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Abstract Binary decomposition methods transform multiclass learning prob-
lems into a series of two-class learning problems that can be solved with sim-
pler learning algorithms. As the number of such binary learning problems often
grows super-linearly with the number of classes, we need efficient methods for
computing the predictions. In this paper, we discuss an efficient algorithm
that queries only a dynamically determined subset of the trained classifiers,
but still predicts the same classes that would have been predicted if all clas-
sifiers had been queried. The algorithm is first derived for the simple case of
pairwise classification, and then generalized to arbitrary pairwise decomposi-
tions of the learning problem in the form of ternary error-correcting output
codes under a variety of different code designs and decoding strategies.

Keywords binary decomposition, pairwise classification, ternary ECOC,
multiclass classification, aggregation, efficient decoding, efficient voting

1 Introduction

Many learning algorithms can only deal with two-class problems. For multi-
class problems, they have to rely on binary decomposition (or binarization)
procedures that transform the original learning problem into a series of binary
learning problems. A standard solution for this problem is the one-against-
all approach, which constructs one binary classifier for each class, where the
positive training examples are those belonging to this class and the negative
training examples are formed by the union of all other classes.
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An alternative approach, known as pairwise classification or round robin
classification has recently gained attention (Fürnkranz 2002; Wu et al. 2004).
Its basic idea is to transform a k-class problem into k(k−1)/2 binary problems,
one for each pair of classes. This approach has been shown to produce more
accurate results than the one-against-all approach for a wide variety of learning
algorithms such as support vector machines (Hsu and Lin 2002) or rule learning
algorithms (Fürnkranz 2002). Moreover, Fürnkranz (2002) has also proved
that despite the fact that even though the number of binary classifiers is
quadratic in the number of classes, the ensemble can in fact be trained faster
than the conventional one-against-all technique. However, in order to obtain
a final prediction, we still have to combine the predictions of all k(k − 1)/2
classifiers, which can be very inefficient for large values of k.

Our first contribution is a novel solution for this problem. Unlike previous
proposals (such as (Platt et al. 1999); cf. Section 3.3) our approach is not
heuristic but is guaranteed to produce exactly the same prediction as the full
pairwise classifier, which in turn has been shown to optimize the Spearman
rank correlation with the target labels (Hüllermeier and Fürnkranz 2004a). In
essence, the algorithm selects and evaluates iterative pairwise classifiers using
a simple heuristic to minimize the number of used pairwise classifiers that
are needed to determine the correct top rank class of the complete (weighted)
voting.

Pairwise classification may be viewed as a special case of ternary error-
correcting output codes (Allwein et al. 2000) which are a general framework for
describing different decompositions of a multiclass problem into a set of binary
problems. They extend conventional error-correcting output codes (ECOCs)
(Dietterich and Bakiri 1995) with the possibility of representing that some
classifiers may not be trained on all available examples. Although not strictly
necessary, the number of the generated binary classification problems typically
exceeds the number of class values (n > k), for many common general encod-
ing techniques by several orders of magnitude. For example, for the above-
mentioned pairwise classification, the number of binary classifiers is quadratic
in the number of classes. Thus, the increase in predictive accuracy comes with
a corresponding increase in computational demands at classification time.

In this paper, we generalize the previously mentioned algorithm to allow
for quick decoding of arbitrary ternary ECOC ensembles. The resulting predic-
tions are guaranteed to be equivalent to the original decoding strategy except
for ambiguous final predictions. We show that the algorithm is applicable to
various decoding techniques, including Hamming distance, Euclidean distance,
their attenuated counter-parts, loss-based decoding, and the Laplace decoding
strategy.

Besides pairwise classification and ECOCs, a variety of other decomposition-
based approaches have been proposed for the multiclass classification task. It
is not the goal of this paper to contribute to the discussion of their respec-
tive virtues—for a recent survey on this subject we refer to (Lorena et al.
2008). Our contribution this on-going debate is to solve one of the most se-
vere problems with two of the most popular decomposition methods, namely
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by improving their classification efficiency without changing their predictive
quality.

In Section 2, we will briefly recapitulate pairwise classification and ECOC
with an overview of typical code designs and decoding methods. In Section 3,
the fast voting algorithm for pairwise classification is presented and in Sec-
tion 4 subsequently generalized for use with general ternary ECOCs. The per-
formance of these algorithms is evaluated and discussed in Section 5. Finally,
we will conclude and elaborate on possible future directions.

Parts of this paper have previously appeared as (Park and Fürnkranz
2007a, 2009).

2 Preliminaries

A multiclass classification problem consists of a set of instances X = {xi | i =
1 . . . l} and a set of classes K = {ci | i = 1 . . . k}, where each instance is exactly
associated to one class. Typically, a subset of instances Xt ⊆ X along with
their corresponding true class associations is given, which are used to learn an
classifier f(.) : X → K. This classifier is supposed to predict for previously
unseen instances xi to the correct class, such that some performance criterion
(e.g. classification accuracy) is maximized.

In the following, we recapitulate two basic approaches for tackling multi-
class problems by reducing them to an ensemble of binary problems, namely
the pairwise classification and error-correcting output codes.

2.1 Pairwise Classification

The key idea of pairwise classification is to learn one classifier for each pair
of classes. At classification time, the prediction of these classifiers are then
combined into an overall prediction.

2.1.1 Training Phase

A pairwise or round robin classifier trains a set of k(k− 1)/2 binary classifiers
Ci,j , one for each pair of classes (ci, cj), i < j. We will refer to the learning
algorithm that is used to train the classifiers Ci,j as the base learner. Each
binary classifier is only trained on the subset of training examples belonging
to classes ci and cj , all other examples are ignored for the training of Ci,j .

It is important to note that the total effort required to train the entire
ensemble of the k(k − 1)/2 classifiers is only linear in the number of classes
k, and, in fact, cheaper than the training of a one-against-all ensemble. It is
easy to see this, if one considers that in the one-against-all case each training
example is used k times (namely in each of the k binary problems), while in
the round robin approach each example is only used k− 1 times, namely only
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in those binary problems, where its own class is paired against one of the other
k − 1 classes.

Typically, the binary classifiers are class-symmetric, i.e., the classifiers Ci,j

and Cj,i are identical. However, for some types of classifiers this does not hold.
For example, rule learning algorithms will always learn rules for the positive
class, and classify all uncovered examples as negative. Thus, the predictions
may depend on whether class ci or class cj has been used as the positive
class. As has been noted in (Fürnkranz 2002), a simple method for solving
this problem is to average the predictions of Ci,j and Cj,i, which basically
amounts to the use of a so-called double round robin procedure, where we
have two classifiers for each pair of classes. We will use this procedure for our
results with Ripper.

2.1.2 Prediction Phase

At classification time, each binary classifier Ci,j is queried and issues a vote
(a prediction for either ci or cj) for the given example. This can be compared
with sports and games tournaments, in which each player plays each other
player once. In each game, the winner receives a point, and the player with
the maximum number of points is the winner of the tournament. In this paper,
we will assume binary classifiers that return class probabilities p(ci|ci∨cj) and
p(cj |ci ∨ cj). These can be used for weighted voting, i.e., we predict the class
that receives the maximum weighted number of votes:

c∗ = arg max
c∈K

∑
c′∈K\c

p(c | c ∨ c′)

Other choices for decoding pairwise classifiers are possible (cf., e.g., (Hastie
and Tibshirani 1997; Wu et al. 2004)), but voting is surprisingly stable. For
example, one can show that weighted voting, where each binary vote is split
according to the probability distribution estimated by the binary classifier,
minimizes the Spearman rank correlation with the correct ranking of classes,
provided that the classifier provides good probability estimates (Hüllermeier
et al. 2008). Also, empirically, weighted voting seems to be a fairly robust
method that is hard to beat with other, more complex methods (Hüllermeier
and Fürnkranz 2004b).

2.2 Error-Correcting Output Codes (ECOC)

Error-correcting output codes (ECOCs) (Dietterich and Bakiri 1995) are an-
other well-known technique for handling multiclass classification problems by
reducing the k-class classification problem to a series of n binary problems.
The method has its origin in coding and information Theory (MacWilliams and
Sloane 1983), where it is used for detecting and correcting errors in suitably
encoded signals. In the context of classification, we encode the class variable
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with a n-dimensional binary code word, whose entries specify whether the ex-
ample in question is a positive or a negative example in the corresponding
binary classifier.

Formally, each class ci (i = 1 . . . k) is associated with a so-called code word
cwi ∈ {−1, 1}n of length n. We denote the j-th bit of cwi as bi,j . In the
context of ECOC, all relevant information is summarized in a so-called coding
matrix (mi,j) = M ∈ {−1, 1}k×n, whose i-th row describes code word cwi,
whereas the j-th column represents a classifier fj . The set of all such classifiers
is denoted as C = {f1, . . . , fn}.

Furthermore, the coding matrix implicitly describes a decomposition scheme
of the original multiclass problem. In each column j the rows contain a (1) for
all classes whose training examples are used as positive examples, and (−1)
for all negative examples for the corresponding classifier fj .

M =


1 1 1 −1 −1 −1
1 −1 −1 1 1 −1
−1 −1 −1 1 −1 1
−1 −1 1 −1 1 1


The above example shows a coding matrix for 4 classes, which are encoded
with 6 classifiers. The first classifier uses the examples of classes 1 and 2 as
positive examples, and the examples of classes 3 and 4 as negative examples.

Typically, the number of classifiers exceeds the number of classes, i.e., n >
k. This allows longer code words, so that the mapping to the closest code word
is not compromised by individual mistakes of a few binary classifiers. Thus,
ECOCs not only make multiclass problems amenable to binary classifiers, but
may also yield a better predictive performance than conventional multiclass
classifiers.

