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Abstract

In real world multilabel problems, it is often
the case that e.g. documents are simultane-
ously classified with labels from multiple do-
mains, such as genres in addition to topics.
In practice, each of these problems is solved
independently without taking advantage of
possible label correlations between domains.
Following the multi-task learning setting, in
which multiple similar tasks are learned in
parallel, we propose a global learning ap-
proach that jointly considers all domains. It
is empirically demonstrated in this work that
this approach is effective despite its simplic-
ity when using a multilabel learner that takes
label correlations into account.

1. Introduction

The starting point of this work is the following exem-
plary scenario: Books in a library are typically cat-
aloged according to different types or domains of as-
sociated characteristics, e.g. genre, language, topic,
epoch, author, etc. This type of annotation of objects
is a very natural and common approach not only in the
cataloging of texts (Sec. 5) but also e.g. when indexing
music (Pachet & Roy, 2009). Each of these mappings
could be seen and treated as independent from each
other. In reality, however, there may be dependencies
between the different associated values from different
domains. An author may write only in a specific lan-
guage and focus exclusively on crime fiction. At the
same time, crime fiction novels may often have mur-
der as one of their topics, etc. Thus, if we consider
to learn a model that automatically catalogs books in
a library database as a text classification problem, for
instance, it may be advantageous to consider all the
parallel subproblems as a single large joint problem
instead of tackling each subproblem separately.
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In principle this is the same idea as in multi-task learn-
ing. In multi-task learning, we have a set of related
learning problems (tasks), i.e. problems that have
a common shared representation of their objects. It
has been shown that learning these tasks simultane-
ously and jointly outperforms the common approach
of learning them separately (single-task learning) (cf.
Sec. 2). The library example can be seen as a special
multi-task learning scenario in which each categoriza-
tion domain represents a separate task, and all tasks
share the same representation of their objects (books
have the same representation, e.g. the same bag of
words, in every task).

Simultaneously, the approach of considering the whole
task rather than each sub-task separately is in princi-
ple also the basic idea behind many multilabel classi-
fication algorithms. Instead of considering each label
as a separate problem, as in the popular binary rel-
evance (one-against-all) approach, most of the recent
approaches try to implicitly or explicitly take into con-
sideration existing label correlations in order to im-
prove the predictive quality (cf. Sec. 2).

The approach that we propose is to consider the set
of parallel multilabel tasks in the library as a sin-
gle joint task, as in multi-task learning, and solve
it with a conventional multilabel classification algo-
rithm. Most of the recent and more sophisticated
multilabel approaches may benefit from the parallel
processing as they also benefit from the commonal-
ity in a conventional multilabel setting. We pro-
pose in this first work on the subject to use pair-
wise decomposition (aka. one-vs-one), which implicitly
considers label relationships by learning preferences
between pairs of labels (Loza Menćıa & Fürnkranz,
2008a; Fürnkranz et al., 2008). Furthermore, recent
advances in handling many (Loza Menćıa et al., 2010),
even thousands of classes (Loza Menćıa & Fürnkranz,
2008b; Loza Menćıa & Fürnkranz, 2010) despite the
quadratic number of models enable us to address the
considerably increased complexity when the subtasks
are joined. For one of the datasets we addition-
ally employed HOMER as a meta-algorithm, which
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is also capable of processing large numbers of labels
(Tsoumakas et al., 2008) and has shown to harmonize
well with the pairwise approach (Tsoumakas et al.,
2009).

2. Related work

Approaches that try to explicitly exploit label corre-
lations include the early work of McCallum (1999),
in which generative models for labelsets are gener-
ated as a mixture of topic based word distributions,
the conditional random fields parameterized by label
co-occurrences in (Ghamrawi & McCallum, 2005) and
the label correlations conditioned maximum entropy
method of (Zhu et al., 2005), among others. A mid-
dle way is followed by Read et al. (2009) and their
classifier chains by stacking the underlying binary rel-
evance classifiers with the predictions of the previous
ones, and by Cheng & Hüllermeier (2009), whose k-
NN approach stacks the appearances of labels in the
neighborhood as new features.

