the maximum number of points is the winner of the tournament. In our case, the
class with the maximum number of votes is predicted (ties are broken arbitrarily for the larger
class). In this paper, we will assume binary classifiers that return class probabilities p(ci|ci ∨ cj)
and p(cj |ci ∨ cj). These can be used for weighted voting, i.e., we predict the class that receives the
maximum number of votes:

c′ = arg max
i=1...c

c∑
j=1

p(ci|ci ∨ cj)

This procedure optimizes the Spearman rank correlation with the target ranking (Hüllermeier &
Fürnkranz, 2004b). Other algorithms for combining votes exist (cf. pairwise coupling (Hastie &
Tibshirani, 1998; Wu et al., 2004)), but are not subject of this paper. 2

Note that weighted or unweighted voting produce a ranking of all classes. For prediction prob-
lems, one is typically only interested in the top ranked class, but in some applications one might also
be interested in the complete ranking of classes. We will focus on classification in the next section,
ranking will be considered in Section 4.

2. Furthermore, comparisons in (Hüllermeier & Fürnkranz, 2004a) with more advanced methods showed that the
simple voting method is competitive with more complex methods.
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3. Efficient Pairwise Classification

3.1 The QWeighted Algorithm

Weighted or unweighted voting predicts the top rank class by returning the class with the highest
accumulated voting mass after evaluation of all pairwise classifiers. During such a procedure there
exist many situations where particular classes can be excluded from the set of possible top rank
classes, even if they reach the maximal voting mass in the remaining evaluations. Consider following
simple example: Given c classes with c > j, if class a has received more than c − j votes and class
b lost j votings, it is impossible for b to achieve a higher total voting mass than a. Thus further
evaluations with b can be safely ignored.

To increase the reduction of evaluations we are interested in obtaining such exploitable situations
frequently. Pairwise classifiers will be selected depending on a loss value, which is the amount of
potential voting mass that a class has not received. More specifically, the loss li of a class i is defined
as li := pi− vi, where pi is the number of evaluated incident classifiers of i and vi is the current vote
amount of i. Obviously, the loss will begin with a value of zero and is monotonically increasing.3

The class with the current minimal loss is one of the top candidates for the top rank class.

Algorithm 1: QWeighted (Quick Weighted Voting)

begin
while ctop not determined do

ca ← class ci ∈ K with minimal li;
cb ← class cj ∈ K\{ca} with minimal lj & classifier Ca,b has not yet been evaluated;
if no cb exists then

ctop ← ca;
else

vab ← Evaluate(Ca,b);
la ← la + (1− vab);
lb ← lb + vab;

end

First the pairwise classifier Ca,b will be selected for which the losses la and lb of the relevant
classes ca and cb are minimal, provided that the classifier Ca,b has not yet been evaluated. In the
case of multiple classes that have the same minimal loss, there exists no further distinction, and
we select a class randomly from this set. Then, the losses la and lb will be updated based on the
evaluation returned by Ca,b (recall that vab is interpreted as the amount of the voting mass of the
classifier Ca,b that goes to class ca and 1− vab is the amount that goes to class cb). These two steps
will be repeated until all classifiers for the class cm with the minimal loss has been evaluated. Thus
the current/estimated loss lm is the correct loss for this class. As all other classes already have a
greater loss, cm is the correct top rank class.

Theoretically, a minimal number of comparisons of c− 1 is possible (best case). Assuming that
the incident classifiers of the correct top rank ctop always returns the maximum voting amount
(ltop = 0), ctop is always in the set {cj ∈ K|lj = minci∈K li}. In addition, ctop should be selected as
the first class in step 1 of the algorithm among the classes with the minimal loss value. It follows
that exactly c− 1 comparisons will be evaluated, more precisely all incident classifiers of ctop. The
algorithm terminates and returns ctop as the correct top rank.

The worst case, on the other hand, is still c(c − 1)/2 comparisons, which can, e.g., occur if all
pairwise classifiers classify randomly with a probability of 0.5. In practice, the number of comparisons

3. This loss is essentially identical to the voting-against principle introduced by Cutzu (2003a; 2003b), which we will
discuss later on in Section 3.2.
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will be somewhere between these two extremes, depending on the nature of the problem. The next
section will evaluate this trade-off.