At prediction time, all binary classifiers are queried, and collectively predict
an n-dimensional vector, which must be decoded into one of the original class
values, e.g., by assigning it to the class of the closest code word. More precisely,
for the classification of a test instance x, all binary classifiers are evaluated and
their predictions, which form a prediction vector p = [f1(x), f2(x), . . . , fn(x)],
are compared to the code words. The class c∗ whose associated code word
cwc∗ is “nearest” to p according to some distance measure d(.) is returned as
the overall prediction, i.e.

c∗ = arg min
c

d(cwc,p)

For computing the similarity between the prediction vector and the code word,
the most common choice is the Hamming Distance, which measures the number
of bit positions in which the prediction vector p differs from a code word cwi.

dH(cwi,p) =
n∑

j=1

|mi,j − pj |
2

(1)

The good performance of ECOCs has been confirmed in subsequent theo-
retical and practical work. For example, it has been shown that ECOCs can
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to some extent correct variance and even bias of the underlying learning algo-
rithm (Kong and Dietterich 1995). An exhaustive survey of work in this area
is beyond the scope of this paper, but can be found in (Windeatt and Ghaderi
2003).

2.3 Ternary ECOC

Conventional ECOCs as described in the previous section always use all classes
and all training examples for training a binary classifier. Thus, binary decom-
positions which use only parts of the data (such as pairwise classification) can
not be modeled in this framework.

Allwein et al. (2000) extended the ECOC approach to the ternary case,
where code words are now of the form cwi ∈ {−1, 0, 1}n. The additional code
mi,j = 0 denotes that examples of class ci are ignored for training classifier
fj . We will sometimes also denote a classifiers fj as CPj ,Nj , where Pj is the
set of labels that are used as positive examples, and Nj is the set of all labels
that are used as negative examples. We will then say a classifier fj = CPj ,Nj

is incident to a class ci, if the examples of ci are either positive or negative
examples for fj , i.e., if ci ∈ Pj or ci ∈ Nj , which implies that mi,j 6= 0.

This extension increases the expressive power of ECOCs, so that now nearly
all common multiclass binarization methods can be modelled. For example,
pairwise classification (Section 2.1), where one classifier is trained for each
pair of classes, could not be modeled in the original framework, but can be
modeled with ternary ECOCs. Its coding matrix has n = k(k− 1)/2 columns,
each consisting of exactly one positive value (+1), exactly one negative value
(−1), and k−2 zero values (0). Below, we show the coding matrix of a pairwise
classifier for a 4-class problem.

M =


1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 (2)

The conventionally used Hamming decoding can be adapted to this scenario
straight-forwardly. Note that while the code word can now contain 0-values,
the prediction vector is considered as a set of binary predictions which can
only predict either −1 or 1. Thus, a zero symbol in the code word (mi,j = 0)
will always increase the distance by 1/2 (independent of the prediction).

Many alternative decoding strategies have been proposed in the literature.
Along with the generalization of ECOCs to the ternary case, Allwein et al.
(2000) proposed a loss-based strategy. Escalera et al. (2006) discussed the
shortcomings of traditional Hamming distance for ternary ECOCs and pre-
sented two novel decoding strategies, which should be more appropriate for
dealing with the zero symbol. We considered all these decoding strategies in
our work. In Section 4.5 we show how our method can be adapted to different
decoding functions.
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2.4 Code Design for (Ternary) ECOCs

A well-known theorem from coding theory states that if the minimal Hamming
Distance between two arbitrary code words is h, the ECC framework is capable
of correcting up to bh

2 c bits. This is easy to see, since every code word x has
a bh

2 c neighborhood, for which every code in this neighborhood is nearer to x
than to any other code word. Thus, it is obvious that good error correction
crucially depends on the choice of a suitable coding matrix.

Unfortunately, some of the results in coding theory are not fully applica-
ble to the machine learning setting. For example, the above result assumes
that the bit-wise error is independent, which leads to the conclusion that the
minimal Hamming Distance is the main criterion for a good code. But this as-
sumption does not necessarily hold in machine learning. Classifiers are learned
with similar training examples and therefore their predictions tend to corre-
late. Thus, a good ECOC code also has to consider, e.g., column distances,
which may be taken as a rough measure for the independence of the involved
classifiers.

In the machine-learning literature, a considerable amount of research has
been devoted to code design for ternary ECOCs (see, e.g., Crammer and Singer
2002; Pimenta et al. 2008), but without reaching a clear conclusion. We want
to emphasize that our work does not contribute to this discussion, because we
will not be concerned with comparing the predictive quality of different coding
schemes. Our goal is to show that, irrespective of the selected coding scheme,
we can achieve a substantial reduction in prediction time, without changing
the predicted outcome.

Nevertheless, we will briefly review common coding schemes, because we
will later demonstrate that our algorithm is applicable to different types of
coding schemes. Essentially, one can distinguish between four code families:

Exhaustive Ternary Codes Exhaustive ternary codes cover all possible classi-
fiers involving a given number of classes l. More formally, a (k, l)-exhaustive
ternary code defines a ternary coding matrix M , for which every column j
contains exactly l non-zero values, i.e.,

∑
i∈K |mi,j | = l. Obviously, in the

context of multiclass classification, only columns with at least one positive
(+1) and one negative (−1) class are useful. The following example shows a
(4, 3)-exhaustive code.

M =


1 1 −1 1 1 −1 1 1 −1 0 0 0
1 −1 1 1 −1 1 0 0 0 1 1 −1
−1 1 1 0 0 0 1 −1 1 1 −1 1

0 0 0 −1 1 1 −1 1 1 −1 1 1

 (3)

The number of classifiers for a (k, l) exhaustive ternary code is
(
k
l

)
(2l−1 −

1), since the number of binary exhaustive codes is 2l−1 − 1 and the number
of combinations to select l row positions from k rows is

(
k
l

)
. These codes

are a straightforward generalization of the exhaustive binary codes, which
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were considered in the first works on ECOC (Dietterich and Bakiri 1995),
to the ternary case. Note that (k, 2)-exhaustive codes correspond to pairwise
classification.

In addition, we define a cumulative version of exhaustive ternary codes,
which subsumes all (k, i)-exhaustive codes with i = 2, 3, . . . , l up to a spe-
cific level l. In this case, we speak of (k, l)-cumulative exhaustive codes, which
generate a total of

∑l
i=2

(
k
i

)
(2i−1 − 1) columns. For a dataset with k classes,

(k, k)-cumulative exhaustive codes represent the set of all possible binary clas-
sifiers.

Random Codes We consider two types of randomly generated codes. The
first variant allows to control the probability distribution of the set of pos-
sible symbols {−1, 0, 1} from which random columns are drawn. By speci-
fying a parameter r ∈ [0, 1], the probability for the zero symbol is set to
p({0}) = r, whereas the remainder is equally subdivided to the other symbols:
p({1}) = p({−1}) = 1−r

2 . This type of code allows to control the sparsity of
the coding matrix, which will be useful for evaluating which factors determine
the performance of our algorithms.

The second random code generation method selects randomly a subset
from the set of all possible classifiers C. This set of classifiers C equals the
cumulative ternary code matrix where the used level l equals the number of
classes k. Obviously, this variant guarantees that no duplicate classifiers are
generated, whereas it can occur in the other variant. We do not enforce this,
because we wanted to model and evaluate two interpretations of randomly
generated codes: randomly filled matrices and randomly selected classifiers.

Coding Theory, BCH-Codes Many different code types were developed within
coding theory. We pick the so-called BCH Codes (Bose and Ray-Chaudhuri
1960) as a representative, because they have been studied in depth and have
properties which are favourable in practical applications. For example, the
desired minimum Hamming distance of M can be specified, and fast decoding
methods are available. Note, however, that efficient decoding in coding theory
has the goal to minimize the complexity of finding the nearest code word given
the received full code word. In our setting, we are interested in minimizing the
classifier evaluations, and this relates to using the minimum number of bits of
the receiving code word to estimate the nearest code word respectively class.
Although some concepts of efficient decoding in coding theory seem to be
transferable to our setting, they lack the capability to be a general purpose
decoding method for arbitrary coding matrices.

A detailed description of this code family is beyond the scope of this paper,
but we refer to (Bose and Ray-Chaudhuri 1960; MacWilliams and Sloane 1983)
for a detailed description and further information regarding BCH-Codes. In
our evaluation, we considered binary BCH codes of lengths 7, 15, 31, 63, 127,
and 255. Similarly to (Dietterich and Bakiri 1995), we randomly selected k
code words from the set of codes, if k is the number of classes.
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Domain-Dependent Codes This type of codes project data-specific relation-
ships or expert knowledge explicitly to the coding matrix. For example, the
knowledge of an inherent hierarchy or order among the classes can be used
to model classifiers which exploit this information (e.g., Melvin et al. 2007;
Cardoso and da Costa 2007). Another interesting direction of generating a
data-based code is considered by Pujol et al. (2006). Their proposed algo-
rithm DECOC tries to generate a coding matrix, whose columns consist of
the best discriminating classifiers on the considered dataset. By applying only
classifiers with the maximum discriminative ability, they expect to maximize
the overall prediction accuracy. Also, it seems to be rather efficient, since they
restrict the length of the coding matrix.

For the work reported in this paper, we did not consider domain-dependent
codes, because they need to be fit to each individual dataset.

3 Efficient Prediction for Pairwise Classification

Although the training effort for the entire ensemble of pairwise classifiers is
only linear in the number of examples, at prediction time we still have to
query a quadratic number of classifiers. In this section, we discuss an algorithm
that allows to significantly reduce the number of classifier evaluation without
changing the prediction of the ensemble.

3.1 Key Idea

Weighted or unweighted voting predicts the top rank class by returning the
class with the highest accumulated voting mass after evaluation of all pairwise
classifiers. During such a procedure there exist many situations where partic-
ular classes can be excluded from the set of possible top rank classes, even if
they reach the maximal voting mass in the remaining evaluations. Consider
following simple example: Given k classes with k > j, if class ca has received
more than k − j votes and class cb lost j votings, it is impossible for cb to
achieve a higher total voting mass than ca. Thus further evaluations with cb
can be safely ignored for the comparison of these two classes.

