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Abstract
We propose a plain data cube type that cov-
ers machine learning experiments through a run
model build upon it and trough functions associ-
ated with the type itself. As container type it is
agnostic to the domain. This leads to an exper-
imentation carcase that the user has to fill from
scratch but can save efforts on diverse projects at
low total orientation costs.

1 Introduction
In the area of experimental machine learning there are var-
ious frameworks that allow the experimenters to employ
approved, high level tools for divers purposes. Roughly
speaking, there are two types of framework incentives: the
engine type wants to solve a specific type of task. In or-
der to employ it the user is expected to build framing code
by which the provided engine is called. The embracing in-
centive wants that experiments are run through the given
framework which subsequently calls engines that can be
plugged-in in terms of wrappers.

Although writing embracing code is mostly straightfor-
ward, it can be error-prune and time consuming as well and
it therefore is plausible to share such code too. However,
defining an embracing framework is rather ambitious as it
somehow has to formalize the intentions of potential users
with respect to the experimental setup and the employed
data structures. A trade-off between comfort versus gener-
ality is inevitable: a narrow specification on what experi-
ments are allows broad pre-build services for the specified
type of experiments but it also make the framework less
likely to be applicable to the different projects of the users.

In this work we discuss an embracing framework that
sets the trade-off much in favor of generality. At its core it
basically consists of a data cube type, a cascade of ordered
multidimensional arrays, holding the (intermediate) results
of the computations. The run of an experiments is modeled
along this type.

The container is agnostic to the type of content and the
definitions of data source types, processing units, evalua-
tion schemes and so one are not part of the model. The
model is a skeleton along which we can distribute the ex-
perimental code and provides a general reference system
by means of a name space. The named entities are called
e-nodes and correspond to dimensions of the cube men-
tioned above. An experiment is defined as tree of e-nodes
such that any part of the experimental code need to be cov-
ered by an e-node and thereby becomes a cube dimension.
This means that many of those dimension will have a sin-
gle value only and it is a characteristics of the model that

it does not distinguish between such singleton dimensions
and multi-valued parameters.

A rich source for machine learning software is [2].
Even when restrict to python you can find several embrac-
ing python frameworks such as MLPY [1], PyMVPA [7],
scikit-learn [13], or plearn [16]. They have in common
that they provide many training algorithms, pre-processing,
and evaluation features such that the user freely can com-
bine those in order to build the desired experiments. Be-
side the engines they also provide top-level code that im-
plements typical experimentation pattern like gird-search.
These can be used smoothly because that embracing code
is aware about the interfaces of the engine shipped within
the same framework. To this respect the proposed model
cannot compete, the user has to come up with appropriate
code units and interfaces herself. On the other hand the
definition of new problems types or intermediate steps is
much of what machine learning research is about for that
ready made interfaces can be too concrete.

Also, we like to encourage user to incorporate foreign,
but specific and well tested libraries like Nonnegative Ma-
trix Factorizion [19], OpenOpt [8], libDAI [12], chi2 kernel
[9; 10], Pyriel [5] and at the same time relieve those tools
from providing top level code. By stronger abstraction in
the top level system, the user has indeed to care for en-
gines, data types, and interfaces but at least some system
expertise remain valid even when task changes from, say,
word-sense disambiguation to change point detection. This
is important since the cost-gain ratio of a framework be-
comes better when we can apply it for different occasions.
A similar spirit is followed in [3] where also a conservative
modeling is proposed but there in conjunction to java.

In the next section we define the central data cube type
and subsequently explain the experiment model in detail.
Section 3 is dedicated to services that are associated with
the data cube and can be used to deal with (intermediate)
results and services based on the experiment model. The
section much refers to the prototype implementation [18;
17] you can consult for further illustration. In the last sec-
tion discuss a view aspects of the approach, and point to se-
lected features of the implementation that we became fond
of.