3.2 Related Work

Cutzu (2003a; 2003b) recognized the importance of the voting-against principle and observed that it
allows to reliably conclude a class when not all of the pairwise classifiers are present. For example,
Cutzu claims that using the voting-against rule one could correctly predict class i even if none of
the pairwise classifiers Cik (k = 1 . . . c, k 6= i) are used. However, this argument is based on the
assumption that all base classifiers classify correctly. Moreover, if there is a second class j that should
ideally receive c− 2 votes, voting-against could only conclude a tie between classes i and j, as long
as the vote of classifier Cij is not known. The main contribution of his work, however, is a method
for computing posterior class probabilities in the voting-against scenario. Our approach builds upon
the same ideas as Cutzu’s, but our contribution is the algorithm that exploits the voting-against
principle to effectively increase the prediction efficiency of pairwise classifiers without changing the
predicted results.

The voting-against principle was already used earlier in the form of DDAGs Platt et al. (2000),
which organize the binary base classifiers in a decision graph. Each node represents a binary decision
that rules out the class that is not predicted by the corresponding binary classifier. At classification
time, only the classifiers on the path from the root to a leaf of the tree (at most c − 1 classifiers)
are consulted. While the authors empirically show that the method does not lose accuracy on three
benchmark problems, it does not have the guarantee of our method, which will always predict the
same class as the full pairwise classifier. Intuitively, one would also presume that a fixed evaluation
routine that uses only c− 1 of the c(c− 1)/2 base classifiers will sacrifice one of the main strengths
of the pairwise approach, namely that the influence of a single incorrectly trained binary classifier
is diminished in large ensemble of classifiers (Fürnkranz, 2003).

3.3 Evaluation

We compare the QWeighted algorithm with the full pairwise classifier and with DDAGs Platt
et al. (2000) on seven arbitrarily selected multi-class datasets from the UCI database of machine
learning databases (Hettich et al., 1998). We used four commonly used learning algorithms as base
learners (the rule learner Ripper, a Naive Bayes algorithm, the C4.5 decision tree learner, and a
support vector machine) all in their implementations in the Weka machine learning library (Witten
& Frank, 2005). Each algorithm was used as a base classifier for QWeighted, and the combination
was run on each of the datasets. As QWeighted is guaranteed to return the same predictions as the
full pairwise classifier, we are only interested in the number of comparisons needed for determining
the winning class.4 These are measured for all examples of each dataset via a 10-fold cross-validation
except for letter, where the supplied testset was used. Table 1 shows the results.

With respect to accuracy, there is only one case in a total of 28 experiments (4 base classifiers × 7
datasets) where DDAGs outperformed the QWeighted, which, as we have noted above, optimizes
the Spearman rank correlation. This and the fact that, to the best of our knowledge, it is not
known what loss function is optimized by DDAGs, confirm our intuition that QWeighted is a
more principled approach than DDAGs. It can also be seen that the average number of comparisons
needed by QWeighted is much closer to the best case than to the worst case.

Next to the absolute numbers, we show the trade-off between best and worst case (in brackets).
A value of 0 indicates that the average number of comparisons is c − 1, a value of 1 indicates that
the value is c(c − 1)/2 (the value in the last column). As we have ordered the datasets by their
respective number of classes, we can observe that this value has a clear tendency to decrease with

4. As mentioned above, we used a double round robin for Ripper for both, the full pairwise classifier and for
QWeighted. In order to be comparable to the other results, we, in this case, divide the observed number of
comparisons by two.
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Table 1: Comparison of QWeighted and DDAGs with different base learners on seven multi-class
datasets. The right-most column shows the number of comparisons needed by a full pairwise classifier
(c(c− 1)/2). Next to the average numbers of comparisons for QWeighted we show their trade-off
n−(c−1)

max−(c−1) between best and worst case (in brackets).

