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Abstract

Multi-label Bird Species Classification competition provides an excellent oppor-
tunity to analyze the effectiveness of acoustic processing and mutlilabel learning.
We propose an unsupervised feature extraction and generation approach based on
latest advances in deep neural network learning, which can be applied generically
to acoustic data. With state-of-the-art approaches from multilabel learning, we
achieved top positions in the competition, only surpassed by teams with profound
expertise in acoustic data processing.

1 Introduction

Acoustic data is a common and natural representative of multilabel data, i.e. data in which an exam-
ple, in this case an acoustic sample, can be mapped to several, non-exclusive classes or categories.
Examples are the popular emotions benchmark with the objective of assigning emotions to music or
the hifind dataset where the tasks is to identify used instruments, genres, moods, languages, styles
etc. in songs [12]. In the Multi-label Bird Species Classification competition (NIPS4B) the task was
to identify 87 birds, insects and amphibians in short audio recordings. Of course, these could appear
in the same sample. More specifically, the objective was to maximize the area under the ROC curve
(AUC) on 1000 unlabeled recordings, a common measure for the quality of a label ranking.

The challenge was thus two fold: On the one hand it was necessary to process the data in a way
appropriate for machine learning approaches, since the data was only available in a raw format or
in very basic preprocessed format. This article presents a combination of recent and state-of-the-
art approaches from neural network and deep learning which allows an unsupervised generation
of an aleatory number of features, appropriate for being processed by standard machine learning
algorithms. It basically consists of random patching, a Denoising Autoencoder unit and subsequent
convolution and represents a general approach for processing acoustic data.

On the other hand, it was essential to learn the data accurately in order to produce high quality
predictions and to get the most out the provided information in form of input feature and binary
(relevant/irrelevant) label information. We tried out three approaches: firstly, a pairwise ensemble
of SVMs which actually is geared towards the base of AUC, the correct order of pairs of labels. The
popular and effective LibSVM library was specifically adapted to allow pairwise learning and the
modifications are made available. Secondly and thirdly, random decision trees and a single layer
neural network were applied. The diversity of the classifiers ensured that the combination of the
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predictions was effective. Our final ranking in the very competitive contest show that our acoustic
prepocessing provides a good base for the following machine learning step and that the multilabel
learner exhaust this.

2 A Multilabel Bird Species Classification Dataset

The dataset for the Multi-label Bird Species Classification competition contains 687 labeled training
examples, including 100 noise samples which are not labeled with any bird species, and 1,000
unlabeled test examples for measuring the generalization performance. The recordings belong to
87 categories (bird species like the subalpine warbler), each of which is associated with approx.
13 training instances. The average labelset size is 2.00 excluding noise samples, maximally 6, and
there are 265 distinct labelsets in the training data. The dataset comprises two format: one is in
raw wav format in which bird songs and calls are recorded with distant insects, and the other is
Mel-Frequency Cepstral Coefficients (MFCCs) of the wav files following preprocessing steps in [4]
where each time frame is represented with 17 coefficients. Each audio clip in both train and test data
varies in length.

3 Unsupervised Feature Generation and Extraction for Acoustic Clips

Let s ∈ Rm×T be the input vector for an audio clip where T is the total number of frames in time and
each time frame t consists of an m dimensional feature vector. In our first attempts, we just padded
(repeated) smaller samples so that in the end all samples had the same length maxi Ti = 1288,
resulting in 21,896 total number of features (referred to as raw dataset). However, the results were
not satisfactory, thus we applied the following operations and methods from unsupervised feature
learning. These were already successfully applied e.g. on image data, hence the question was
whether they would work for acoustic data.

Firstly, we extractMtr andMts random patches, totallyM = Mtr+Mts, whose size is psz = m×
wnd from training and test data, respectively, where wnd denotes the size of window. An extracted
patch is then normalized along the time frame axis which makes each coefficient has zero mean and
unit variance. Secondly, the randomly sampled patches are concatenated to form training examples
Φ ∈ Rpsz×M for Denoising Autoencoder or DAE [14], which learns hidden representations from
inputs in an unsupervised way. A DAE is a neural network architecture consisting of encoder fenc
and decoder gdec with parameters θ = {W, b, c} to minimize the squared error loss function ‖ϕ −
gdec(W

T fenc(Wϕ̃+ b) + c))‖22 where W ∈ RF×psz is the weights matrix connecting visible units
and hidden units, b and c are biases for hidden units and visible units, and ϕ̃ is the corrupt input by
adding Gaussian noise n ∼ N (0, σ2) to an input ϕ . Once training DAE is done, each column of
the weights WT acts as a feature detector. F feature detectors can be considered in total, and each
feature detector has the same size as the randomly extracted patches, that is, the kth feature detector
is WT