However, the majority of the approaches implicitly
consider correlations by optimizing a loss on the pre-
dicted ranking of the labels. MMP perceptrons (Cram-
mer & Singer, 2003), Rank-SVM (Elisseeff & Weston,
2001), Structural SVMs (Tsochantaridis et al., 2005)
and the BP-ML neural network algorithm (Zhang &
Zhou, 2006) e.g. rely on this. The latter approach
is conceptually very similar to the multi-task neural
networks of Caruana (1997), as both train a com-
mon network with several outputs denoting the la-
bels , i.e. task outcomes. This is a popular approach
in multi-task learning, also applied to bayesian net-
works (Bakker & Heskes, 2003). Other techniques try
to develop special kernel functions which model inter-
task relations (Evgeniou et al., 2006), or use statisti-
cal Dirichlet processes for the bayesian modeling (Xue
et al., 2007).

A common problem to the referenced multilabel meth-
ods is their scalability in terms of number of labels, a
factor which significantly increases when the subtasks
are joined. Existing large scale approaches rely on
the binary relevance decomposition (Pouliquen et al.,
2003; Montejo Ráez et al., 2004; Tang et al., 2009)
or using one-class classifiers (Villalba & Cunningham,
2009). However, solving each sub label relevance prob-
lem in a separate way would not change anything in
comparison to solving it as multiple single-task prob-
lems in our proposed setting, neither computationally
nor predictively. A more complete overview of exist-
ing multilabel algorithms can be found in (Tsoumakas
et al., 2010).

3. Preliminaries

In multi-task learning, there exist several associated
tasks of the form (x̄, y), with x̄ denoting a represen-
tation of an instance or example and y representing a
state in the output space Y. We represent an instance
or object as a vector x̄ = (x1, . . . , xa) in a feature
space X ⊆ Ra. The feature spaces X (t) of the differ-
ent tasks t = 1 . . . k are supposed to be similar and
share common features in multi-task learning. This is
a precondition for the learning transfer: there has to
be a link between the instances in task s and t for any
link between the two output spaces to be recognized.
In this work we assume that all tasks share the same
input space X = X (1) = . . . = X (k) and that there is a
common training set x̄1, . . . , x̄m for all tasks t = 1 . . . k.
This restriction corresponds to the common problem
setting described in Sec. 1. Each training example x̄
is hence associated with k outputs y(1), . . . , y(k), with
y(t) ∈ Y(t), t = 1 . . . k. We will denote this setting as
parallel tasks in this work, however we will occasion-
ally use multi-task as a synonym.

Since we are dealing with multilabel data, y(t) de-
notes the set of relevant labels for instance x̄ in task t,
where y(t) is a subset of the n(t) possible classes L(t) =
{λ(t)

1 , . . . , λ
(t)

n(t)} and Y(t) = 2L
(t)

. The learned multi-
label classifier is therefore a function f (t) : X → Y(t)

with ŷ(t) = f (t)(x̄) as the relevant labels predicted for
test document x̄. Multilabel classifiers commonly also
predict a ranking r(t) : L(t) → {1 . . . n(t)} on the la-
bels, with r(t)(λ(t)) returning the position of class λ(t)

in the relevance ranking.

4. Parallel task learning

In order to benefit from the parallel alignment of the
sub-task the idea presented in this work is to simply
join the different multilabel problems and treat them
as a single large multilabel task. That means, we
transform the problems into one global problem with
the training set x̄1, . . . , x̄m and the training signals
y∗1 , . . . , y

∗
m, with y∗i ⊆ L∗ = ∪1≤t≤kL(t), i = 1 . . .m

and Y∗ = 2L
∗
. We define the L(t) as being dis-

joint, i.e. L(s) ∩ L(t) = ∅ , 1 ≤ t < s ≤ k.
After training the global multilabel learner, we ob-
tain the global model f∗ : X → Y∗, ŷ∗ = f∗(x̄),
which is then transformed back to the local classi-
fiers f (t)(x̄) = ŷ(t) = ŷ∗ ∩ L(t). The ranking func-
tion r(t)(λ(t)) = |{λ(t)

u ∈ L(t) | r∗(λ(t)
u ) ≤ r∗(λ(t))}| is

determined similarly.