Accuracy ∅ Comparisons
dataset c learner QWeighted DDAG QWeighted DDAG full
vehicle 4 NB 45.39 44.92 4.27 (0.423) 3 6

SMO 75.06 75.06 3.64 (0.213)
J48 71.99 70.92 3.96 (0.320)
JRip 73.88 72.46 3.98 (0.327)

glass 7 NB 49.07 49.07 9.58 (0.238) 6 21
SMO 57.01 57.94 9.92 (0.261)
J48 71.50 69.16 9.69 (0.246)
JRip 74.77 74.30 9.75 (0.250)

image 7 NB 80.09 80.09 9.03 (0.202) 6 21
SMO 93.51 93.51 8.29 (0.153)
J48 96.93 96.75 8.55 (0.170)
JRip 96.62 96.41 8.75 (0.183)

yeast 10 NB 57.55 57.21 15.86 (0.191) 9 45
SMO 57.68 57.41 15.52 (0.181)
J48 58.56 57.75 15.48 (0.180)
JRip 58.96 58.09 15.87 (0.191)

vowel 11 NB 63.84 63.64 17.09 (0.158) 10 55
SMO 81.92 81.52 15.28 (0.117)
J48 82.93 78.28 17.13 (0.158)
JRip 82.42 76.67 17.42 (0.165)

soybean 19 NB 92.97 92.97 27.70 (0.063) 18 171
SMO 94.14 93.41 28.36 (0.068)
J48 93.56 91.80 29.45 (0.075)
JRip 94.00 93.56 27.65 (0.063)

letter 26 NB 63.08 63.00 44.40 (0.065) 25 325
SMO 83.80 82.58 42.26 (0.058)
J48 91.50 86.15 47.77 (0.076)
JRip 92.33 88.33 45.01 (0.068)

the number of the classes. For example, for the 19-class soybean and the 26-class letter datasets,
only about 6 − 7% of the possible number of additional pairwise classifiers are used, i.e., the total
number of comparisons seems to grow only linearly with the number of classes. This can also be
seen from Figure 1a, which plots the datasets with their respective number of classes together with
a curve that indicates the performance of the full pairwise classifier.

Finally, we note that the results are qualitatively the same for all base classifiers. QWeighted
does not seem to depend on a choice of base classifiers. For a more systematic investigation of the
complexity of the algorithm, we performed a simulation experiment. We assume classes in the form
of numbers from 1 . . . c, and, without loss of generality, 1 is always the correct class. We further
assume pairwise base pseudo-classifiers i ≺ε j, which, for two numbers i < j, return true with a
probability 1 − ε and false with a probability ε. For each example, the QWeighted algorithm is
applied to compute a prediction based on these pseudo-classifiers. The setting ε = 0 (or ε = 1)
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Table 2: Average number n of pairwise comparisons for various number of classes and different
error probabilities ε of the pairwise classifiers, and the full pairwise classifier. Below, we show their
trade-off n−(c−1)

max−(c−1) between the best and worst case, and an estimate of the growth ratio log(n2/n1)
log(c2/c1)

of successive values of n.

c ε = 0.0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.5 full
5 5.43 5.72 6.07 6.45 6.90 7.12 10

0.238 — 0.287 — 0.345 — 0.408 — 0.483 — 0.520 —

10 14.11 16.19 18.34 21.90 25.39 28.74 45
0.142 1.378 0.200 1.501 0.259 1.595 0.358 1.764 0.455 1.880 0.548 2.013

25 42.45 60.01 76.82 113.75 151.19 198.51 300
0.067 1.202 0.130 1.430 0.191 1.563 0.325 1.798 0.461 1.974 0.632 2.109

50 91.04 171.53 251.18 422.58 606.74 868.25 1,225
0.036 1.101 0.104 1.515 0.172 1.709 0.318 1.893 0.474 2.005 0.697 2.129

100 189.51 530.17 900.29 1,684.21 2,504.54 3,772.45 4,950
0.019 1.058 0.089 1.628 0.165 1.842 0.327 1.995 0.496 2.045 0.757 2.119

corresponds to a pairwise classifier where all predictions are consistent with a total order of the
possible class labels, and ε = 0.5 corresponds to the case where the predictions of the base classifiers
are entirely random.

Table 2 shows the results for various numbers of classes (c = 5, 10, 25, 50, 100) and for various
settings of the error parameter (ε = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5). Each data point is the average
outcome of 1000 trials with the corresponding parameter settings. We can see that even for entirely
random data, our algorithm can still save about 1/4 of the pairwise comparisons that would be
needed for the entire ensemble. For cases with a total order and error-free base classifiers, the
number of needed comparisons approaches the number of classes, i.e., the growth appears to be
linear.