2 Experiment Model
An experiment is defined as an directed ordered tree of
experimental nodes or e-nodes which represent dimensions
of the experiment such as stemming routine, data source or
a numeric parameter. The tree sets the order in which the
nodes are deployed. It thereby has to respect the dependen-
cies among nodes as given by their definitions.



When a node is deployed it produces a sequence of out-
puts that are taken as alternative values we want to probe
on the respective experimental dimension. A node is de-
ployed for any combination of output values of the nodes
that it takes as inputs. And so may serve its outputs one by
one as input for other nodes in turn.

The output values of a node are stored in a data-cube,
called v-cube. It holds a multidimensional array that has
one dimension for each node the values directly or indi-
rectly depend on and recursively comprises cube for these
dependencies.

We first give more details on v-cubes. They hold the re-
sults with respect to one e-node in the experimental tree.
Then, we cover the definition of e-nodes and thereby ex-
plain how the experimental tree, in short e-tree, defines the
flow of deployment of its nodes.

2.1 V-Cubes

A v-cube has a finite number of dimensions that have a
unique name each. As they stems from an experiment com-
pounds, the dimensions of the v-cube come along with an
acyclic dependency relation as well as a linear order that is
consistent with the dependencies: a dimension a precedent
to a dimension b in the linear order must not depend on b.

The last dimension is called target dimension and this is
the one with which the values that v-cube holds in a mul-
tidimensional array are associated. The dimension of the
array correspond one-to-one to the cube dimensions. The
values of the non-target dimensions . That is why v-cube is
a recursive type: each dimension of a v-cube is associated
with exactly one v-cube where the target-dimension is as-
sociated with the v-cube at hand. We refer to the non-target
dimension also as parent dimensions and the associated v-
cubes as parent v-cubes, and we speak of the main v-cube
when we want to refer to a v-cube excluding its parent cube.
For each parent dimension there is exactly one parent v-
cubes with that dimension as target dimension. However, a
v-cube may have no parents at all. Still, the data array has
at least one dimension since the target-dimension is always
present. Figure 1 gives an illustration.

The number of values the array can hold along a dimen-
sion is referred to as size of the corresponding v-cube di-
mension. The sizes have to be consistent: a dimension
shared with a parent cube must have have the same size
in the parent cube and the cube at hand. Given the size of
a dimension we can index the values along that dimension
and we assign one value-label to each index of the target
dimension. Any entry of the array can be identified by a
tuple dimension-name–index pairs. Since parent v-cubes
refer to a subset of the dimension at hand, we can associate
each entry with a unique parent entry of the array of any
given parent v-cube.

In view of our application we allow array entries to be
non-existing or void. However, there is again a consistency
constraint: a void entry can only be parent to void entries.

2.2 E-Nodes

An experiment is defined as an ordered tree of e-nodes.
First let us look at linear e-trees only, e.g. experiments that
are defined as a sequence of e-nodes, as in the example
given in figure 2. Such sequences directly corresponds to
a v-cube associated with the last node and we demand the
nodes to have names that are unique within the sequence.

Descent Production
Each e-node has a descent function that produces a list of
one or more descent values of arbitrary type. The function
comes with a set of descent input names that refer to ances-
tor input nodes (if there are branches, two or more e-nodes
may have identical names, we explain in 2.5 how the ref-
erences are resolved in this case). The descent function is
called for each combination of descent value produced by
the input e-nodes. For given call we refer these as current
values. The descent values of an e-node are stored in its
descent cube, a v-cube. The target dimension of the cube
is given by the name of the e-node and the parent v-cubes
are the descent cube of the input nodes or of e-node on
which the input nodes depend in turn. The dependencies
are derived from the descent input names and we explain in
subsection 2.5 how exactly the dependencies are collected.
The current values are the parent values of the outputs of
the descent production stored in the in the descent cube.