To increase the reduction of evaluations we are interested in obtaining such
exploitable situations frequently. Pairwise classifiers will be selected depending
on a loss value, which is the amount of potential voting mass that a class has
not received. More specifically, the loss li of a class ci is defined as li := pi−vi,
where pi is the number of evaluated incident classifiers of ci and vi is the current
vote amount of ci. Obviously, the loss will begin with a value of zero and is
monotonically increasing. The class with the current minimal loss is one of the
top candidates for the top rank class.
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Algorithm 1 QWeighted
Require: pairwise classifiers Ci,j with 1 ≤ i < j ≤ k, testing instance x ∈ X
1: l ∈ Rk ← 0 . loss values vector
2: c∗ ← NULL
3: G← {} . keep track of evaluated classifiers
4: while c∗ = NULL do
5: ca ← arg min

ci∈K
li . select top candidate class

6: cb ← arg min
cj∈K\{ca},Ca,j /∈G

lj . select second

7: if no cb exists then
8: c∗ ← ca . top rank class determined
9: else . evaluate

10: vab ← Ca,b(x) . one vote for ca (vab = 1) or cb (vab = 0)
11: la ← la + (1− vab) . update voting loss for ca

12: lb ← lb + vab . update voting loss for cb

13: G← G ∪ Ca,b . update already evaluated classifiers
return c∗

3.2 The QWeighted Algorithm

Algorithm 1 shows the QWeighted algorithm, which implements this idea.
First the pairwise classifier Ca,b will be selected for which the losses la and
lb of the relevant classes ca and cb are minimal, provided that the classifier
Ca,b has not yet been evaluated. In the case of multiple classes that have the
same minimal loss, there exists no further distinction, and we select a class
randomly from this set. Then, the losses la and lb will be updated based on
the evaluation returned by Ca,b (recall that vab is interpreted as the amount
of the voting mass of the classifier Ca,b that goes to class ca and 1 − vab is
the amount that goes to class cb). These two steps will be repeated until all
classifiers for the class cm with the minimal loss has been evaluated. Thus the
current/estimated loss lm is the correct loss for this class. As all other classes
already have a greater loss and considering that the losses are monotonically
increasing, cm is the correct top rank class.

Theoretically, a minimal number of comparisons of k − 1 is possible (best
case). Assuming that the incident classifiers of the correct top rank c∗ always
returns the maximum voting amount (l∗ = 0), c∗ is always in the set {cj ∈
K|lj = minci∈K li}. In addition, c∗ should be selected as the first class in step
1 of the algorithm among the classes with the minimal loss value. It follows
that exactly k − 1 comparisons will be evaluated, more precisely all incident
classifiers of c∗. The algorithm terminates and returns c∗ as the correct top
rank.

The worst case, on the other hand, is still k(k − 1)/2 comparisons, which
can, e.g., occur if all pairwise classifiers classify randomly with a probability of
0.5. In practice, the number of comparisons will be somewhere between these
two extremes, depending on the nature of the problem. This trade-off will be
evaluated in section 5.1.
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3.3 Related Work

The loss li, which we use for selecting the next classifier, is essentially iden-
tical to the voting-against principle introduced by Cutzu (2003a,b), who also
observed that it allows to reliably conclude a class when not all of the pairwise
classifiers are present. For example, Cutzu claims that using the voting-against
rule one could correctly predict class ci even if none of the incident pairwise
classifiers Ci,j (j = 1 . . . k, j 6= i) are used. However, this argument is based on
the assumption that all base classifiers classify correctly. Moreover, if there is
a second class cj that should ideally receive k − 2 votes, voting-against could
only conclude a tie between classes ci and cj , as long as the vote of classifier
Ci,j is not known. The main contribution of his work, however, is a method
for computing posterior class probabilities in the voting-against scenario. Our
approach builds upon the same ideas as Cutzu’s, but our contribution is the
algorithm that exploits the voting-against principle to effectively increase the
prediction efficiency of pairwise classifiers without changing the predicted re-
sults.

The voting-against principle was already used earlier in the form of DDAGs
(Platt et al. 1999), which organize the binary base classifiers in a decision
graph. Each node represents a binary decision that rules out the class that
is not predicted by the corresponding binary classifier. At classification time,
only the classifiers on the path from the root to a leaf of the tree (at most k−1
classifiers) are consulted. While the authors empirically show that the method
does not lose accuracy on three benchmark problems, it does not have the
guarantee of our method, which will always predict the same class as the full
pairwise classifier. Intuitively, one would also presume that a fixed evaluation
routine that uses only k− 1 of the k(k− 1)/2 base classifiers will sacrifice one
of the main strengths of the pairwise approach, namely that the influence of a
single incorrectly trained binary classifier is diminished in a large ensemble of
classifiers (Fürnkranz 2003). Our empirical results (presented in Section 5.1)
will confirm that DDAGs are only slightly more efficient but less accurate than
the QWeighted approach.

4 Efficient ECOC Decoding

In this section, we will generalize the QWeighted algorithm to arbitrary
ternary ECOC matrices. We will discuss the three key modifications that have
to be made: first, Hamming decoding has to be reduced to a voting process
(Section 4.1), second, the heuristic for selecting the next classifier has to be
adapted to the case where multiple classifiers can be incident with a pair
of classes (Section 4.2), and finally the stopping criterion can be improved
to take multiple incidences into account (Section 4.3). We will then present
the resulting QuickECOC algorithm for Hamming decoding in Section 4.4.
Finally, we will discuss how QuickECOC can be adapted to different decoding
techniques (Section 4.5).
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4.1 Reducing Hamming Distances to Voting

Obviously, pairwise classification may be considered as a special case of ternary
ECOCs, where each column of the coding matrix contains exactly one positive,
one negative, and k − 2 ignore values, as shown in (2). Thus, it is natural to
ask the the question whether the QWeighted algorithm can be generalized
to arbitrary ternary ECOCs.

To do so, we first have to consider that ECOCs typically use Hamming
distance for decoding, whereas pairwise classification typically uses a simple
voting procedure. In voting aggregation, the class that receives the most votes
from the binary classifiers is predicted, i.e.,

c̃ := arg max
i∈K

∑
j 6=i,j∈K

fi,j

where fi,j is the prediction of the pairwise classifier that discriminates between
classes ci and cj .

Traditional ECOC with Hamming decoding predicts the class c∗ whose
code word cwc∗ has the minimal Hamming Distance dH(cwc∗ ,p) to the pre-
diction vector p = (p1, . . . , pn). A certain analogy between both methods can
be seen easily and was further examined by Kong and Dietterich (1995) and
has a relation to correlation decoding from coding theory (Gallager 1968).
However, we briefly repeat with following lemma that the minimization of
Hamming distances reduces to voting aggregation:

Lemma 1 Let vi,j :=
(
1− |mi,j−pj |

2

)
be the vote that classifier fj gives to

class ci, then

arg min
i=1...k

dH(cwi,p) = arg max
i=1...k

n∑
j=1

vi,j

Proof Recall that

dH(cwi,p) =
n∑

a=1

|cwia − pa|
2

=
n∑

a=1

|mi,a − pa|
2

Let bi,a := |mi,a−pa|
2 . Since bi,a ∈ [0, 1],

arg min
i=1...k

n∑
a=1

bi,a = arg max
i=1...k

n∑
a=1

(1− bi,a) = arg max
i=1...k

n∑
a=1

vi,a

holds and we obtain the proposition.
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4.2 Next Classifier Selection

The QWeighted algorithm always pairs the class with the least amount of
voting loss li with the class that has the least amount of voting loss among
all classes with which it has not yet been paired, and evaluates the resulting
classifier. This choice of is deterministic because, obviously, there is only one
classifier that is incident with any given pair of classes. General ECOC coding
matrices, on the other hand, can have more then two non-zero entries per
column. As a result, a pair of classes may be incident to multiple binary
classifiers. This has the consequence that the selection of the next classifier to
evaluate has gained an additional degree of freedom. For example, consider a
4-class problem (c1, c2, c3, c4) using 3-level ternary exhaustive codes, as shown
in (3). If classes c1 and c2 are those with the current minimum voting loss, we
could select any of four different classifiers that discriminate the classes c1 and
c2, namely f2 = C{1,3},{2}, f3 = C{1},{2,3}, f5 = C{1,4},{2}, and f6 = C{1},{2,4}.

QuickECOC uses a selection process which conforms to the key idea
of QWeighted: Given the current favorite class ci0 , we select all incident
classifiers Ci0 , i.e.,

Ci0 = {CPj ,Nj
∈ C | ci0 ∈ Pj ∨ ci0 ∈ Nj} (4)

Let Kj denote the set of classes, which are involved in the binary classifier
fj = CPj ,Nj , but with a different sign than ci0 , i.e.,

Kj =
{
Pj if ci0 ∈ Nj

Nj if ci0 ∈ Pj

In other words, Kj contains all rows i of column j in the coding matrix M ,
for which mi,j 6= mi0,j and mi,j 6= 0 hold. We then compute a score

s(j) =
∑
i∈Kj

k − r(i)

for every classifier cj ∈ Ci0 , where r(i) denotes the rank of class ci when
all classes are increasingly ordered by their current votings (or, equivalently,
ordered by decreasing distances). Finally, we select the classifier fj0 with the
maximal score s(j0). Roughly speaking, this amounts to selecting the classifier
which discriminates ci0 to the greatest number of currently highly ranked
classes.

We experienced that this simple score-based selection was superior among
other tested methods, whose presentation and evaluation we omit here. One
point to note is, that for the special case of pairwise codes, this scheme is
identical to the one used by QWeighted.

4.3 Stopping Criterion

The key idea of the algorithm is to stop the evaluation of binary classifiers as
soon as it is clear which class will be predicted, irrespective of the outcome of
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all other classifiers. Thus, the QuickECOC algorithm has to check whether
ci0 , the current class with the minimal Hamming distance to p, can be caught
up by other classes at the current state. If not, ci0 can be safely predicted.

A straight-forward adaptation of the QWeighted algorithm for pairwise
classification would simply compute the maximal possible Hamming distance
for ci0 and compare this distance to the current Hamming distances li of all
other classes ci ∈ K \ {ci0}. The maximal possible Hamming distance for ci0
can be estimated by assuming that all outstanding evaluations involving ci0
will increase its Hamming distance by 1 and all remaining outstanding (non-
incident) classifiers will increase its distance by 0.5 (according to the definition
of hamming distance for ternary code words). Thus, we simply add the number
of remaining incident classifiers of ci0 and one half of the number of remainder
classifiers to its current distance li0 .