To shed more light on this, we provide two more measures below each average: the lower left
number (in italics) shows the trade-off between best and worst case, as defined above. The result
confirms that for a reasonable performance of the base classifiers (up to about ε = 0.2), the fraction
of additional work reduces with the number of classes. Above that, we start to observe a growth.
The reason for this is that with a low number of classes, there is still a good chance that the random
base classifiers produce a reasonably ordered class structure, while this chance is decreasing with
increasing numbers of classes. On the other hand, the influence of each individual false prediction
of a base classifier decreases with an increasing number of classes, so that the true class ordering is
still clearly visible and can be better exploited by the QWeighted algorithm.

This is illustrated in Figure 1b, which shows the distribution of the votes produced by the SVM
base classifier for the dataset vowel. As shown on the scale to right, different color codes are used
for encoding different numbers of received votes. Each line in the plot represents one example, the
left shows the highest number of votes, the right the lowest number of votes. If all classes receive
the same number of votes, the area should be colored uniformly. However, here we observe a fairly
clear change in the color distribution, the bright areas to the left indicating the the top-rank class
often receives nine or more votes, and the areas to the right indicating that the lowest ranking class
typically receives less than one vote (recall that we use weighted voting).

We tried to directly estimate the exponent of the growth function of the number of comparisons
of QWeighted, based on the number of classes c. The resulting exponents, based on two successive
measure points, are shown in bold font below the absolute numbers. For example, the exponent of
the growth function between c = 5 and c = 10 is estimated (for ε = 0) as log(14.11/5.43)

log(10/5) ≈ 1.378. We
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Figure 1: a) Efficiency of QWeighted in comparison to a full pairwise classifier, b) Distribution of
votes for vowel (11-class problem, base learner NB). The x-axis describes the ranking positions.

can see that in the growth rate starts almost linearly (for a high number of classes and no errors in
the base classifiers) and approaches a quadratic growth when the error rate increases.5

In addition to the small datasets from Table 1, we evaluated the QWeighted algorithm on three
more real world datasets with a relative high number of classes:

Uni-label RCV1-v2
RCV1-v2 (Lewis et al., 2004) is a dataset consisting of over 800,000 categorized news articles
from Reuters, Ltd. For the category topic multiple labels from a total of 103 hierarchically
organized labels are assigned to the instances. We transformed this original multi-label dataset
to uni-label to be suitable for the QWeighted algorithm. For each instance, the label with
the greatest depth in the hierarchical tree among the assigned labels was selected as true class
label. In case, that multiple labels have the same greatest depth, the respective instance was
removed. We applied this procedure on the provided trainset and testset no. 0 by Lewis
et al. resulting to a multi-classification dataset with 100 classes, 23,149 train- and 199,328
test-instances with at least one positive example for each of the 100 classes.6 We will refer to
this created dataset as urcv1-v2.

ASTRAL 2 & 3
These datasets describe protein sequences retrieved from the SCOP 1.71 protein database
(Murzin et al, 1995). We used ASTRAL (Brenner et al., 2000) to filter these sequences so
that no two sequences share greater than 95% identity. The class labels are organized in a
3-level hierarchy, consisting of protein folds, superfamilies and families (in descending order).
astral3 consists of 1,588 classes and contains the original hierarchy. To fill the gap between
datasets urcv1-v2 and astral3 in terms of number of classes, we constructed a second dataset
astral2 by limiting the hierarchical depth to 2. So, two instances which previously shared the
same superfamily x are now assigned to superfamily x as new class label. By decreasing the
depth, the number of classes were reduced to 971. Both datasets have 13,006 instances and 21
numeric attributes (20 amino acids plus selenocysteine).

5. At first sight, it may be surprising that some of the numbers are greater than 2. This is a result of the fact that
c(c− 1)/2 = c2 − c/2 is quadratic in the limit, but for low values of c, the subtraction of the linear term c/2 has
a more significant effect. Thus, e.g., the estimated growth of the full pairwise classifier from c = 5 to c = 10 is
log(45/10)
log(10/5)

≈ 2.17.

6. The amount of train and test-instances is identical to their unmodified versions. So, there was in no case an
instance with multiple possible candidates as most specific label. Furthermore, only one of the originally 101
assigned labels was removed by the described procedure.
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Table 3: a) Average number of pairwise comparisons for urcv1-v2 under various number of feature
set sizes s (base learner J48). b) Results of QWeighted for datasets with a relative high number
of classes. Below, we show their trade-off n−(c−1)

max−(c−1) between the best and worst case (base learner
J48).