As a convention, in the context of multilabel settings,
we do not make any distinction in the notation of
whether we are dealing with the global task or the
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Figure 1. Pairwise training on two separate tasks (left
and right): circles with a plus symbol represent the pos-
itive labels y an example training instance x̄ belongs to,
circles with minus indicate the irrelevant labels y for x̄.
The arrows represent the learned preferences, i.e. for
which base learners λu vs. λv instance x̄ is a training
example.

Figure 2. Pairwise training on the global problem by
joining the two tasks from Fig. 1: the dotted arrows
denote the additional learned relations for the current
example x̄.

subtasks and we will therefore omit the superscript.

4.1. Pairwise classification for parallel tasks

In the pairwise decomposition method, one classifier
is trained for each pair of classes, i.e., a problem with
n different classes is decomposed into n(n−1)

2 smaller
subproblems. For each pair of classes λu vs. λv, only
examples belonging to either λu or λv are used to
train the corresponding classifier ou,v. In the multi-
label case, an example is added to the training set for
classifier ou,v if λu is a relevant class and λv is an ir-
relevant class or vice versa, i.e., (λu, λv) ∈ y × y or,
vice versa, (λu, λv) ∈ y × y, with y = L\y as negative
labelset. The trained classifiers are shown as arrows
in the simple example in Fig. 1. During classification,
each base classifier is queried and the prediction is in-
terpreted as a vote for one of its two classes. Labels
are then ranked according to the number of received
votes.

The pairwise binarization method is often regarded
as superior to binary relevance (BR) since it benefits
from simpler decision boundaries in the subproblems
(Fürnkranz, 2002; Hsu & Lin, 2002; Loza Menćıa &
Fürnkranz, 2008a). Furthermore, we expect to further
benefit from the following characteristics:

Firstly, pairwise classification implicitly exploits label

correlations since the models are specifically trained
to detect exclusion of labels. Remember that a base
classifier ou,v is trained exactly with all the examples
for which λu and λv are mutually exclusive. A positive
prediction of ou,v could hence be interpreted as the im-
plication λu ∈ y → ¬(λv ∈ y) holding on the current
test instance. Since currently the base learners are not
supposed to model something different than exclusion
implications, we have to be cautious with this interpre-
tation and therefore the estimations are currently just
counted as simple votes and aggregated into a ranking.
We plan to extend our approach in order to support
extended expressiveness. In addition, incorporating (a
priori) label constraints by incorporating them into the
training process and by correcting predictions is being
studied in ongoing work (Park & Fürnkranz, 2008).

Secondly, it was observed by Fürnkranz et al. (2008)
that the additionally introduced virtual label (cf. be-
low) and hence the additional learned preferences
could slightly improve the predictions. We expect to
benefit from this effect for the many additional con-
nections when joining to a global model. Fig. 2 shows
this on an example of two small parallel tasks. Assum-
ing k parallel tasks of equal size n, the number of base
classifiers increases by a factor of kn(kn−1)·2

k·n(n−1)·2 = O(k).

To convert the resulting ranking of labels into a mul-
tilabel prediction, we use the calibrated label ranking
(CLR) approach (Fürnkranz et al., 2008). The key
idea is to introduce an artificial calibration label λ0,
which represents the split-point between relevant and
irrelevant labels. Fig. 3 shows an example. As it
turns out, the resulting n additional binary classifiers
{ ou,0 |u = 1 . . . n} are identical to the classifiers that
are trained by the binary relevance approach. This
holds also for the parallel task setting, as can be seen
in Fig. 4 and 5, making the approach also easily ap-
plicable to this setting. 1

QWeighted CLR reduces the classification costs from
quadratic to roughly log-linear time in the number of
labels (Loza Menćıa et al., 2010) in exchange for pre-
dicting only a labelset. The training time in CLR is
generally increased compared to BR by the factor of
average labels per example. But since we are inter-
ested in the ranking performance in our evaluation,
we rely on the full CLR.

For the text data, we use CLR together with the sim-
ple but fast perceptrons as base learners, leading to the
(incrementally trainable) Multilabel Pairwise Percep-

1This approach may disadvantage smaller sub-tasks,
however we evaluate mainly independently from the right
tresholding and thus leave the analysis for future work.
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trons (MLPP) algorithm and its dual variant DMLPP
for large numbers of labels, as this combination has
shown to be efficient as well as effective (Loza Menćıa
& Fürnkranz, 2008a;b; Loza Menćıa & Fürnkranz,
2010).