Note, however, that this simple method makes the assumption that all
binary classifiers only increase the Hamming distance of ci0 , but not of the
other classes. This is unnecessarily pessimistic, because each classifier will
always equally increase the Hamming distance for all (or none) of the incident
classes that have the same sign in the coding matrix (positive or negative).
Thus, we can refine the above procedure by computing a separate upper bound
of li0 for each class ci. This bound does not assume that all remaining incident
classifiers will increase the distance for ci0 by 1, but only those where ci and
ci0 are on different sides of the training set. For the cases where either ci or
ci0 was ignored in the training phase, 1

2 is added to the distance. If there exist
no class which can overtake ci0 , the algorithm returns ci0 as the prediction.

Note that the stopping criterion can only test whether no class can sur-
pass the current favorite class. However, there may be other classes with the
same Hamming distance. As the QuickECOC algorithm will always return
the first class that cannot be surpassed by other classes, this may not be the
same class that is returned by the full ECOC ensemble. Thus, in the case,
where the decoding is not unique, QuickECOC may return a different pre-
diction. However, in all cases where the code word minimal Hamming distance
is unique, QuickECOC will return exactly the same prediction as ECOC.

We also defined a second criterion, which simply stops when all classifiers
of the favorite class ci0 have already been evaluated. Strictly speaking, this is a
special case of the first stopping criterion and could be removed. However, we
found that making this distinction facilitated some of our analyzes (presented
in the appendix), so we leave it in the algorithm.

4.4 Quick ECOC Algorithm

Algorithm 2 shows the pseudocode of the QuickECOC algorithm. The al-
gorithm maintains a vector l = (l1, l2, . . . , lk) ∈ Rk, where li is the current
accumulated Hamming distance of the prediction vector p to the code word
cwi of class ci. The li can be seen as lower bounds of the distances dH(cwi,p),
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Algorithm 2 QuickECOC
Require: ECOC Matrix M = (mi,j) ∈ {−1, 0, 1}k×n, binary classifiers C = {f1, . . . , fn},

testing instance x ∈ X
1: l ∈ Rk ⇐ 0 . Hamming distance vector
2: c∗ ← NULL
3: C′ ← C
4: while c∗ = NULL do
5: fj ←SelectNextClassifier(M, l)
6: p← fj(x) . Evaluate classifier
7: for all i ∈ K do

8: li ← li +
|mi,j−p|

2

9: C′ ← C′ \ {fj}
10: M←M \Mj

11: i0 = arg min
i∈K

li

12: . First stopping criterion
13: abort ← true
14: for all i ∈ K \ {i0} do
15: nFull ← |{fj ∈ C′ | mi,j ·mi0,j = −1} |
16: nHalf ← |{fj ∈ C′ | mi,j ·mi0,j = 0 and mi,j + mi0,j 6= 0} |
17: if li0 + nFull + 1

2
nHalf > li then

18: abort ← false
19: . Second stopping criterion
20: if abort or ∀fj ∈ C′ : mi0,j = 0 then
21: c∗ ← ci0

return c∗

which are updated incrementally in a loop which essentially consists of four
steps:

(1) Selection of the Next Classifier:
First, the next classifier is selected. Depending on the current Hamming
distance values, the routine SelectNextClassifier returns a classifier
that pairs the current favorite i0 = arg mini li with another class that is
selected as described in Section 4.2. In the beginning all values li are zero,
so that SelectNextClassfier returns an arbitrary classifier fj .

(2) Classifier Evaluation and Update of Bounds l:
After the evaluation of fj , l is updated using the Hamming distance pro-
jected to this classifier (as described in Section 4.1) and fj is removed from
the set of possible classifiers.

(3) First Stopping Criterion:
Starting with line 12, the first stopping criterion is checked. It checks
whether the current favorite class i0 can already be safely determined as
the class with the maximum number of votes, as described in Section 4.3.

(4) Second Stopping Criterion:
Starting with line 19, the algorithm stops when all incident classifiers of ci0
have been evaluated. In this case, since it holds that li0 ≤ li for all classes
ci with li0 fixed and considering that li can only increase monotonically,
we can safely ignore all remaining evaluations.
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4.5 Adaption to Different Decoding Strategies

As briefly discussed in Section 2.3, various decoding strategies have been pro-
posed as alternatives to Hamming decoding. In this section, we show how
QuickECOC can be adapted to a variety of domain-independent encoding
strategies via small modifications to the basic algorithm.

In general, there are two locations where adaptations are needed. First,
the statistics update step and the first stopping criteria have to be adapted
according to the used distance measure. Second, some decoding strategies re-
quire a special treatment of the zero symbol, which can, in general, be modeled
as a preprocessing step.

In the following, we review some important decoding strategies and show
how QuickECOC can be adapted to deal with each strategy.

Euclidean Distance The Euclidean Distance dE computes the distance be-
tween the code-word and the prediction vector Euclidean space.

dE(cwi,p) = ||cwi − p||2 =

√√√√ n∑
j=1

(mi,j − pj)2 (5)

For minimizing this distance we can ignore the root operation and, in-
stead, minimize dE(cwi,p). This can again be computed incrementally, by
substituting the update statement of the pseudocode (line 8) with:

li ← li + (mi,j − p)2

Consequently, in the sum in line 17, the weight for nHalf is changed to 1 and
the one for nFull to 4.

Attenuated Euclidean/Hamming Distance These measures work analogously
to the Hamming Distance and the Euclidean distance, but distances to zero
symbols in the coding vector are ignored (which is equivalent to weighting the
distance with |mi,j |). The attenuated Euclidean distance is thus defined as

dAE(cwi,p) =

√√√√ n∑
j=1

|mi,j |(mi,j − pj)2 (6)

The analogue version for the Hamming distance is:

dAH(cwi,p) =
n∑

j=1

|mi,j |
|mi,j − pj |

2
(7)

The modifications to lines 8 and 17 are analogous to the previous case.
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Loss-based Decoding In loss-based decoding Allwein et al. (2000) we assume
a score-based base classifier, and want to take the returned score f(.) into
consideration. The similarity function dL is then defined as

dL(cwi,p) =
n∑

j=1

l(mi,j · fj) (8)

where l(.) is a loss function, such as l(s) = −s or the exponential loss l(s) =
e−s.

For both loss functions, we assume that we have given a normalizing func-
tion w(.) which projects fj(x) into the interval [−1, 1], e.g.,1

w(z) =

{
z

max z z ≥ 0
z

|min z| z < 0

For the linear loss, we substitute line 6 with

p← w(fj(x))

and the update in line 8 with

li ← li +
1− p ·mi,j

2

and remove the occurrences of nHalf.
For the exponential loss, we have to change line 6 as above and the update

step with
li ← li + e−p·mi,j .

In addition, the weights in line 17 are set to e1 for nFull and to e0 = 1 for
nHalf.

Laplace Strategy This measure interprets the zero symbol in a different way:
If a code word cw1 consists of more zero symbols than cw2, the number of
“reasonable” predictions is smaller, so every non-zero symbol prediction of
cw1 should be given a higher weight.

dLA(cwi,p) =
E + 1

E + C + T
=
dAH(cwi,p) + 1∑n

j=1 |mi,j |+ T
(9)

where C is the number of bit positions in which they are equal and E in which
they differ. So, roughly speaking, depending of the number of zero symbols of
cwi, every bit agreement contributes more or less to the distance measure. T

1 Note that we did not use such a normalizing function in our actual evaluation since we
used a decision tree learner which already returns scores in the right range. Although the
normalization of score-based functions, such as SVMs, is not a trivial task, the sketched
function w(.) could be possibly determined by estimating min f(x) and max f(x) during
training time (e.g. saving the largest distances between instances to the hyperplane for each
classifier).
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is the number of involved classes, in our case T = 2, since we employ binary
classifiers. Thus, the default value of dLA(.) is 1

2 .
This strategy can be used by incorporating a class- respectively row-based

incrementer. Note that each error bit between a code word cw and the pre-
diction vector p contributes 1

b+T to the total distance dLA(cw,p), where b is
the number of non-zero bits of cw. This incrementer denoted by Ii for class
ci can be computed as a preprocessing step from the given ECOC Matrix. So,
the update step in line 8 has to be changed to

li ← li + Ii

and the weight of nFull in the sum 17 changes to Ii. Besides, nHalf can be
removed.

Beta Density Distribution Pessimistic Strategy This measure assumes that the
distance is a Beta-distributed random variable parameterized by C and E of
two code words. The Beta distribution is here defined as

ψ(z,E,C) =
1
T
zE(1− z)C

Its expected value is E(ψi) = E
E+C .

Let Zi := arg max
z∈[0,1]

(ψi(z)) and ai ∈ [0, 1] such that

∫ Zi+ai

Zi

ψi(z) =
1
3

then we define
dBD(x, y) = Zi + ai (10)

The value ai is regarded as a pessimistic value, which incorporates the uncer-
tainty of Zi into the distance measure.

Here, we use an approximation of the original strategy. First, similar to the
Laplace Strategy, an incrementer is used to determine Zi = E

E+C . And second,
instead of using a numerical integration to determine Zi + ai, its standard
deviation is added, which is in compliance with the intended semantic of this
overall strategy to incorporate the uncertainty. The incrementer Ii is again set
during a preprocessing step and we change the update step (line 8) to

li ← li + min(1, (Ii + σi)).

The weight for nFull has to be changed to Ii and nHalf has to be removed. In
practice, this approximation yielded in all our evaluations the same prediction
as the original strategy.