The number of descent values, the so-called descent size
may depend on the input values. This can make the entries
for the upper indexes in the target dimension void. The size
of the target dimension of the attached cube is given by the
maximal descent size.

a parameter
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Figure 2: A linear e-tree with four nodes (left). Each pro-
duces several values per descent call, e.g. per combination
of descent values of the ancestors that are taken as inputs.
After the run we have a tree of descent value (middle) that
are stored in v-cubes. See also figure 1.

Ascent Production
After the descent production of the node and its possible
descendants is completed, a node can additionally produce
so-called ascent value. Opposed to descent the ascent func-
tion produces a single value only. Likewise descent, the
ascent function is called for each combination of ancestor
descent values and it therefor can take ancestor node as in-
puts. But it further can depend on successor nodes. In cases
where the referred successor node defines an ascent func-
tion as well, the input refers to its ascent value. Otherwise
all its descent values produced under the current values of
the referring node are passed as an v-cube.

The ascent value is stored in the ascent cube another v-
cube that is associated with the e-node if it defines an ascent
function. For reasons that become clear in section 2.3, as-
cent functions are less important than it it might appear on
first sight.

Sibling Values
The descent and ascent production is separately done for
each combination of ancestor descent values. In order to
compute outputs iteratively we may want to access the pre-
vious outputs of the same node, the so-called sibling val-
ues. Let a be ancestor of b. Then b can access its proper
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Figure 1: Top: four e-nodes. An outgoing edge indicate that the nodes output is input for the other node. Below: Each node
is primarily associated with one v-cube. The target-dimension, the v-cube itself, and the respective e-node have the same
key, for instance e4. For each non-target dimensions the v-cube e4 references the respective ancestor e-node/v-cube. The
v-cube e4 hence comprises all cubes above it, thereby holding a cascade of arrays with increasing number of dimensions.

outputs that it made under the previous descent value of a.
To this end, the production function of b simply refers to b
itself as input node. Since b may have other ancestors we
further need to specify the sibling pivot a when we actu-
ally access a sibling value. Also, we need a function that
provides initial sibling values for the case that b produces
under the first value of a.

2.3 Non-Linear E-Trees
Within a linear e-tree, an e-node b that depends on another
e-node a considers one descent value of a at a time. If
you want access all descent values of a, for instance for ag-
gregation purpose, you need a different buildup where a is
deployed before b but not as direct ancestor but in a preced-
ing branch in the e-tree, see figure 3. The e-tree is deployed
in depth-left-first order. Assume a node has two children a
and b where a comes first. For given descent values of the
common ancestors of a and b, the subtree rooted in a is
deployed first. Then, it is turn to the subtree with head b.
From this subtree we can access the all descent values of
a and its descendants that where produced under the given
decent values of the common ancestors. This can be use
for aggregation over the produced values, for instance, we
may build the mean over descent values of a, or select an
optimal parameter with respect to a certain output.

Preceding branches, e.g. subtrees that are non-ancestor
to an node e are not reflected as dependencies of produc-
tion of e. One reason is that they always have a single re-
alization given the common ancestors likewise the ascent
function returns a single value only.

2.4 Advanced Tree Handling
Pruning
In case the realization of an e-node and its successors is, for
certain input values, logically unwanted or technically im-
possible, we can pass over the deployment of the node for
these input values. To this end the node defines a prune-
condition that can take the same inputs as the descent func-
tion, or a subset thereof, as arguments and outputs whether
the tree of values should be pruned at this node. The prune-
condition is evaluated before the descent-function is called,
e.g. the pruning is applied above the node. Unless the
prune-condition holds for all inputs, the not computed en-
tries do exists in the value cube but they remain void as it
the case when the node has varying descent size.

Looping
E-Nodes may also be used to represent compounds of an
algorithm. Algorithms may contain loops where the num-
ber of iterations depends on the result of the loops body.
So far e-nodes may have varying number of descent values
depending on ancestor values that are possible inputs. But
since successors, which correspond to a loop body, cannot
be accessed as descent inputs, the descent size cannot de-
pend their values. The reason for this restriction is that the
descent-function is called before the successors a deployed.