4.2. HOMER with QCLR

Since the pairwise subproblems in one of the datasets
in Sec. 5 are not linearly separable, we are not able to
use the efficient pairwise perceptron approaches from
Sec. 4.1.2 And due to the high number of labels and
the higher complexity of the common non-linear clas-
sifiers (both time and memory), plain CLR with a dif-
ferent base learner is also not viable so far.

We elude this problem by using HOMER as the meta-
learner for the CLR approach, which was specifically
developed in order to handle multilabel problems with
a large number of labels (Tsoumakas et al., 2008). The
approach allows using base multilabel learners yet be-
ing sensible to the number of labels by decomposing
the original problem into a tree of multilabel subprob-
lems: a predetermined number of labels are joined to
one metalabel, which is in turn one possible label in the
parent multilabel subproblem. During prediction, the
multilabel classifier at each inner node starting from
the root is queried and the children nodes are visited
for which the metalabel was predicted. The leaves rep-
resent the labels from the original problem.

For the decision, which labels to join to one metala-
bel at the inner node, a balanced k-means algorithm
is employed that works on the similarity between the
label vectors, i.e. the real labelsets of the examples.
Hence, the approach prefers aggregating labels that
are correlated.

HOMER is able to reduce training time in comparison
with the binary relevance approach, since less training
examples are used (in the inner nodes). The predic-
tion costs are in general comparable or better (BR al-
ways has to evaluate all classifiers). Recently, HOMER
was combined with CLR as its base multilabel learner,
substantially reducing the training and test time and
memory consumption in comparison to the plain CLR
(Tsoumakas et al., 2009). It also helped to balance
recall and precision since CLR becomes conservative
in predicting with increasing number of labels. This
combination also outperformed (in terms of predictive
quality) or was comparable (computational costs) to
the plain BR approach.

At first sight breaking up the problem into smaller ones
2Unfortunately, the current implementation of DMLPP

does not support kernels. We hope to add this soon.

Table 1. Statistics for EUR-lex and rcv1. Label density in-
dicates the average number of labels per instance d relative
to the total number of classes n, m denotes the number of
documents, a the number of used features.

dataset n m a d density
EUR-lex 4567 19348 5000 8.82 0.19 %
sm 201 ” ” 2.21 1.11 %
dc 410 ” ” 1.29 0.31 %
ev 3956 ” ” 5.31 0.13 %

rcv1 103 804414 25000 3.24 3.15 %
ccat 34 ” ” 1.44 4.24 %
ecat 26 ” ” 0.41 1.58 %
gcat 33 ” ” 0.70 2.12 %
mcat 10 ” ” 0.69 6.90 %

may sound contradictory to our proposed approach of
considering several sub tasks as a unique multilabel
task. The reason for following the subdivision ap-
proach nevertheless is that we expect that we are still
able to benefit from the additional possible inter-task
label correlations, since the label clustering method
in HOMER creates sub problems preserving as much
label correlation information as possible.

5. Datasets

The EUR-Lex is a recent dataset containing 19,348
legislative documents from the European Union
and is publicly available under http://www.ke.
tu-darmstadt.de/resources/eurlex/. The docu-
ments are classified according to three different classifi-
cation schemes: subject matter with 201 classes, direc-
tory code with 410 classes and EUROVOC with 3956
classes. For the processing of the text, we applied
stop word removal and word stemming. The docu-
ments were then randomly split into 10 folds in order
to perform cross validation. The 5,000 most frequent
features on each of the training sets were selected and
weighted with TF-IDF weights. The dataset was pro-
cessed with DMLPP trained over two epochs.