The above decoding techniques were just a few examples, which we have
empirically tested. Other techniques can be adapted in a similar fashion. In
general, a distance measure is compatible to QuickECOC if the distance can
be determined bit-wise or incremental, and the iterative estimate of li has to
be monotonically increasing, but must never over-estimate the true distance.
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5 Experimental Results

In this section, we show the results of the empirical evaluation of our al-
gorithms. We focus on the number of classifier evaluations that have to be
performed in order to compute a prediction. We typically do not compare
our results in terms of predictive accuracy, because our algorithms make the
same prediction as their respective versions that use all classifiers. Neverthe-
less, unless mentioned otherwise, the reported results are averages of a 10-fold
cross-validation, in order to get more reliable estimates.

5.1 Pairwise Classification - Evaluation of QWeighted

5.1.1 UCI Datasets

We start with a comparison of the QWeighted algorithm with the full
pairwise classifier and with DDAGs on seven arbitrarily selected multiclass
datasets from the UCI database of machine learning databases (Asuncion and
Newman 2007). We used four commonly used learning algorithms as base
learners (the rule learner Ripper,2 a Naive Bayes algorithm, the C4.5 deci-
sion tree learner, and a support vector machine) all in their implementations in
the Weka machine learning library (Witten and Frank 2005). Each algorithm
was used as a base classifier for QWeighted, and the combination was run on
each of the datasets. A mild parameter tuning was applied to each base algo-
rithm, which does not necessarily help to answer the question of the choice for
best predictive combination on these datasets because of its non-exhaustive
conducting, but were rather applied to take the fact into account that the
predictive performance has an impact on the efficiency of the QWeighted
algorithm. Inner 5-fold cross-validation tuning3 was applied for following base
learners and parameters:

– NB:
– with or without kernel density estimators

– SMO:
– complexity {0.1, 0.2, . . . , 1}
– exponent of polynomial kernel {0.5, 1, 1.5, 2}

– J48:
– confidence factor {0.02, 0.04, . . . , 0.5}
– minimum number instances per leaf {1, 2, 3, 4}

– JRip:
– folds for pruning {2, 3, 4}
– minimum total weight of instances per rule {1, 2, 3}

2 As mentioned above, we used a double round robin for Ripper for both, the full pairwise
classifier and for QWeighted. In order to be comparable to the other results, we, in this
case, divide the observed number of comparisons by two.

3 The CVParameterSelection method implemented in WEKA was used for parameter
tuning.
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– number of optimization runs {1, 2, 3}

All results are obtained via a 10-fold cross-validation except for letter, where
the supplied testset was used. The same experiments were already performed
without parameter tuning and can be found in (Park and Fürnkranz 2007a).

Table 1: Comparison of QWeighted and DDAGs with different base learners on seven
multiclass datasets. The right-most column shows the number of comparisons needed by
a full pairwise classifier (k(k − 1)/2). Next to the average numbers of comparisons n̂ for

QWeighted we show their trade-off
n̂−(k−1)

max−(k−1)
between best and worst case (in brackets).

Accuracy ∅ Comparisons
dataset k learner QWeighted DDAG QWeighted DDAG full

vehicle 4 NB 61.24 ± 4.66 61.12 ± 4.75 4.11 (0.370) 3 6
SMO 80.62 ± 4.30 81.09 ± 4.57 3.70 (0.233)
J48 71.40 ± 3.06 70.70 ± 2.64 3.94 (0.314)
JRip 69.63 ± 7.30 69.99 ± 6.36 4.00 (0.335)

glass 7 NB 51.88 ± 7.77 51.43 ± 7.11 9.68 (0.245) 6 21
SMO 62.66 ± 5.89 63.59 ± 6.29 10.03 (0.269)
J48 70.09 ± 7.43 68.25 ± 5.60 9.81 (0.254)
JRip 68.27 ± 10.39 66.43 ± 10.11 9.77 (0.251)

image 7 NB 85.76 ± 1.20 85.76 ± 1.20 8.95 (0.197) 6 21
SMO 96.58 ± 1.14 96.62 ± 1.13 8.04 (0.136)
J48 95.84 ± 1.29 96.36 ± 1.08 8.65 (0.177)
JRip 96.67 ± 1.32 96.45 ± 1.48 8.77 (0.185)

yeast 10 NB 59.16 ± 3.58 58.96 ± 3.46 15.96 (0.193) 9 45
SMO 58.28 ± 4.05 58.15 ± 3.83 15.48 (0.180)
J48 58.96 ± 3.58 58.29 ± 3.75 15.61 (0.184)
JRip 58.89 ± 3.59 57.81 ± 3.31 15.68 (0.185)

vowel 11 NB 71.41 ± 5.57 71.31 ± 5.43 17.19 (0.160) 10 55
SMO 98.59 ± 1.28 98.38 ± 1.66 14.88 (0.108)
J48 82.73 ± 3.48 78.79 ± 4.07 16.99 (0.155)
JRip 83.64 ± 5.28 77.88 ± 6.01 17.64 (0.170)

soybean 19 NB 92.96 ± 1.83 92.96 ± 1.83 27.70 (0.063) 18 171
SMO 93.40 ± 2.63 93.11 ± 2.70 28.36 (0.068)
J48 93.55 ± 2.63 91.36 ± 2.55 28.98 (0.072)
JRip 93.70 ± 1.97 92.67 ± 2.30 29.79 (0.077)

letter 26 NB 73.93 73.88 43.77 (0.063) 25 325
SMO 91.70 91.13 41.49 (0.055)
J48 91.10 85.90 47.86 (0.076)
JRip 90.23 85.83 47.33 (0.068)

Table 1 shows the results. With respect to accuracy, there are only 5 cases
in a total of 28 experiments (4 base classifiers × 7 datasets) where DDAGs
outperformed QWeighted, whereas QWeighted outperformed DDAGs in
20 cases (3 experiments ended in a tie). Even according to the very conservative
sign test, this difference is significant with p = 0.004. This and the fact that, to
the best of our knowledge, it is not known what loss function is optimized by
DDAGs, confirm our intuition that QWeighted is a more principled approach
than DDAGs.
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Fig. 1: a) Efficiency of QWeighted in comparison to a full pairwise classifier, b) Distribution
of votes for vowel (11-class problem, base learner NB). The x-axis describes the ranking
positions.

With respect to the number of comparisons, it can be seen that the average
number of comparisons needed by QWeighted is much closer to the best case
than to the worst case. Next to the absolute numbers, we show the trade-off
between best and worst case (in brackets). A value of 0 indicates that the
average number of comparisons is k−1, a value of 1 indicates that the value is
k(k− 1)/2 (the value in the last column). As we have ordered the datasets by
their respective number of classes, we can observe that this value has a clear
tendency to decrease with the number of the classes. For example, for the 19-
class soybean and the 26-class letter datasets, only about 6−7% of the possible
number of additional pairwise classifiers are used, i.e., the total number of
comparisons seems to grow only linearly with the number of classes. This can
also be seen from Figure 1a, which plots the datasets with their respective
number of classes together with a curve that indicates the performance of the
full pairwise classifier.

Finally, we note that the results are qualitatively the same for all base
classifiers. QWeighted does not seem to depend on a choice of base classifiers.

5.1.2 Simulation Experiment

For a more systematic investigation of the complexity of the algorithm, we
performed a simulation experiment. We assume classes in the form of numbers
from 1 . . . k, and, without loss of generality, 1 is always the correct class. We
further assume pairwise base pseudo-classifiers Cε

i,j , which, for i < j, return
true with a probability 1− ε and false with a probability ε. For each example,
the QWeighted algorithm is applied to compute a prediction based on these
pseudo-classifiers. The setting ε = 0 (or ε = 1) corresponds to a pairwise
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Table 2: Average number n̂ of pairwise comparisons for various number of classes and dif-
ferent error probabilities ε of the pairwise classifiers using QWeighted, and for the full

pairwise classifier. Below, we show their trade-off
n̂−(k−1)

max−(k−1)
between the best and worst

case, and an estimate of the growth ratio
log(n̂2/n̂1)
log(k2/k1)

of successive values of n̂.

k = 5 k = 10 k = 25 k = 50 k = 100

ε = 0.0 5.43 14.11 42.45 91.04 189.51
0.238 — 0.142 1.378 0.067 1.202 0.036 1.101 0.019 1.058

ε = 0.05 5.72 16.19 60.01 171.53 530.17
0.287 — 0.200 1.501 0.130 1.430 0.104 1.515 0.089 1.628

ε = 0.1 6.07 18.34 76.82 251.18 900.29
0.345 — 0.259 1.595 0.191 1.563 0.172 1.709 0.165 1.842

ε = 0.2 6.45 21.90 113.75 422.58 1,684.21
0.408 — 0.358 1.764 0.325 1.798 0.318 1.893 0.327 1.995

ε = 0.3 6.90 25.39 151.19 606.74 2,504.54
0.483 — 0.455 1.880 0.461 1.974 0.474 2.005 0.496 2.045

ε = 0.4 6.93 27.73 182.58 776.98 3,265.56
0.488 — 0.520 2.000 0.575 2.057 0.619 2.089 0.653 2.071

ε = 0.5 7.12 28.74 198.51 868.25 3,772.45
0.520 — 0.548 2.013 0.632 2.109 0.697 2.129 0.757 2.119

full 10 45 300 1,225 4,950

classifier where all predictions are consistent with a total order of the possible
class labels, and ε = 0.5 corresponds to the case where the predictions of the
base classifiers are entirely random.

Table 2 shows the results for various numbers of classes (k = 5, 10, 25, 50,
100) and for various settings of the error parameter (ε = 0.0, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5). Each data point is the average outcome of 1000 trials with the
corresponding parameter settings. We can see that even for entirely random
data, our algorithm can still save about 1/4 of the pairwise comparisons that
would be needed for the entire ensemble. For cases with a total order and
error-free base classifiers, the number of needed comparisons approaches the
number of classes, i.e., the growth appears to be linear.

To shed more light on this, we provide two more measures below each av-
erage: the lower left number (in italics) shows the trade-off between best and
worst case, as defined above. The result confirms that for a reasonable perfor-
mance of the base classifiers (up to about ε = 0.2), the fraction of additional
work reduces with the number of classes. Above that, we start to observe a
growth. The reason for this is that with a low number of classes, there is still
a good chance that the random base classifiers produce a reasonably ordered
class structure, while this chance is decreasing with increasing numbers of
classes. On the other hand, the influence of each individual false prediction
of a base classifier decreases with an increasing number of classes, so that the
true class ordering is still clearly visible and can be better exploited by the
QWeighted algorithm.