In order to allow indefinite descent sizes we can make
the node to be deployed repeatedly. The new descent val-
ues are appended to those computed so far while the ascent
value is overwritten with each iteration. The node defines a
loop-condition that should output a non-false value until no
further iteration is wanted. It can take the same inputs as the
ascent functions, including successor nodes that are passed
as v-cubes, and it is called right after the ascent-function.
For instance, you may check whether the value of a leaf be-
longing to the current iteration has changed compared the
previous one.

2.5 Completing the Model
Above, we let out some details on the experiment model
which we now want to catch up. First, we want to fix to
what exactly the input names refer depending on the type
of production an the position of the node in the tree. Sec-
ond, we state how the dimension of the v-cubes associated
with an e-node are set. Finally, we clear the proceeding in
cases where an e-node has an ancestor on which it does not
depend.

Reference Resolution
Let us define a view notions on the relative positions be-
tween nodes of an ordered tree. Consider the linear order
on all nodes that results from depth-first traversal of the tree
respecting the linear orders on siblings. For a given node
a this order divides the nodes of the tree into three groups:
a itself, the ancestors of a, and the successors of a. More
specifically we define the following relations a node b can
have to the node a.

• t-ancestor: b is on a path from the root to a, including
root, excluding a itself

• s-ancestor: in depth-first order b comes before a but b
is not a t-ancestor of a
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Figure 3: A non-linear e-tree with e-nodes e0, . . . , e5. Since e2 precedes e3 in depth-left-first traversal of the tree, e3 can
access all descent values of e2 at a time at least those that are build based on the current descent values of the common
ancestors. Alternatively, e2 can digest the descent values of itself and of possible node below itself by means of ascent
production. In either case the result of the subtree under e2 logically is one value and can be accessed as such by the nodes
e3 and e4 as sketched on the right.

• self: b is a

• t-successor: a is t-ancestor of b

• r-successor: all other nodes

The r-successors are the nodes that a cannot access and that
is why we do not distinguish further subgroups.

The nodes are linked together via the input names of
their production functions. The first thing to fix is to what
node a given argument name refers to in case there are two
or more nodes with identical names. The node is selected
as follows.

• Self first.

• Ancestors go before successors.

• Within these two groups the one that comes last in the
depth-first order is chosen.

Per e-node there is only one mapping assigning nodes from
the e-tree to input names. It applies to all production func-
tion of an e-node. We actually define production functions
as those function of an e-node that understand the argument
names as names of e-node and resolve them in the way just
explained. They further have in common that they all influ-
ence the descent or ascent values of a node. Beside descent
and ascent production, they include prune-condition, loop-
condition, and initial-sibling-values and a view more that
have have not mentioned here but can be found in the class
definition of e-nodes in the implementation.

Since a node b can have descent and ascent values we
have to fix which of both is passed to a node a given the
relation of b to a.

• self: descent function gets a descent value and ascent
function an ascent value.

• t-ancestors: a always gets the current descent value.

• s-ancestor or t-successor: a gets the ascent-values in
case b defines an ascent function. Otherwise, a gets
the descent-values of b. In either case only those val-
ues are passed that are produced for current descent
values of the common t-ancestors.

Dependency Resolution
Before we deploy the e-tree we have to fix the dimension
of the descent and ascent cube associated with the nodes.
Each dimension of a cube represents an e-node on the val-
ues of which the outputs of the production function and
thereby the entries of the cube depend on. For this rea-
son we refer to the dimensions here also as dependencies
of the cube. Following the above reference resolution a de-
pendency refers to descent values or to ascent values of the
referred node, but only to either of them. Further, we do
not distinguish dependencies of the descent versus the as-
cent cube because this gives little savings but resolution the
scheme would become a bit opaque.