The HiFind dataset contains 32,769 music titles anno-
tated with 632 different labels (Pachet & Roy, 2009).
The labels specify (mainly acoustic) characteristics of
the categorized songs which can be divided into 17 dis-
tinct domains. Some of the sub tasks were intended to
be single-label (binary or multiclass), however for all of
them the number of distinct labelsets is greater than
the number of classes. Following Tsoumakas et al.
(2009), we trained HOMER with a cluster size of 7 (if
possible) in combination with CLR and the J48 im-
plementation of C4.5 (Witten & Frank, 2005) as base
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Figure 3. The two additional virtual
labels λ

(s)
0 and λ

(t)
0 and additional

preferences trained for the separate
calibrations of the two tasks from
Fig. 1. During prediction, the rank-
ing of the obtained votes per label
is split at the position of the virtual
label.

Figure 4. Calibration in the global
task: both virtual labels λ

(s)
0 and

λ
(t)
0 are always located at the same

level between positive and negative
labels y∗ and y∗, therefore the base
classifiers to and from the two virtual
classes are trained with the same ex-
amples.

Figure 5. Calibration in the global
task: the virtual labels λ

(s)
0 and λ

(t)
0

were merged to one unique calibra-
tion label λ∗0. In all three cases in
Fig. 3, 4 and 5 the same classi-
fiers discriminating between the vir-
tual labels and the remaining labels
are learned.

classifiers (Sec. 4.2) on the first 16,452 examples and
tested on the remaining 16,519.

As can be seen from the descriptions and Tables 1 and
2, the previous two real-world datasets fit perfectly to
the illustrated library example in Sec. 1 and are hence
prototypical for our parallel tasks setting. In addi-
tion, we simulated a multi-task setting on the Reuters
datasets, for which we also recognized parallel dataset
characteristics, although the corpus is normally only
seen from the multilabel point of view.

The Reuters Corpus Volume I (rcv1) is one of the
most widely used test collection for text categoriza-
tion research. It contains 804,414 newswire docu-
ments, which we split into 535,987 training docu-
ments (all documents before and including April 26th,
1999) and 268,427 test documents (all documents after
April 26th, 1999). A similar preprocessing as for the
EUR-Lex data was used on the token files from Lewis
et al. (2004). MLPP was applied on this dataset (one
epoch). The 103 categories of the dataset are orga-
nized in a hierarchy with four main sub nodes: govern-
ment/social (gcat), markets (mcat), economics (ecat)
and corporate/industrial (ccat). We chose these four
subsets as the domains of the tasks in the multi-task
setting, although the classes therein are actually from
the same type (topic categories) and it is therefore jus-
tified to treat them jointly from the beginning. How-
ever, a common binary benchmark dataset is based on
this subdivision3. For the future we plan to use the
additional associations contained in the corpus to 365
industry categories and 366 region categories, which
have hardly received any attention yet in the litera-
ture.

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html#rcv1.binary

6. Evaluation

We evaluate the effectiveness with label-based micro-
averaged recall and precision and a multilabel version
of accuracy. We follow the notation in Sec. 3 and
define ŷi = L\ ŷi as the set of predicted negative labels
for a test instance x̄i.

• Precision (Prec) computes the percentage of pre-
dicted labels that are relevant, recall (Rec) com-
putes the percentage of relevant labels that are
predicted. F1 is the harmonic mean of both.

Prec =
∑
i |ŷi ∩ yi|∑
i |ŷi|

Rec =
∑
i |ŷi ∩ yi|∑
i |yi|

(1)

• The subset accuracy (Acc) denotes the percent-
age of perfectly predicted labelsets.

Acc =
∑
i I [ŷi = yi]∑

i 1
, I[x] =

{
1 if x is true
0 otherwise

(2)

Recall and precision allow a commensurate evaluation
of an algorithm, in contrast to Hamming loss, which
is usually used but unfortunately generally favors al-
gorithms with high precision and low recall.

If a classifier was able to return rankings r on the la-
bels, we computed the following loss measures as well.

• The ranking loss (Rank) returns the number of
pairs of labels which are not correctly ordered,
normalized by the total number of possible pairs.