(a)

Accuracy ∅ Comparisons
s 1-vs-1 Direct QW full
250 60.8986 53.4260 297.33 4,950
500 62.2828 54.4108 306.39 4,950

1,000 61.5674 54.1043 310.89 4,950
2,000 62.0801 54.5458 312.62 4,950
4,000 62.1107 53.7747 312.60 4,950
8,000 62.1072 53.4350 312.29 4,950

14,000 62.0901 53.9894 312.21 4,950
20,000 61.3220 53.6568 312.35 4,950

(b)

dataset c QW full Acc.
urcv1-v2 100 312.62 4,950 62.1

(0.0440)
astral2 971 9,490.81 470,935 24.8

(0.0018)
astral3 1,588 28,476.20 1,260,078 20.8

(0.0213)

Dataset urcv1-v2 uses more than 40, 000 features (stemmed words). To reduce the complexity
of the multi-classification problem, χ2-based feature selection (Yang & Pedersen, 1997) was applied.
After computing the ranking of features with decreasing χ2 scores, we selected various numbers s of
the top ranked features (s = 250, 500, 1000, 2000, 4000, 8000, 14000, 20000). The decision tree learner
J48 was used as base learner, because of its fast computational speed and for validation, we used
the transformed testset. The results are shown in Table 3a. It is surprising that the accuracy value
is only minimally influenced by the feature set size. All accuracy values lies within ' 61-62 percent
for the pairwise approach and approx. 54 without any binarization. In fact, the pairwise approach
reaches its maximum accuracy when using only 500 features. As a side note, we can see that the
pairwise approach outperforms the direct multi-class capability (3rd column) of J48 in terms of
accuracy.

The maximal number of pairwise comparisons (at s = 2000) from Table 3a is listed together
with the results of the QWeighted algorithm for astral2 and astral3 in Table 3b. For astral2 and
astral3 66 percent of all instances were used for training and the rest for testing. Once again, trade-
off values were estimated for the average number of pairwise comparisons. As these values show,
QWeighted uses only a fairly small amount compared to a full voting aggregation and tends clearly
to the best case than to the worst case (c(c− 1)/2 comparisons). One can see an increasing growth
of the trade-off values between astral2 and astral3. However, this effect can be explained with the
general poor classification accuracy of protein sequences. According to the simulation results, there
exist a correlation between performance of QWeighted and performance of the underlying base
classifiers. The decreased accuracy on astral3 compared to astral2 (right-most column) indicates
weaker base classifiers, which leads to a increasing number of needed pairwise comparisons.

In summary, our results indicate that the QWeighted algorithm always increases the efficiency
of the pairwise classifier: for high error rates in the base classifiers, we can only expect improvements
by a constant factor, whereas for the practical case of low error rates we can also expect a significant
reduction in the asymptotic algorithmic complexity.

4. Efficient Pairwise Ranking

Pairwise classification not only delivers a single class label but a ranking of all classes, and in many
applications this is of interest. An example might be in speech recognition to combine the ranking
of possible recognized words with further background information like context or grammar to gain
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a higher accuracy. However, the QWeighted algorithm in the previous section focuses entirely on
finding the top rank. In this section, we will briefly discuss an algorithm for efficient computation
of a complete ranking.

4.1 The Swiss Algorithm

Our algorithm is based on the swiss system that is commonly used in chess tournaments (FIDE,
2006). Its fundamental ideas are that all players play a fixed number of rounds, where in each round
players of similar strength are paired with each other. After each round, a ranking is determined
based upon the points collected so far, and the next pairings are drawn based on the current ranking
(players with the same number of points play each other). Given n entrants, a limitation of log(n)
rounds is typical, resulting in n · log(n) games, as opposed to the quadratic amount in the usual
round-robin system. In addition, no pairing will be evaluated twice.