As a start, we state that the cubes depend on the e-node
at hand it-self. For the dependency resolution we basically
have to take the indirect dependencies in the wright order
into account. To this end a single depth-first traversal suf-
fices. The production function are partitioned into pre- and
post-functions depending on whether they are called before
or after the deployment of the child-nodes. The latter group
can access t-successors, while the former cannot. If a node
e has a dependency a that is used by a pre-function of e,
the dependencies of a are added to those of e before the
children of e are visited. In case the dependency is due to
a post-function, the dependencies of a are added when the
children of e are done.

Referential Transparency
We apply referential transparency in the following sense.
When the descent function is to be called a second time
under the same combination of indexes of the ancestor de-
scent values, the call is skipped, since the values for that
inputs has already been computed. This occurs whenever
there is node e that has an ancestor a that produces multiple
descend values but on which e does not depend. By catch-
ing this the dependencies are reflected in production calls.
In general referential transparency is a bit delicate notion,
as is refers to value equality of inputs and outputs of a func-
tion, [15]. Here, we refer to the cube-indexes, what makes
the concept quiet simple, as it is clear to what equality we
refer to.



[ data(),
sample(),
kernel(),
kernel_tray(),
[[ c(),

sub_sample(n_folds=6),
algorithm(),
leaf( input_refs =

[[’sample’, ’sub_sample’]])
] ,
[ c_opt(),

algorithm( input_refs =
[[’c’, ’c_opt’]]),

leaf()
]

]
]

Figure 4: An e-tree with one branching. The e-nodes in
the tree are instances of e-node classes such as defined in
the code snippet in figure 5. The input ref arguments
replace input names, such that e-node definition are appli-
cable in either branch.

class c(ENode):

def descent(self):

return range(-4,4)

class c_opt(ENode):

def descent(self, leaf):

vc_opt = leaf.aggg([
(’argmax’, ’c’),
(’mean’,’sub_sample’),
(’sel’, ’leaf’, ’accuracy’)

])

return [ vc_opt.get_value() ]

class algorithm(ENode):

def descent(self, data, c,
kernel, kernel_tray):

engine = LIBSVM(
data_tray = data,
kernel = kernel,
C = 2.**c,
kt = kernel_tray,

)

return [ engine ]

Figure 5: Definitions of e-nodes. The node c opt
shows the digestion of an s-ancestor by means of v-cube-
aggregation. In algorithm some library is called.

3 Services
We coded a python prototype named peewit [18] that im-
plements the experiment model defined in the previous sec-
tion and provides various services. Some are for dealing
with v-cubes, others, which we refer to as housekeeping
services, are to support the experimental work-flow. Some
services of the latter type only partially rely on the model
and could be implemented to some extend within any other
top-level framework. Still, they fit the spirit of this work as
they show that we can provide helpful code independent of
domain types and interfaces. For more detailed information
on the services see [17].

3.1 V-Cube Services
V-cube is a sort of data cube [6], a notion for multidimen-
sional container types used in the fields of Online Analyt-
ical Processing [4], [14]. As such we can implement vari-
ous OLAP operations. The presence of sufficient data cube
functionality in terms of data manipulation and presenta-
tion is crucial for the experimental framework. Due to lim-
ited resources we can only realize a fraction of the services
that we would like to use. But some are implemented by
date and they can illustrate the benefits of cube services:
presentation in plain text or as plots, manipulation like se-
lection, aggregation, or merging.

The remaining subsection has three parts. First, we de-
scribe concrete services for v-cube manipulation. The last
one described, namely merging, leads to the problem of v-
cube alignment that we discuss separately. Last, explain
how pre-computed v-cubes can be integrated into an exper-
iment.

V-Cube Manipulation
Likewise other data-cubes v-cubes come with several rou-
tines of cube manipulation. The most simple ones are the
following.

• value selection: select or delete a slice given as index
or value-label for some dimension

• permutation of dimension: change the order on the di-
mension

• permutation of values: for a given dimension change
the order on value-labels and the corresponding slices

The manipulations have to account for the main cube as
well as for the parent cubes. Thats is why the next, appar-
ently also simple manipulation, is, in fact, logically a bit
more complicated.