Rank =
|{(λ, λ′) | r(λ) > r(λ′)}|

|y||y|
(3)
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Table 2. Statistics for HiFind. The same notation is used
as in Tab. 1.

dataset n m a d density
HiFind 623 32971 98 37.3 5.98 %
character 37 ” ” 3.97 10.7 %
country 27 ” ” 0.98 3.64 %
dynamics 4 ” ” 0.99 24.8 %
epoch 16 ” ” 1.03 6.42 %
genre 31 ” ” 2.65 8.53 %
instruments 100 ” ” 5.09 5.09 %
language 16 ” ” 1.01 6.30 %
metric 10 ” ” 1.00 9.96 %
mood 59 ” ” 5.27 8.94 %
period 2 ” ” 0.004 0.24 %
popularity 3 ” ” 0.97 32.5 %
rhythmics 10 ” ” 1.17 11.7 %
setup 25 ” ” 2.25 8.98 %
situation 74 ” ” 5.26 7.11 %
style 158 ” ” 1.21 0.77 %
tempo 8 ” ” 0.99 12.4 %
variant 43 ” ” 3.46 8.04 %

• Average Precision (AvgP) computes for each rele-
vant label the percentage of relevant labels among
all labels that are ranked before it, and averages
these percentages over all relevant labels.

AvgP =
1
y

∑
λ∈y

|{λ′ ∈ y | r(λ′) ≤ r(λ)}|
r(λ)

(4)

These two ranking measures are computed for
each example and then averaged over all exam-
ples.

• For the idealistic F1(|y|), we compute F1 as if ex-
actly the right number of |y| labels was returned
(cf. Fürnkranz et al., 2008). Since the denom-
inators in Eq. 1 coincide, we can interpret this
measure as the example-based break-even point
of precision and recall.

F1(|y|) =
∑
i |{λ ∈ yi | ri(λ) ≤ |yi|}|∑

i |yi|
(5)

6.1. Parallel tasks results

Tab. 3 shows the results on the EUR-Lex tasks. The
first appreciable observation is that our parallel task
(PT) approach considerably decreases recall and gains
precision. This is due to the effect that calibration
leads to cautious predictions when the number of la-
bels is high. An intuitive explanation is that the higher

Table 3. Results of DMLPP on the EUR-Lex dataset. First
row: results on the global dataset. Next blocks: results
trained on sub-tasks in 1st row, trained on all parallel tasks
(PT) in 2nd. Last block: mean on all sub-tasks. Last
row: #wins of PT model over local model. Bold entries
show the winner, italics a significant difference on the cross
validation (Wilcoxon signed-rank test, p = 5%).

Rec Prec Acc Rank AvgP F1(|y|)
EURlex 36.64 76.48 0.284 1.683 63.20 58.34
sm 64.50 75.48 33.29 0.874 83.26 75.25
PT 57.34 85.36 36.42 0.851 84.45 76.96
dc 54.23 77.11 45.95 0.844 81.05 71.42
PT 48.09 83.94 44.98 0.840 82.20 73.25
ev 25.48 66.63 0.636 2.325 53.35 48.59
PT 25.22 67.10 0.610 2.307 53.47 48.71
mean 48.07 73.07 26.63 1.348 72.55 65.09
PT 43.55 78.80 27.34 1.333 73.37 66.31
wins 0 3 1 3 3 3

the number of labels, the higher the number of votes
to reach for the virtual label, the higher the proba-
bility that one of the base classifiers misses. We are
currently investigating more robust alternative thresh-
olding techniques specifically adapted to voting, that
will hopefully be closer to the pseudo-F1(|y|) measure.
For this and for the remaining ranking based losses, the
PT approach sometimes only slightly but always sig-
nificantly outperforms the conventional method. The
subset accuracy is again influenced by the conserva-
tive estimation of the calibration. Note also that we
have to be very cautious when comparing the task-
averaged measures in the last blocks since the tasks
are indeed parallel, but the measures are nevertheless
computed on different label domains. For this reason
the non-parametric Wilcoxon signed-rank test is used
were applicable.