··k ∈ Rm×wnd. Finally, we can obtain a fixed feature representation for an input signal s in
terms of T while convolving it with learned feature detectors.

ak = fconv
(
s ∗WT

··k + bk
)

ak+F = fconv
(
s ∗ (−WT

··k) + bk
)

(1)

xk =

T−wnd+1∑
j=1

ak,j xk+F =

T−wnd+1∑
j=1

a(k+F ),j (2)

where ∗ stands for a 2D discrete convolution operator1 and fconv is to provide non-linearity to the
convolved feature representations. We use ReLUs f(x) = max(0, x) for nonlinear function fconv .
In order to make use of the negative part as well as the positive part of inputs to ReLUs, we apply
polarity splitting [2] in Eq. 1. Then, we sum up the convolved feature values ak over time which
is analogous to accumulated activations of s with respect to the feture detector WT

··k (Eq. 2). For
instance, xk will be higher if a feature k defined by WT

··k is detected many times in s.

For training DAE, we extracted 100,000 17× 80 patches randomly from training data and 100,000
from test data in the MFCC format. We then trained two DAE models with Gaussian noise σ = 0.2

1The convolution operator yields a matrix of size 1× (T − wnd+ 1).
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on the patches; the models have 400 and 800 hidden units resulting in 800 (small) and 2000 (big),
respectively. We used ReLU for the encoder and sigmoid f(x) = 1/(1+exp(−x)) for the decoder.

4 Multilabel Learning

Multilabel classification refers to the task of learning a function that maps instances xi ∈ X to
label subsets or label vectors yi = (yi,1, . . . , yi,n) ∈ {0, 1}n, where L = {λ1, . . . , λn}, n = |L|
is a finite set of predefined labels and where each label attribute yi corresponds to the absence (0)
or presence (1) of label λi. In the following, we will present the different learning algorithms we
applied on the NIPS4b dataset.

Pairwise Support Vector Machines The most common approach for multilabel classification is
to use an ensemble of binary classifiers, where each classifier predicts if an instance belongs to
one specific class or not (binary relevance or BR). An alternative is to do pairwise decomposition.
Here, one classifier is trained for each pair of classes, i.e., a problem with n different classes is
decomposed into n(n−1)

2 smaller subproblems [6]. More precisely, for each pair of classes (λu, λv),
u < v, we learn a binary base classifier hu,v , whose training set is composed of examples for which
λu is a relevant class and λv is an irrelevant class, or vice versa. All other examples are ignored
for this particular subproblem [10]. During classification, all of the n(n−1)

2 base classifiers make
a prediction for one of the both corresponding classes, which is interpreted as a full vote (0 or 1),
hence resulting in a full ranking over the labels.2

Pairwise learning method is often regarded as superior to BR because it profits from simpler decision
boundaries in the subproblems [6, 8]. The reason is that each of the pairwise classifiers contains
fewer examples. In fact, it has also been shown that the complexity for training an ensemble of
pairwise classifiers is comparable to the complexity of training a BR ensemble [6, 10]. During
prediction, however, we have a quadratic number of classifiers we have to evaluate. But particularly
for support vector machines this problem is alleviated by the fact that easier (sub-)problems lead to
less support vectors and that support vectors can be shared among the pairwise SVMs.

Multilabel LibSVM Because of this and because SVMs trained in a pairwise fashion already
obtained state-of-the-art results on standard benchmark datasets [12] in previous works [11], we
decided to use the very popular and effective SVM software library LibSVM [1] for training our
pairwise SVMs. However, during preliminary experiments, we found out that just plugging in Lib-
SVM was not feasible since a simple experiment on the dataset apparently required more than 20
GB of memory. The reason is that the used Java interface copies every training instance each time
for every base learner. Additionally, each of the 3741 LibSVM instantiation could request up to
40 MB of cache. We thus extended LibSVM directly in order to support the pairwise learning of
multilabel data. Our extension does not copy a training instance more than once and also shares a
common cache for Kernel computations, so that we managed to perform an experiment in less than
250 seconds for training 618 instances and 9 seconds for testing 68 instances and with less than 100
MB of memory (worst cases, respectively) despite the quadratic number of models to be trained,
stored and evaluated. The LibSVM modifications and interfaces for the multilabel learning toolkit
MULAN [13] are available from http://www.ke.tu-darmstadt.de/resources/multilabellibsvm.