• plain aggregation: summarize the values along the ag-
gregated dimension into a single value

It will occur that that a parent cube also has the aggregated
dimension but the aggregation cannot be applied to its val-
ues. Then these values becomes void. The aggregated di-
mension will be shrunk to a single dummy value. As an
example think of taking the mean. This cannot be applied
to the parent cube if the parent cube is non-numeric. And
even if it were numeric, it would not always make sense to
apply mean to it just because we queried the mean values
on a node that has the cube as parent.

For aggregations such min or max it makes sense to ask
for the/an fulfilling object that leads to the result value, for
min and max such aggregation are known as argmax and
argmin.

• argument aggregation: for a set of ancestors dimen-
sions get a combination of values such that the target



value holds some condition with respect to all value
combinations of those ancestors

Since the main cube comes along its parent cube peewit can
easily provide this kind of aggregation as well. The user
specifies the aggregants that are the dimension over which
the aggregation is to be done. The result is a v-cube with
has those dimensions of the main cube as proper dimension
that are not specified as aggregants. If the user specifies
multiple aggregants, the result one v-cube per aggregant.

Another direction of manipulation is cube merging.

• merging: make a single v-cube out of two

There can be different levels of service here that are de-
fined by different capabilities in matching the dimension
and values of the cubes to be merged. At a lower service
level, called straight merge, the service demands that the
cubes are identical in dimension and sizes except the sizes
of the dimension along which the cube are to be merged.

V-Cube Alignment
We may also demand more advanced merging that is robust
against non-identical names/labels of dimensions/values
and tries to solve a matching problem. Assume we are
given two cubes v and v̄ that may differ in dimension and
values. An v-cube alignment consists of matching of the
dimension of v to those of v̄ and, for each matched pairs of
dimension, of a matching of the indexes of the respective
dimensions. Whether the matching are restricted to be total
or not depends on the application of the alignment. For in-
stance, with merging partial dimension-matching (in either
direction) might be wanted whereas the index-matchings
must be total except for the merge dimension.

Certain cases that appear in practice are likely matchable
in automatic manner: the index order of a given dimension
has changed, the name of a dimension has changed, or in
one cube there are additional dimension but with a single
index only. For solving the alignment we can analyze name
and label information but also compare the content of the
cubes, likewise for ontology matching problems.

Descent Values from V-Cubes
Since v-cubes correspond to linear sub-trees we can also
apply them as such. Assume you are about defining an e-
tree for an experiment that shares dimensions with an v-
cube you have at hand. You can add the v-cube like a node
into the raw e-tree and when the e-tree is read, this node
will be expanded to a linear subtree.

The number of nodes in this sub-tree depends on the an-
cestors of the v-cube in the raw e-tree. When peewit finds
that a dimension of the cube is present as ancestor, this an-
cestor will be identified with the dimension of the e-node.
If no fitting ancestor can be found the dimension and the
corresponding parent v-cube translates into an e-node that
is included in the e-tree. In the first case peewit also tries
to match the descent values of the ancestor node with the
values from the parent v-cube such that this linking of v-
cubes is likely to work even even if the ancestor produces a
smaller number of values than present in the included cube
or if the order of values differs.

3.2 Housekeeping Services
Persistent Name Space
By writing experimental code the user introduces names
for compounds and values. Peewit extends the live time
of the names in the sense that the user can use the names

for further coding as well for reading, processing and, pre-
sentation of the results. The names of the dimensions of an
v-cube are given by the e-name of the node they stem from.
For a given dimension, the value labels that are assigned to
the positions an entry can take along that dimension or are
provided by the user or derived from the values at that po-
sition.

The e-names, aka dimension names, are used as follows.

• The names of the arguments of production functions
must be e-names. The e-name arguments refer to node
in the tree and thereby define the dependencies be-
tween nodes.

• This also means that the node names are used in the
body of the production function.

• The names of dimension are used in textual or graphic
representations of cubes. This way we can easily find
the production functions that are responsible for an el-
ement in the representation.