This can also be seen in Figure 1b, which shows the distribution of the
votes produced by the SVM base classifier for the dataset vowel. As shown
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on the scale to right, different color codes are used for encoding different
numbers of received votes. Each line in the plot represents one example, the left
shows the highest number of votes, the right the lowest number of votes. If all
classes receive the same number of votes, the area should be colored uniformly.
However, here we observe a fairly clear change in the color distribution, the
bright areas to the left indicating the the top-rank class often receives nine or
more votes, and the areas to the right indicating that the lowest ranking class
typically receives less than one vote (recall that we use weighted voting).

We tried to directly estimate the exponent of the growth function of the
number of comparisons of QWeighted, based on the number of classes k.
The resulting exponents, based on two successive measure points, are shown
in bold font below the absolute numbers. For example, the exponent of the
growth function between k = 5 and k = 10 is estimated (for ε = 0) as
log(14.11/5.43)

log(10/5) ≈ 1.378. We can see that in the growth rate starts almost lin-
early (for a high number of classes and no errors in the base classifiers) and
approaches a quadratic growth when the error rate increases.4

5.1.3 Datasets with Large Number of Classes

In addition to the small datasets from Table 1, we evaluated the QWeighted
algorithm on three more real world datasets with a relative high number of
classes:

Uni-label RCV1-v2
RCV1-v2 (Lewis et al. 2004) is a dataset consisting of over 800,000 cat-
egorized news articles from Reuters, Ltd. For the category topic multiple
labels from a total of 103 hierarchically organized labels are assigned to the
instances. We transformed this original multilabel dataset to a multiclass
dataset by selecting the assigned label with the greatest depth in the hier-
archical tree as the class label. We applied this procedure on the provided
trainset and testset no. 0 by Lewis et al. resulting to a multiclass dataset
with 100 classes, 23,149 train- and 199,328 test-instances, with at least one
positive example for each of the 100 classes. We selected 2,000 features
according to a χ2-based feature selection (Yang and Pedersen 1997). We
will refer to this created dataset as urcv1-v2.

ASTRAL 2 & 3
These datasets describe protein sequences retrieved from the SCOP 1.71
protein database (Murzin et al. 1995). We used ASTRAL (Brenner et al.
2000) to filter these sequences so that no two sequences share greater than
95% identity. The class labels are organized in a 3-level hierarchy, consisting
of protein folds, superfamilies and families (in descending order). astral3
consists of 1,588 classes and contains the original hierarchy. To fill the gap

4 At first sight, it may be surprising that some of the numbers are greater than 2. This
is a result of the fact that k(k − 1)/2 = k2/2 − k/2 is quadratic in the limit, but for low
values of c, the subtraction of the linear term k/2 has a more significant effect. Thus, e.g.,

the estimated growth of the full pairwise classifier from k = 5 to k = 10 is
log(45/10)
log(10/5)

≈ 2.17.
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Table 3: Results of QWeighted for datasets with a relative high number of classes. Below,

we show their trade-off
n̂−(k−1)

max−(k−1)
between the best and worst case (base learner J48).

dataset k QW full Accuracy

urcv1-v2 100 312.62 4,950 62.1
(0.0440)

astral2 971 9,490.81 470,935 24.8
(0.0018)

astral3 1,588 28,476.20 1,260,078 20.8
(0.0213)

between datasets urcv1-v2 and astral3 in terms of number of classes, we
constructed a second dataset astral2 by limiting the hierarchical depth to 2.
So, two instances which previously shared the same superfamily x are now
assigned to superfamily x as new class label. By decreasing the depth, the
number of classes were reduced to 971. Both datasets have 13,006 instances
and 21 numeric attributes (20 amino acids plus selenocysteine).

Table 3 shows the results of these experiments. For astral2 and astral3, 66
percent of all instances were used for training and the rest for testing. Once
again, trade-off values were estimated for the average number of pairwise com-
parisons. As these values show, QWeighted uses only a fairly small amount
compared to a full voting aggregation and is much closer to the best case than
to the worst case (k(k− 1)/2 comparisons). One can see an increasing growth
of the trade-off values between astral2 and astral3. However, this effect can be
explained with the general poor classification accuracy of protein sequences.
According to the simulation results, there exist a correlation between perfor-
mance of QWeighted and performance of the underlying base classifiers.
The decreased accuracy on astral3 compared to astral2 (right-most column)
indicates weaker base classifiers, which leads to a increasing number of needed
pairwise comparisons.

In summary, our results indicate that the QWeighted algorithm always
increases the efficiency of the pairwise classifier: for high error rates in the base
classifiers, we can only expect improvements by a constant factor, whereas for
the practical case of low error rates we can also expect a significant reduction
in the asymptotic algorithmic complexity.

5.1.4 Overall Complexity

Besides the complexities for the comparisons, the overall complexity of the
algorithm including the inherent overhead of the algorithm, e.g. estimating the
next classifier Ca,b and so on, can be stated as g(k) · (k+ p) operations, where
g(k) denotes the number of comparisons in dependance of k and p describes the
cost of one comparison (prediction) in terms of basic operations. The summand
k is here understood as the operations for the overhead involving additions,
value associations and argmin operations, which can be implemented in an
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Fig. 2: Approximate computational savings for p = 20 and assumed average complexity of
k · log k of QWeighted

incremental manner with O(k) by maintaining a sorted vector of classes (for
the limits li) updated after each comparison and using a 2-dimensional boolean
array which maintains the status of the classifiers (evaluated/not evaluated).

Given the empirical evidences, lets assume g(k) = k · log k. This results in
a total of k2 · log k + p · k · log k operations. Obviously, the overall asymptotic
complexity of QWeighted is worse than the complexity for standard voting
of O(k2), such that for very large k the complexity of the standard voting is
favoured. But, in practice for reasonable assumptions, e.g p� 1 (keep also in
mind that p can increase for some learning schemes, for e.g. in dependance of
the number of training instances), there exist an upper limit k̂ ∈ N such that
k2 · log k + p · k · log k is significantly smaller than p · k·(k−1)

2 for k < k̂.
To give a clearer picture, consider figure 2, where the difference of both

quantities, i.e. p · k·(k−1)
2 − (k · log k · (k+ p)) is plotted for p = 20 (20 atomar

operations needed for one prediction). The graph shows the saved number of
operations by using QWeighted in contrast to standard voting procedure
in dependance of k. The left figure shows the savings up to the critical class
count k̂ ≈ 22, 000 and the right figure shows the same plot for the selected
range k = [1, 1000], which corresponds approximately to the typical range in
real-world datasets.

5.2 ECOC Classification - Evaluation of QuickECOC

In this section, we evaluate the performance of QuickECOC for a variety of
different codes. In addition, we were interested to see if it works for all decoding
methods and whether we can gain insights on which factors determine the
performance of QuickECOC. In particular, we investigated the effects of the
sparsity and length of the codes.

5.2.1 Experimental Setup

In contrast to the results presented in the previous section, we only used
the decision tree learner J48 with default parameters as a base learner, to
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restrict the already large number of the experiments. Besides, the results in
Section 5.1 gave no indication that the performance in terms of the number
of needed comparisons depends on the choice of the base classifier. Thus, we
are quite confident that the presented results are representative for other base
classifiers.

Our setup consisted of

– 5 encoding strategies: BCH Codes and two versions each of exhaustive
and random codes.

– 7 decoding methods: Hamming, Euclidean, attenuated Euclidean, linear
loss-based, exponential loss-based, Laplacian Strategy and Beta Density
Probabilistic Pessimistic

– 7 multiclass datasets selected from the UCI Machine Learning Reposi-
tory.

For the encoding strategies, we also tried several different parameters. Re-
garding the exhaustive codes, we evaluated all (k, l) codes ranging from l = 2
to l = k per dataset and analogously for the cumulative version. For the
generation of the first type of random codes the zero symbol probability was
parametrized by r = 0.2, 0.4, 0.6, 0.8 and the dimension of the coding matrix
was fixed to 50 % of the maximum possible dimension with respect to the num-
ber of classes. The second type of random codes was generated by randomly
selecting 20%, 40 %, 60 % and 80% from the set of all valid classifiers respec-
tively columns (all columns of an (k, k) cumulative ternary coding matrix)
without repetition. Regarding BCH Codes, we generated 7, 15, 31, 63, 127 and
255-bit BCH codes and randomly selected n rows matching the class count
of the currently evaluated dataset. For the datasets machine and ecoli where
the number of classes is greater than 7, we excluded the evaluation with 7-bit
BCH codes.

For the evaluation of QuickECOC, the seven datasets were selected to
have a rather low number of different classes. The main reason for this limita-
tion was that for some considered code types the number of classifiers grows
exponentially. Especially for the datasets with the maximum number of eight
classes (machine and ecoli), the cumulative ternary exhaustive codes gener-
ates up to 3025 classifiers. In addition, we evaluated all possible combinations
of decoding methods, code types with various parameters, which we can not
present here completely (in total 1246 experiments) because of lack of space.
Nevertheless, we performed experiments with a few of more efficient codes on
datasets with larger number of classes as well. These will be shown in Sec-
tion 5.2.6.

Because of the high number of experiments, we cannot present all results
in detail, but will try to focus on the most interesting aspects. In addition to
assess the general performance of QuickECOC, we will analyze the influence
of the sparsity of the code matrix, of the code length, and of different decoding
strategies.
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5.2.2 Reduction in Number of Evaluations

Table 4 shows the reduction in the number of classifier evaluations with Quick-
ECOC on all evaluated datasets with Hamming decoding and ternary exhaus-
tive codes. In every column, the average number of classifier evaluations is
stated with its corresponding ratio to the number of generated classifiers in
italics (the lower the better). The datasets are ordered from left to right by
ascending class-count. As the level parameter l is bounded by the class-count
k, some of the cells are empty.