Algorithm 2: Swiss system
begin

for round= 1 to max round do
pair classes that have a similar score, starting with classes with byes;
pair the remaining classes among each other;
remaining classes receive a bye;
evaluate the corresponding classifiers and update the loss values for each class;

end

We adopted this system for use in pairwise classification, so that it computes a ranking based on
weighted voting (Algorithm 2). Contrary to the regular Swiss system, this algorithm does not try
to optimize the pairings, but is greedily producing pairings in various stages. First, it pairs classes
that had received a bye in the last round, then classes with a similar score, and then all remaining
classes. As a result of the greedy pairing, we may have situations, where for certain classes no
valid pairings can be found, e.g., when all remaining classes were already previously paired with the
specific class. In this situation the class receives a bye, which guarantees a pairing in the beginning
of the next round, even if there is no similarly rated class available. The main advantage of this
greedy approach is that we can also easily linearize it, i.e., we can evaluate the ranking quality not
only after complete rounds, but after each individual pairing.

4.2 Evaluation

Unfortunately, most datasets including those from the UCI Database provide only the correct top
rank class but no reference ranking of classes. The main reasons may be that the main purpose
of those datasets were aimed at classification, and that even with external expert knowledge it is
difficult to provide a full ranking of classes.7 For this reason, we used the ranking that has been
predicted from a full voting procedure as our reference ranking.

For all datasets Ripper (Cohen, 1995), more precisely JRIP, its implementation in Weka, was
used as base-learner. Ordinary round-based evaluations of the swiss-system leads to a small number
of data points.8 For the purpose of smoother curves, we plotted the estimated rankings after each
single evaluation of a binary classifier. There was no upper limit to the number of rounds, so we
could continue until all pairwise comparisons have been performed.

7. Pyle (1999) acknowledges this difficulty and, interestingly, proposes a pairwise technique for ranking a list of
options.

8. ≤ (c(c−1)/2)
bc/2c , the number is not constant because of possible bye-situations within Swiss-system, please refer to

(FIDE, 2006) for details.
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To measure the accuracy two error values were deployed:

• the normalized ranking error, where the error of each position between predicted ranking τp
and true ranking τt is counted.

DR =
1
kc
·
c∑
1

(τt(i)− τp(i))2

The normalizing constant kc = c(c2 − 1)/3 is the maximal possible ranking error. Note that
this is a linear transformation of the Spearman rank correlation into a loss function with value
range [0, 1].

• the position error, which uses the position of the true class ĉ in the predicted ranking

DP = τ−1
p (ĉ)− 1

It may be viewed as a simple generalization of {0, 1}-loss for problems in which one is interested
in finding the correct label with a minimum amount of trials (Hüllermeier & Fürnkranz, 2005).

All values were estimated with 10-fold cross-validation except for dataset letter, where the supplied
testset was used.

First, we investigated the ranking error, i.e. the deviation of the ranking obtained by Swiss
from the ranking of the full pairwise classifier. Figure 2a shows the ranking error curve for vowel,
but all datasets have similar characteristics (Park, 2006). It shows that the ranking error decreases
exponentially with increasing numbers of used pairwise classifiers, i.e., in the beginning, the ranking
improves substantially with each additional comparisons until a certain performance level is reached.
After that, each additional comparison yields only small improvements, but the approximation is
never 100% accurate.

In order to scale this performance, we compared it to various other ordered methods:

• ascending (C1,2,C1,3,. . . ,C1,n,C2,3,C2,4,. . . )

• descending (Cn,n−1,. . . ,Cn,1,Cn−1,n−2,Cn−1,n−3,. . . )

• diagonal (C2,1,C3,1,C3,2,C4,3,C4,2,C4,1,C5,4,. . . )

• and a random order.

Class 1 is the first class that was listed in the dataset, 2 for the second and so on. Table 4 shows
the average performance ratios r = Di,s

Di,swiss
where Di,s is the ranking error of one of the four ordered

methods, and Di,Swiss is the performance of the Swiss algorithm. Thus, a value greater than 1
indicates a superior performance of the Swiss system. The Swiss system always outperformed the
diagonal and random methods, typically by more than 10%. The Swiss system also wins in the
majority of the cases against ascending and descending, but here we can find two exceptions, where
one of these two wins by a comparably small margin (about 4%). A possible explanation could be
that in these datasets, the given fixed class order could contain information that holds for most of
the datasets (e.g., the majority class is first in the list). The ascending and descending ordering
schemes could exploit such informations (also note that in these cases a good performance of one is
also accompanied with a bad performance of the other), whereas the other two methods distribute
the pairwise classifiers for each class fairly evenly across the sequence. Nevertheless, it seems safe to
conclude that the Swiss system outperforms all fixed schemes.