• By means of the run-numbers these links remain valid
even if the production functions have been changed
since the v-cube was produced.

As the concept of value labels is part of the v-cube type
the application of label always goes through v-cubes. Value
labels correspond to row or column headers in tables and
allow identification and selection of rows and columns by
names. This can be used to handle results but also in the ex-
perimental code itself since v-cube are build during run and
can be accessed during run by means of preceding branches
or ascent production. Peewit tries to define the labels au-
tomatically by means of an heuristic, see [17], but the user
can also define the labels explicitly.

Regime on Paths
The way peewit handles paths has three aspects. First, pee-
wit encourages user space coverage meaning that all data
and code files are accessed within home directory of the
user and linked by the project configuration. This facili-
tates the portability of the files in the sense that it can be
synchronized more easily between different machines and
allows self-contained project snapshots.

Second, the system uses a simple scheme for naming
files and placing them into flat ensemble of directories.
Peewit produces several output files such as serialized v-
cubes, log-files keeping the standard output, plots, and tex-
snippets. The concrete path scheme may be disputable but
main profit is that there some reasonable scheme that is
transparent for the user and readable to the system at the
same time.

Archiving
The archiving service aims a more effective persistency of
the code and other data that defines an experiments. To this
end we employ version management systems and add a thin
layer upon them which allows us to recover former stage of
the covered files in a comfortable way:

• each experiment run gets a run-number, a sort of on-
top revision number

• the run-number is attached to results and, at low-key,
displayed in result representations

• with that number at hand you can query peewit to re-
store the files as they were when the result was pro-
duced



Peewit does not conflict with existing version manage-
ment instances but rather allows their usage at different lev-
els of integration: no archiving, archiving aside possibly
existing repos, or archiving that integrates existing repos-
itories. We particularly recommend the service. It does
not cause additional work for the user and still gives her a
quick access to the code that were used to produce former
results. Further, the project can be exported such that other
researchers can access past states of the code to compre-
hend how the results shown for instance in a particular plot
were obtained. It presumes, however, that you are ready to
disclose your work in such a deep way.

Parallelization
Consider a node e the t-successors of which do not refer
sibling values with respect to e or any of its ancestors. In
this case the deployment of the subtrees under the different
descent values of e are concurrent such that peewit can dis-
tribute the computations without further coding provisions.

Once the cluster is setup by means of about ten configu-
ration values it suffices to define the launch axes that are the
e-nodes over which the computation is to be parallelized.
Peewit then cares for distributing the jobs and assembling
the partial results and finally returns a single v-cube to the
user as if the experiment were run on the local machine.

3.3 Proposed Services
Below are two more housekeeping services that are rather
clear on a conceptual level but have not yet been imple-
mented for peewit.

Voluntary Type Checking
Peewit is based on python which is a dynamically typed
language. This means that the production function do not
have a signature that would explicitly force inputs and out-
put to be of specific types. We do want not step into the
dynamic versus static typing discussion [11] here, but pro-
pose a mechanism for voluntary type checking at run-time
as follows.

The user can, but does not have to, define e-node meth-
ods for type checking, one for each input nodes and one
for each production function that make checks on the out-
puts. The checks are not restricted to test class member-
ships but can test arbitrary conditions. This means that the
user freely decides on whether she wants to check in-depth,
superficially, or not at all. If the user defines checking, the
checking code is separated from body of the production
functions and thereby is out of the way. We might also tell
peewit to omit the checks in situations that are not suited
for fixing interface agreements.

Progress Indication
When a run takes more time, it is convenient to have an idea
what fraction of the computation is done and, ideally, how
long the remaining productions will take. This kind of ser-
vice clearly lies in domain of a top-level experimentation
framework and the experiment model of peewit seems well
suited for progress indication because we can, for instance,
easily count the number of the right-most leaf descent val-
ues that have been produced so far.