One can clearly see that QuickECOC is able to reduce the number of
classifier evaluations for all datasets. The percentage of needed evaluations
ranges from about 81 % (vehicle, l = 4) to only 35 % (machine, l = 3). At
first glance, these improvements may not seem striking, because a saving of a
little less than 40% for the small datasets does not appear to be such a large
gain. However, one must put these results in perspective. For example, for the
vehicle dataset with a (4, 3)-exhaustive code, QuickECOC evaluated 65.9% of
all classifiers. A (4, 3)-exhaustive code has 12 classifiers, and each individual
class is involved in 75% of these classifiers (cf. the example in Section 2.4).
Thus, on average, QuickECOC did not even evaluate all the classifiers that
involve the winning class before this class was predicted.

Furthermore, one can observe a general trend of higher reduction by in-
creasing class-count. This is particularly obvious if we compare the reduction
on the exhaustive codes (the last line of each column, where l = k), but can
also be observed for individual code sizes (e.g., for l = 3). Although we have
not performed a full evaluation on datasets with a larger amount of classes
because of the exponential growth in the number of classifiers, a few informal
and quick tests supported the trend: the higher the class-count, the higher the
reduction.

Another interesting observation is that except for dataset vehicle and auto
the exhaustive ternary codes for level l = 3 consistently lead to the best
QuickECOC performance over all datasets. A possible explanation based on
a “combinatorial trade-off” is briefly described in the appendix.

The results for BCH codes are shown in Table 5. Again, we can observe
an improved performance in all cases. This result is particularly interesting
because for BCH-codes, all coding matrices are dense, i.e., they do not have

Table 4: QuickECOC performance using Hamming Decoding and Exhaustive Ternary
Codes. The maximal relative standard deviation for all values is 8.65% with mean 3.88%.

vehicle derm. auto glass zoo ecoli machine
l = 2 3.82 63.7 7.12 47.5 7.95 37.9 9.99 47.6 9.48 45.1 11.75 42.0 11.60 41.4
l = 3 7.91 65.9 26.05 43.4 42.86 40.8 43.47 41.4 41.64 39.7 58.85 35.0 57.90 34.5
l = 4 5.65 80.8 46.30 44.1 115.22 47.0 116.45 47.5 107.03 43.7 199.31 40.7 194.81 39.8
l = 5 43.11 47.9 163.67 52.0 163.98 52.1 148.50 47.1 369.06 43.9 355.23 42.3
l = 6 16.54 53.4 114.87 52.9 116.77 53.8 102.41 47.2 394.25 45.4 369.19 42.5
l = 7 34.24 54.3 37.84 60.1 31.52 50.0 234.80 46.6 218.09 43.3
l = 8 62.17 49.0 57.27 45.1
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Table 5: QuickECOC performance on BCH Codes. The maximal relative standard deviation
for all values is 10.2% with mean 5.64%.

vehicle derm. auto glass zoo ecoli machine
7 0.764 0.774 0.851 0.880 0.834 - -
15 0.646 0.656 0.699 0.717 0.659 0.670 0.648
31 0.571 0.564 0.607 0.662 0.581 0.602 0.558
63 0.519 0.506 0.567 0.616 0.517 0.540 0.509
127 0.489 0.447 0.522 0.565 0.477 0.493 0.459
255 0.410 0.380 0.450 0.467 0.397 0.417 0.388
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Fig. 3: QuickECOC performance on random codes

any zero entries. Even in this case, we see that there was no situation, where
all classifiers were needed for multiclass classification. And again, we observe
that for higher dimensions (increasing the length of the BCH bit code) higher
reductions can be observed.

For random codes, we obtained qualitatively the same results. We do not
show them here, but but some of them will appear in the following sections.

5.2.3 Sparsity of Coding Matrices

We define the sparsity of the ECOC matrix as the fraction of zero values it
contains. Random codes provide a direct control over the matrix sparsity (as
described in Section 2.4), and are thus suitable for analyzing the influence of
the sparsity degree of the ECOC matrix for QuickECOC. Note, however,
that the observed influences regarding sparsity and dimension of the matrix
on the QuickECOC performance can also be seen in the evaluations of the
other code types, but not as clearly as with the random codes presented in
this section.

Figure 3a shows QuickECOC applied to random codes with varying ma-
trix sparsity. A clear trend can be observed that the higher the sparsity of
the coding matrix the better the reduction for all datasets. Keep in mind that
the baseline performance (evaluating all binary classifiers) is a parallel to the
x-axis with the y-value of 1.0. Note that the absolute reduction tends to be
minimal over all considered datasets at datasets with higher class-counts i.e
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machine at 80 % sparsity, and the lowest reduction can be seen for the dataset
vehicle with the smallest number of classes n = 4 at 20 % sparsity.

The main effect of an increase of sparsity on the coding matrices is that
for each class the number of incident classifiers decreases. For sparsity 0, all
classes are involved in all classifiers, for sparsity 0.5, each class is (on average)
involved in only half of the classifiers. This will clearly affect the performance
of the QuickECOC algorithm. In particular, the second stopping criterion
essentially specifies that the true class is found if all incident classifiers for
the favorite class i0 have been evaluated. Clearly, the algorithm will terminate
faster for higher sparsity levels (ignoring, for the moment, the possibility that
the first stopping criterion may lead to even faster termination).

5.2.4 Code Length

The second type of random codes, which were generated by randomly selecting
a fixed number from the set of all possible binary classifiers can be seen in
Figure 3b. All coding matrices for a k-class dataset have nearly the same
sparsity, which relates to the average sparsity of (k, k) cumulative exhaustive
codes and differ only in the length of the coding matrix (in percent of the total
number of possible binary classifiers). This allows us to observe the effect of
different numbers of classifiers on the QuickECOC performance. Here, we
can also see an consistent relationship, that higher dimensions lead to better
performance, but the differences are not as remarkable as for sparse matrices.

For a possible explanation, assume a coding matrix with fixed sparsity and
we vary the dimension. For a higher dimension the ratio of number of classi-
fiers per class increases. Thus, on average, the number of incident classifiers for
each class also increases. If we now assume that this increase is uniform for all
classes, this has the effect that the distance vector l is multiplied by a positive
factor x > 1, i.e., l+ = l ∗ x. This alone would not change the QuickECOC
performance, but if we consider that classifiers are not always perfect, we can
expect that for higher number of classifiers, the variance of the overall predic-
tion will be smaller. This smaller variance will lead to a more reliable voting
vectors, which can, in turn, lead to earlier stopping. It also seems reasonable
that this effect will not have such a strong impact as the sparsity of the coding
matrix, which we discussed in the previous section.

5.2.5 Different Decoding Strategies

As previously stated, because of the large number of experiments, we can not
give a complete account of all results. We evaluated all combinations of exper-
iments, that includes also all mentioned decoding methods. All the previously
shown results were based on Hamming decoding, since it is still one of the com-
monly used decoding strategies even for ternary ECOC matrices. However, we
emphasize, that all observations on this small subset of results can also be
found in the experiments on the other decoding strategies. As an exemplary
data point, Table 6 shows an overview of the QuickECOC performance for all



30

Table 6: QuickECOC performance on the 8-class ecoli datasets with all decoding methods
and Cumulative Exhaustive Ternary Codes. The first two columns show the number of non-
zero code values for each class and the number of resulting classifiers. The maximal relative
standard deviation for all values is 3.76% with mean 2.69%.

|C| Hamming Euclidean A. Euclidean LBL LBE Laplace BDDP
l = 2 28 0.420 0.420 0.420 0.399 0.398 0.406 0.426
l = 3 196 0.331 0.331 0.331 0.335 0.350 0.332 0.333
l = 4 686 0.377 0.377 0.377 0.383 0.402 0.374 0.375
l = 5 1526 0.400 0.400 0.400 0.414 0.439 0.399 0.401
l = 6 2394 0.421 0.421 0.421 0.437 0.466 0.419 0.418
l = 7 2898 0.427 0.427 0.427 0.444 0.475 0.426 0.425
l = 8 3025 0.428 0.428 0.428 0.446 0.477 0.427 0.426

decoding strategies for the dataset ecoli using cumulative exhaustive ternary
codes. It can be seen that the performance is quite comparable on all datasets.
Even the optimal reduction for l = 3 can be found in the results of all decoding
strategies.

5.2.6 Datasets with Larger Numbers of Classes

The previous sections evaluated and analyzed QuickECOC on a broad spec-
trum of various code types and decoding methods. This was only feasible
for datasets with smaller number of classes. In this section, we will evaluate
QuickECOC on datasets with larger number of classes. As the code length
of most coding strategies is exponential in the number of classes k, we selected
a few codes which generate a comparably low number of classifiers:

1. (k, 3)- and (k, 4)-exhaustive ternary codes
2. (k, 4)-cumulative exhaustive ternary codes
3. random codes of type 1 with fixed sparsity of 66%
4. random codes of type 2

For both random code types the code length was set to the equivalent of the
number of (k, 4)-cumulative exhaustive codes, i.e. n =

∑4
i=2

(
k
i

)
· (2i−1 − 1).

Table 7 shows the results for Hamming decoding. Each cell shows the
average number of classifier evaluations of QuickECOC and, in italics, its
corresponding ratio to the full number of classifiers. First, we can observe a
considerably higher improvement than with the results on the datasets with
lower number of classes. The best reduction can be found for the (19, 3)-
exhaustive code for the soybean dataset, where QuickECOC only performs
about 15% of the evaluation in order to determine the winning class.