Tab. 4 shows the averages on the 16 tasks of the
HiFind dataset (task period was omitted since no clas-
sifier could be locally learned). We can observe the op-
posite behavior with respect to recall and precision us-
ing HOMER. These differences between recall and pre-
cision are more pronounced on the smaller tasks, which
indicates that this might be related to the smaller pro-
portion of number of labels to cluster size, since the
smaller this proportion the greater precision and the
smaller the recall in (Tsoumakas et al., 2009). Unfor-
tunately, it is not possible to retrieve ranking losses
for HOMER. Nevertheless, the gain in Rec for the
globally trained model outweights the loss in Prec in
terms of the less specific F1 and Acc. And more in-
terestingly, this shows that it might be beneficial to
join the parallel tasks although the base learner again
breaks down the global task into smaller independent
problems. For HOMER, this is probably due to the
effective clustering of the generated subproblems so
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Table 4. Results of HOMER on the HiFind dataset, only
the means and number of wins are shown. Italic values
indicate a statistically significant difference between the
means on the 16 sub-tasks. Measures based on rankings
are omitted since the used base classifier only predicts la-
belsets.

Rec Prec Acc F1
HiFind 56.51 51.95 0.012 54.13
mean 50.96 53.72 23.11 51.77
PT 56.33 51.82 24.32 53.74

wins 16 4 7 13

Table 5. Results on the rcv1 dataset of MLPP. Each block
shows the direct comparison between locally and globally
learned model, as in Tab. 3.

Rec Prec Acc Rank AvgP F1(|y|)
rcv1 80.32 83.89 49.78 0.526 93.35 87.22
ccat 81.17 76.27 66.16 0.549 97.37 88.71
PT 79.81 80.85 69.54 0.528 97.42 89.00
ecat 70.09 71.17 87.12 0.117 99.49 91.95
PT 68.90 79.02 89.37 0.109 99.49 92.43
gcat 79.18 81.67 83.57 0.158 99.10 91.36
PT 78.74 84.79 85.07 0.149 99.13 91.78
mcat 89.12 87.61 89.72 0.125 99.79 98.20
PT 88.39 90.96 90.94 0.114 99.80 98.36
mean 79.89 79.18 81.64 0.237 98.94 92.55
PT 78.96 83.91 83.73 0.225 98.96 92.89
wins 0 4 4 4 4 4

the information contained in the label correlations are
preserved as much as possible. Reversely, this demon-
strates the effectiveness of our parallel task setting
since it shows the degree of additional information con-
tained in the inter-domain correlations and that it can
be effectively exploited. However, it would be interest-
ing in this context to analyze the performance if the
reverse way is followed, i.e. training on the local task
and then aggregating it to a prediction for the global
task. We leave this for future work.

The same conclusion is drawn from the results on the
Reuters dataset in Tab. 5. Again, as on EUR-Lex,
we can see the preference for high precision and lower
recall of the global approach. However, the improve-
ment on the remaining measures is clearer, even on the
subset accuracy, though the differences in the nearly
perfect AvgP results are almost not perceptible.

7. Conclusions

The starting point of this work was the recognition of
a common characteristic of many real world problem,
namely the mapping of the same object to concepts
from several different domains. We referred to such

problems as parallel tasks and evaluated the straight-
forward approach of joining the subtasks to one large
global multilabel problem. As in the more general
multi-task learning setting, we expected to benefit
from the additional information obtained through the
aggregation of the labelsets. We showed that multil-
abel algorithms which consider label correlations are
able to effectively exploit the label correlations. In par-
ticular, the highly scalable and efficient pairwise per-
ceptrons algorithms improved the quality of the pre-
dicted rankings. Perhaps more surprising and pleasing
was the insight that HOMER allows also less scalable
base learners to take advantage of the parallel task
setting, though the used mechanism is to divide the
original problem into smaller subproblems, which is in
a certain sense directly opposed but actually compat-
ible to the proposed approach.

This first evaluation of parallel tasks in multilabel
leaves several possibilities for future work. The more
explicit exploitation of label correlations in pairwise
decomposition is an ongoing issue (cf. Sec. 4.1). Fur-
thermore, different label correlation respecting algo-
rithms could be compared. Actually, this setting could
effectively be used in practice in order to analyze to
which degree a multilabel algorithm takes label corre-
lations into account. This particular property of mul-
tilabel algorithm makes it interesting to try to apply
them on the more general multi-task learning setting,
in which the objects in the tasks are not longer parallel
but only similar. Of course, the opposite approach of
incorporating ideas and mechanisms from multi-task
learning is also very interesting.
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Fürnkranz, Johannes, Hüllermeier, Eyke, Loza Menćıa,
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