Unfortunately, it is not that simple to get the total number
of descent values before the run it completed since the num-
ber of decent values an e-node produces can vary within
one run. Though in many cases this number is fixed for all
node in the tree it still can be difficult to get that number
in advance even having the abstract syntax tree at hand. A
simple solution is to provide a progress indication that takes

nodes with presently unknown or varying size by means of
an unknown factor into account, for instance stating that
65x out of 320x rightmost leafs have been produced.

4 Discussion
We start this section by pointing to some conceptional is-
sues, then pick features of the framework that we found
particularly helpful when doing experiments with it, and
finally give a short summarizing conclusion.

4.1 Issues
Data Cubes
With the v-cube we basically repeat accomplished work
on OLAP data cubes. Likewise SQL for tables there are
serveral implementations, though mostly commercial, of
cube arithmetics. It therefore would be reasonable to build
upon this work. We decided to define a proper cube type
because we are particularly interested in a smooth inter-
play of the cube type with the run model and want to have
the option of adapting the type to the needs of experiments.
The drawback is that the data cube functionality is to be im-
plemented from scratch including tools for actually view-
ing the cubes content. We are still locking for a better so-
lution to this issue.

Robust Access
In general we belief in cube types for keeping (interme-
diate) result machine learning of machine learning experi-
ments. In particular, we think that the particular structure
of v-cubes is suited for automatically reintegrating an v-
cube into an e-tree or merging and combining it with other
v-cubes. The presence of names and instances over dif-
ferent dimension facilitate solving automatic matching of
the indexes. This is important to make cube combination
robust against smaller differences in names or content that
would not foreclose a reasonable (partial) combination of
content but prohibits simple one-to-one matching by name
or index identity. However, until we have not brought au-
tomatic matching to certain level we cannot try it and it re-
mains unclear to what extend one can profit from matching
in practice.

Additional Code Layer
The decomposition into e-nodes adds some top-level struc-
ture to the experimental code. By naming the e-nodes you
some-how add a logical layer that describes the aspect of an
experiments and their dependencies. The name of e-node
would express the purpose of the covered code for the ex-
periment while the names of the included library typically
refer to what the authors of the library think is its main ap-
plication. However, this is not a solution to the problem of
keeping your libraries in order. On the contrary, covering
the code below e-nodes inhibits the view to the bottom and
may detain you from building a neat structure in your code.

4.2 Highlights of the Prototype
Experiment Outline
The user provides the final structure of an experiment by
stating the e-tree in branch notation that particularly read-
able if the tree has a view branches only as it is the case
for most experiments. This explicit tree representation also
serves as outline of the experiment much like an index of
contents of an article or book. It does not disclose the
full information on the semantics and dependencies of the
nodes but with speaking node names, likewise the section



titles in the table of contents, you get a good idea on the
design of the experiment.

Run Numbers
The archiving service costs small delay when starting a run
and we only used the restore function a couple of times.
But it is very agreeable that we do not have to make notes
on each run because we can look up the details on some
dimension by passing the run-number attached to a plot to
the restore function and looking for the definition of the
respective e-node.

Grid Computing
Parallelization of fully concurrent computations is logically
straightforward. Still, in practice you have to solve a bun-
dle of issues: formulation of the job-assignments, trans-
ferring file to and from the cluster, and merging the partial
results. We still experienced trouble when the synchroniza-
tion broke but in sum the parallelization with peewit pleas-
antly works under the hood.

4.3 Conclusion
We proposed a plain container type to hold values produced
during an experiment that depend on several dimension
and we defined an tree model on experiments where each
branch correspond to a cube of that type. The model is
abstract and ignores any kind of machine learning knowl-
edge. But it can be used to factorize the experiment into
its compounds and thereby get a grip on its structure. The
prototype implementation illustrates that such a structure is
sufficient for several helpful services that are valid indepen-
dent of the concrete type of problem under study. We un-
derstand this work as a draft in the search of structures for
machine learning and other computational experiments that
allow sharing experimentation code based on a low com-
mon denominator.
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