Random Decision Trees Zhang et al. [15] recently proposed to use ensembles of random decision
trees (RDTs) for learning multilabel data and also provide a software library.3 The main idea is to
generate k1 RDTs with random attribute tests at the inner nodes and maximal depth k2. Comparably
small values of k1 and k2, around 10 or 20 and maximally 100, are sufficient in their experiments.
During the extremely fast training, the leafs incrementally collect statistics about the label distri-
butions y which passed all tests to the leafs. Hence, each RDT predicts an average distribution,
which is subsequently averaged over all trees. RDTs are very suitable for data with a high number
of examples and labels, since the costs are bounded by the selection of k1 and k2. However, they
may have problems with high number of features and particularly sparse features, which is not the
case for NIPS4B.

2Ties in the final votes counting are broken by using the prior probabilities of the labels.
3http://www.dice4dm.com/
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Neural Networks with a Single Hidden Layer Neural networks (NNs) have attracted increasing
interest in recent years thanks to success of NNs with multiple levels of trainable feature extractors,
namely deep learning in various domains such as object recognition and speech recognition. In
order to achieve state of the arts performance, one usually trains deep neural networks on a large
amount of training examples or initialize parameters by pretraining the networks on unlabeled data
in an unsupervised manner, followed by learning whole parameters including a classification layer
using labeled instances. As the bird species classification dataset has only 587 labeled examples and
only 11 positive training instances are available per label, on average, we decided to train NNs with
a only single hidden layer rather than ones with multiple hidden layers.

The single hidden layer NNs perform surprisingly well when we combine them with AdaGrad
[3], which makes it possible to adapt the learning rate per parameter, and Dropout [7] to pre-
vent overfitting and hence improving generalization performance. The output ŷ of NNs for a
given training example x is computed by using the following composition of non-linear functions
ŷ = fo(W

(2)fh(W (1)x + b(1)) + b(2)) where fo(x) = 1/(1 + exp(−x)) and fh(x) = max(0, x)
are activation functions for the output layer and the hidden layer, respectively. At the output layer,
we compute the cross entropy error CE(y, ŷ) = −

∑n
i=1 yi log(ŷi) + (1 − yl) log(1 − ŷi) where

ŷi is the predicted score for label λi. We run Stochastic Gradient Descent (SGD) to train NNs with
1,000 hidden units for 50,000 epochs, which corresponds to 300,000 parameter updates, and use
mini-batches of size 100 for computing gradients.

5 Experimentation

In order to estimate the performance on the public and private test set, we performed 10 fold cross
validation on the available labeled training data.

Evaluation Measures The competition submissions were evaluated by computing the area under
the ROC curve of the label rankings and then averaging over the instances. This measure can be
defined as

AUC(y, ŷ) =
1

|P ||N |
∑
λi∈P

∑
λi∈N

[[ŷi > ŷj ]] +
1

2
[[ŷi = ŷj ]] (3)

where [[x]] denotes the indicator function and ŷi the predicted score for λi, e.g. the inverted ranking
position. It is obvious that 1−AUC corresponds to the popular ranking loss used for evaluating mul-
tilabel classification [5]. There are several discrepancies in computing this measure, e.g. sometimes
the second term is skipped and tied pairs are arbitrarily counted as wrong or correct, or sometimes
test instances with an empty labelset are skipped. We compute the score for each instance, i.e. we
additionally set AUC(∅, ŷ) = 1, but note that for the cross validation results it is easy to obtain
the other less optimistic version with AUC ′ = (687 · AUC − 100)/587 = 1.17 · AUC − 0.17.
However, this does not explain the discrepancies between the estimated AUC values and the values
on the test set, since our best 0.94 would be only reduced to 0.93.

Results Table 1 shows our estimated results and the AUC values on the public and private test set.
The first observation is that our preprocessing approach substantially improved the ranking quality
over using the provided raw MFCC features. The achieved improvement is greater than the possible
improvement by any other tried approach or combination of approaches. This demonstrates the
applicability and effectiveness for acoustic data of our neural network based unsupervised feature
generation process. Before heading to the comparison between the used approaches, we also note
that there is an important discrepancy between the CV estimations on the training set and the test set
results which cannot be explained by overfitting or differences in computing AUC (cf. Sec. 5).

We see that the pairwise LibSVM approach (SVM), the random decision trees (RDT) and the neural
network (NN) with a single hidden layer obtain similar results on the test sets, with a small advantage
for the NN approach. This submission obtained the 5th rank on the public test set and the 8th rank
on the private test set.4 With the arrival of the big dataset the last day of the competition, used for
training the RDTs, and some struggling in merging teams and results, so that only the predictions
of the SVMs with γ = 0.5 and the RDTs could be merged, we managed to reach the 4th and 6th

4http://www.kaggle.com/c/multilabel-bird-species-classification-nips2013/leaderboard/public & ../private.
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Table 1: Results for the different multilabel approaches and settings in terms of AUC, estimated on the training
data via 10 fold cross validation (with standard deviation) or a train/test split of 600/86 and computed on the
public and private test set. Training and prediction times are given in seconds. The features column indicates
which feature set was used. The second block shows post-competition results.