The ascending order for datasets image and yeast and the descending order for vowel seem to
break ranks, while most values demonstrate the superior performance of the Swiss system. These
exceptions may be based on specific characteristics of these datasets and can be probably ignored
in the general case.
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Table 4: Comparison of the ranking error between Swiss system and four class-ordered systems. The
values show the average performance ratio, where a value of 1 means identical to the Swiss system
and a value greater 1 indicates a better performance of the Swiss algorithm.

dataset ascending descending diagonal random
vehicle 1.102 1.183 1.316 1.170
glass 1.122 1.328 1.782 1.413
image 0.968 1.491 1.181 1.106
yeast 1.123 1.667 1.792 1.486
vowel 1.285 0.965 1.381 1.106
soybean 1.053 1.193 1.262 1.028
letter 1.084 1.419 1.263 1.193
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Figure 2: a) Ranking error curve for vowel (base learner Ripper), b) Position error curves using
Swiss system for all datasets (base learner Ripper)

Figure 2b shows the results for the position error. As you can see the position error converges
faster than the ranking error to the position error of the full pairwise classifier. Contrary to the
ranking error, not all pairwise comparisons are needed to predict the winning class. This observation
is consistent with the consideration that if all incident classifiers of the correct top rank are evaluated
during such a sequence, the result is a position error of zero and further pairwise comparisons do
not affect it anymore.

However, the saturation point, for which we can say that a reasonable position error has been
obtained, differs between datasets. Table 5 takes a closer look at this issue, summarizing the results
ordered by the number of classes. Here we computed a relative position error DR, which is the
position of the top-ranked class of the full ranking in the incomplete ranking. We assume that the
ratings have converged, when DR < 0.02 (third column) or DR = 0.0 (last column). For DR < 0.02,
we can see Since the datasets in the legend are ordered by their number of classes a relation between
the number of classes and the convergence of the position error. The higher the number of classes
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Table 5: Position error of all datasets. The last two columns describe the average number of pairwise
comparisons for a position error DP within the threshold DP < 0.02 and DP = 0.

dataset c DR < 0.02 DR = 0
vehicle 4 5 (83%) 6 (100%)
glass 7 17 (81%) 19 (90%)
image 7 14 (67%) 20 (95%)
yeast 10 16 (36%) 44 (98%)
vowel 11 27 (49%) 52 (95%)
soybean 19 39 (23%) 145 (85%)
letter 26 34 (10%) 315 (97%)

of a dataset, the smaller the percentage of pairwise comparisons are needed to achieve a acceptable
position error. This trend is less clear for a perfect position error, as can be seen in the fourth
column. Here it can also be seen that in most cases almost all pairwise comparisons were needed for
a perfect agreement with the predictions of the full pairwise classifier. Note however that, contrary
to the QWeighted algorithm, the Swiss algorithm still attempts to maximize the full ranking, and
does not focus on the top ranking only (as QWeighted does).

5. Conclusions

In this paper, we have proposed two novel algorithms that allow to speed up the prediction phase
for pairwise classifiers. The QWeighted algorithm will always predict the same class as the full
pairwise classifier, but the algorithm is close to linear in the number of classes, in particular for
large numbers of classes, where the problem is most stringent. For very hard problems, where the
performance of the binary classifiers reduces to random guessing, its worst-case performance is still
quadratic in the number of classes, but even there practical gains can be expected.

The Swiss algorithm does not focus on the top-ranked class, but tries to approximate the com-
plete ranking of the classes. While we could not directly evaluate the ranking ability of this algorithm
(because of a lack of datasets with complete class ranking information for each example), we could
demonstrate that this adaptive algorithm offers a better trade-off than alternative, fixed evaluation
orders for the pairwise classifiers, and therefore allows for a better trade-off between the number of
evaluated pairwise classifiers and the quality of the approximation of the full class ranking.

A restriction of our approaches is that they are only applicable to combining predictions via
voting or weighted voting. There are various other proposals for combining the class probability
estimates of the base classifiers into an overall class probability distribution (this is also known as
pairwise coupling (Hastie & Tibshirani, 1998; Wu et al., 2004)). Nevertheless, efficient alternatives
for other pairwise coupling techniques are an interesting topic for further research.
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