Approach features CV public private training predicting

SVM C = 2000 γ = 10−3 raw 0.8994 – – 681.8 49.76
SVM C = 106 γ = 0.5 small 0.93883 ± 0.0180 0.89202 0.88967 60.18 19.39
SVM C = 106 γ = 1 small 0.93915 ± 0.0179 0.89130 0.88996 60.96 19.44
RDT 50000 trees big 0.93718 ± 0.0189 0.89129 0.88195 13444.44 290.83
NN big 0.92595 ± 0.0200 0.89650 0.89374 5585.15 (GPU) 0.01 (GPU)

SVM & RDT – – 0.90104 0.89525 – –

SVM C = 5 · 104 γ = 0.1 big 0.94022 ± 0.0181 0.88699 0.88710 119.71 45.98
SVM C = 2 · 105 γ = 0.1 big 0.93976 ± 0.0178 0.88752 0.88696 109.26 45.96
SVM & RDT & NN – – 0.90331 0.89824 – –
RDT & NN – – 0.89903 0.89279 – –
SVM & NN – – 0.89807 0.89556 – –

positions on the public and private leaderboard, respectively. The ranking merging effect had a
small impact on absolute numbers, but a considerable effect on the test set ranking due to the high
competitiveness in the contest.

It seems clear that merging rankings exploits the diversity of the underlying classifiers by reinforcing
predictions if the individual classifiers agree and by (tendentially) correcting rankings if for some
instances some of the rankers fail. For binary decision ensembles it can be shown that the accuracy
approximates 1 with increasing number of voters, though assuming a certain diversity (in the sense
of probabilistic independence) [9, Sec. 4.2.1]. We could confirm this when joining predictions of
classifiers of the same family, which did not lead to any improvement. But as the post-competition
results in the second half of Table 1 show, combining different approaches almost always improved
the AUC. Indeed, if we had submitted a joined prediction of all three approaches, we would have
been ranked 4th on both test sets. This is just below the three competitors using advanced and sophis-
ticated acoustic signal processing techniques relying on expert knowledge and on own processing
of the raw acoustic data, as reflected by the relatively big gap between them (with AUC greater than
0.91) and the rest of the competitors.

However, please note that our best approaches with almost 0.93 AUC had roughly 10 wrongly paired
labels per instance (cf. Eq. 3). It holds that this number e equals

∑|P |
i=1 ri − |P |(|P |+ 1)/2 with ri

being the ranks of the positive labels in P , thus for examples with |P | = 1 the label is on average
ranked at the 11th position, for two labels e.g. on positions 5 and 6. On the other hand, additional
evaluations show that for approx. 64.6% of the instances a relevant label was predicted on the first
position (one-error loss), and that we could obtain an F1-score of 75% using perfect thresholding.
Remind however, that our CV results are overestimations.

6 Conclusions

We have presented a general and unsupervised approach for processing acoustic data, particularly
for short recordings of birds’, insects’ and amphibian sounds. It is based on recent findings and state-
of-the-art approaches from the field of neural networks and deep learning. The generated features,
which basically are activation signals by using learned feature detectors, achieved an important
improvement over using the unprocessed MFCCs in terms of AUC.

The three applied multilabel approaches, which we applied on the data, were highly suited for the
particular task and carefully optimized so that we were able to obtain top results in the competition.
By combining the individual approaches we could exploit the diversity among them and obtain the
4th rank on the public test set and 6th position in the final ranking. Unfortunately, we did not manage
to combine all three classifiers on time, since this would have allowed us to obtain 0.90 AUC and
hence the overall 4th rank, right after the three solutions based on expert knowledge and therefore
unreachable with our means.
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We see some space for improvement in the pairwise learning approach, which currently ignores
examples in the label overlaps, and the neural network approach, which still has a lot of unex-
plored degrees of freedoms for optimizing. However, the narrow range of AUC results in the top
10 (excluding the top 3) indicates that we already got nearly the most out of the provided acoustic
representation and multilabel learning. Next steps hence include to find new representations directly
from the raw data, and we believe from our work with the birds sounds dataset that supervised and
unsupervised techniques from neural networks and deep learning can make important contributions
to this.
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