Moreover, one can clearly see an increasing reduction for increasing number
of classes k, especially for the first three columns respectively code types. For
these code types, the sparsity increases with k, since the number of non-zero
values per column stays fixed whereas the number of rows (the number of
classes k) of the corresponding ECOC matrix is increased. This observation
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Table 7: QuickECOC performance on datasets with high number of classes. The maximal
relative standard deviation for all values is 2.37% with mean 1.65%.

k exh. l = 3 exh. l = 4 cum. exh. l = 4 random1 random2
yeast 10 105.92 0.294 524.13 0.357 631.02 0.337 844.02 0.296 1351.94 0.474
vowel 11 139.42 0.282 797.32 0.345 937.43 0.328 880.89 0.306 1388.74 0.482
soybean 19 443.89 0.153 5351.90 0.197 5804.73 0.192 8481.74 0.282 12964.83 0.431

Table 8: Average number n̂ of comparisons for various number of classes and different error
probabilities ε of ECOC classifiers using QuickECOC with exhaustive ternary codes of level
3, and for the full ensemble of classifiers. Below, we show the ratio to the full number of

comparisons and an estimate of the growth ratio
log(n̂2/n̂1)
log(k2/k1)

of successive values of n̂.

k = 5 k = 10 k = 25 k = 50 k = 100

ε = 0.0 13.00 93.00 783.00 3,433.00 14,358.00
0.433 — 0.258 2.839 0.113 2.325 0.058 2.132 0.030 2.064

ε = 0.05 14.31 101.18 951.28 7,432.19 61,244.02
0.477 — 0.281 2.822 0.138 2.446 0.126 2.966 0.126 3.043

ε = 0.1 15.95 114.85 1,734.24 14,588.86 119,232.96
0.532 — 0.319 2.848 0.251 2.963 0.248 3.072 0.246 3.031

ε = 0.2 19.78 177.30 3,296.39 27,589.68 223,472.28
0.659 — 0.492 3.164 0.478 3.190 0.469 3.065 0.461 3.018

ε = 0.3 24.62 249.87 4,733.95 39,396.05 319,798.78
0.821 — 0.694 3.343 0.686 3.210 0.670 3.057 0.659 3.021

ε = 0.4 27.71 309.34 5,993.48 50,121.35 407,887.14
0.924 — 0.859 3.481 0.869 3.235 0.852 3.064 0.841 3.025

ε = 0.5 29.08 336.05 6,635.10 57,502.71 478,871.55
0.969 — 0.933 3.530 0.962 3.255 0.978 3.115 0.987 3.058

full 30 360 6900 58,800 485,100

confirms our results of Section 5.2.3, which showed that a high sparsity is
beneficial for the performance of QuickECOC.

We can also confirm our results regarding the influence of the code length
(Section 5.2.4). Both types of random codes, shown in the last two columns,
have a fixed sparsity level. In both cases, although a small improvement can
be observed (just as in Figure 3b), the improvement is small in comparison to
the improvement resulting from increased sparseness. For example, on datasets
yeast (k = 10) and soybean (k = 19), QuickECOC applies for the second
type of random codes in average 47% and 43% classifier evaluations, which is
a relative reduction/ratio of about 10 %, whereas for (k, 3)-exhaustive codes
a relative reduction of 0.153/0.294 ≈ 48% is gained.

5.2.7 Simulation Experiment

We also conducted a simulation experiment for QuickECOC, similar in spirit
to the pairwise case (Section 5.1.2). Again, we consider classes 1 . . . k and al-
ways assume that class 1 is the correct class and further assume that pseudo
base classifiers f ε

i return the desired prediction with probability ε, i.e., with
probability ε, they predict the same sign in the ECOC matrix as the smallest
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incident class of f ε
i . We simulate the efficiency of QuickECOC using exhaus-

tive ternary codes of level 3 for various class counts k and error probabilities
ε. Table 8 shows the results.

In contrast to pairwise classification, we can observe that the base-classifier
accuracy now has a stronger influence on the efficiency. In the case of random
classifiers ε = 0.5, we can observe almost no reduction, as was the case for
pairwise classification (though for greater k, it might converge to the worst-
case there too). But, for ε < 0.5, focusing on the ratio values, one can see an
increasing reduction trend for increasing k, which slowly looses its steepness.
The growth values suggest that only in the near optimal case ε < 0.05, a
super-linear reduction with the number of classes can be expected.

However, in absolute terms, the reduction can be significant for predictors
with high computational complexity. Furthermore, this analysis was based on
one of many applicable code types which can be used with ECOC. Other code
types, e.g. codes with beneficial error-correcting ability or codes which may
not grow exponentially in k like the considered exhaustive ternary code, may
perform differently.

5.2.8 Overall Complexity

Since the QuickECOC algorithm is more general than QWeighted, its over-
head is significantly greater. The stopping criteria depicted in the pseudocode
2 can be implemented in an incremental manner such that the complexity is
O(k), by maintaining for each class a variable storing the potential worst-case
hamming distance and updating only the relevant values after each compar-
ison (prediction). All in all, the overhead is linear in k except for the Next
Classifier Selection Scheme (cf. 4.2), which complexity is O(nk). Therefore,
the computational savings diminishes in this case far more quicker as in the
case of QWeighted for pairwise classification.

A reduction of operations is still possible for problems up to about k = 10
and depending of the actual prediction complexity and code type. But for
greater class counts the overhead starts to dominate the overall complexity
such that the efficiency is worse than standard voting. In these cases, a rea-
sonable choice is to work with alternative selection schemes, which check only
a fixed number of classifiers incident of the current best class. Or selecting
an unevaluated classifier randomly from the set of incident classifiers to the
current best class is an alternative, with a slight decrease in comparisons effi-
ciency but important increase in overall efficiency of the algorithm. Note, this
passage holds for code types which grow exponentially in k, e.g. exhaustive
ternary codes. In cases of more practicable code types, such as BCH codes,
the overhead of the algorithm remains still in the tolerable range.
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6 Conclusions

In this paper, we have proposed an algorithm that allows to speed up the
prediction phase for binary decomposition methods such as pairwise classifi-
cation and, more generally, ternary ECOC classifiers. Both variants only need
to evaluate a fraction of the classifiers, but are guaranteed to make the same
prediction as the original version using all classifiers. In general, this gain in-
creases with the complexity of the problem, i.e., with the number of classes,
with the sparsity of the coding matrix, and (somewhat less) with the length
of the code words of the ECOC classifiers. But even for very hard problems,
where the performance of the binary classifiers reduces to random guessing,
practical gains can be expected.

For the general case of ternary ECOC matrices, which subsume nearly all
possible binary decomposition schemes, we have demonstrated this gain for a
wide variety of coding and decoding strategies. Regardless of the used code,
QuickECOC improves the overall prediction efficiency, but, depending on
the coding strategy, the amount of improvement is not always as striking as
for the pairwise case, where we could observe a reduction from k2 to k · log k.
One must keep in mind that in ECOC codings, each class has a much larger
number of incident classifiers, and thus a higher number of evaluations must
be expected to determine the winning class. Moreover, for code types whose
code length grows exponentially with the number of classes, the overhead of
QuickECOC (in its presented form) can dominate the gained reduction of
classifier evaluations, thus resulting in a worse performance than standard
voting. However, we briefly described alternative more overhead-efficient ap-
proaches which allow to adjust QuickECOC to the problem at hand such
that a beneficial reduction can still be expected. In general, we recommend
the practitioner to carefully pre-assess the parameters of the present problem,
such as the number of classes k, code type and prediction complexity in terms
of base operations, integrate them into the overall complexity model and to
adjust the selection scheme to maximize the efficiency performance.

One could argue that typically the training phase is more expensive than
the classification phase, and that the gains obtained by QuickECOC are
negligible in comparison to what can be gained by more efficient coding tech-
niques. While this is true, we note that QuickECOC can obtain gains in-
dependent of the used coding technique, and can thus be combined with any
coding technique. In particular in time-critical applications, where classifiers
are trained once in batch and then need to classify on-line on a stream of
in-coming examples, the obtained savings can be decisive.

Another point to consider is that in applications where the classification
time is crucial, a parallel approach could be applied effectively because each
classifier defined by a column of the ECOC matrix can be evaluated inde-
pendently. QuickECOC looses this advantage because the choice of the next
classifier to evaluate depends on the results of the previous evaluations. How-
ever, QuickECOC can still be parallelized on the instance level instead of
the classifier level. Given n processors or n threads we want to utilize, we



34

select n incoming test instances and apply QuickECOC for each of them.
Basically by paralleling the decoding process on the instance level, we avoid
the problem that QuickECOC can not be directly parallelized on the classi-
fier level for one instance. This method is still very efficient, since every CPU
is constantly utilized. Considering that in total, the number of evaluations is
decreased by using QuickECOC, a higher speed up can be expected as with
a straight-forward parallelization of ECOC.

Recently, Hsu et al. (2009) presented an efficient ensemble approach for
multilabel classification. They exploit the general label sparseness in target
vectors of real-world multilabel problems to reduce the number of the labels to
O(log k) using techniques from compressed sensing. Instead of learning k one-
against-all regression predictors for generating a multiclass predictor, they only
need to learn (and therefore to predict) about log k regression predictors. Since
multiclass classification is a special case of multilabel classification (by limiting
the label size to 1) and noting that it poses a maximal label-sparse multilabel
problem, their results naturally also apply to multiclass classification. However,
it is not entirely clear how their ensemble approach consisting of a one-against-
all decomposition with regression base-learners performs in comparison to the
commonly studied classification-based ensemble approaches with respect to
predictive performance. Moreover, input or output data transformations yield
often to a reduction of the comprehensibility of the learned models, which is
disadvantageous for the acceptance in real-world applications, where a white-
box property of the system is favoured. A direct comparison of this work to
conventional classification-based decompositions is certainly interesting and
overdue, but beyond the scope of this work, where our goal was to improve
the classification time of well established ensemble techniques.

There might still be some potential for improving our results with better
heuristics for the selection of the next classifier, we have not yet thoroughly
explored this parameter. For example, one could try to adapt ideas from active
learning for this process. Nevertheless, however, we do not expect a high gain.
Furthermore we consider an in-depth analysis of existing fast decoding meth-
ods in coding theory, and the investigation of the transferability to the multi-
class classification setting as promising directions for future work. Finally, we
are also working on expanding these results to other learning problems where
binary decomposition techniques are applied. To that end, we have obtained
very positive results for the calibrated ranking approach to multilabel classifi-
cation (Menćıa et al. 2010), and have promising preliminary results for ranking
problems (Park and Fürnkranz 2007b).
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Appendix 1 Analysis of (k,3)-Exhaustive Ternary Codes

Since we are interested in conditions under which QuickECOC performs
well, this special case of exhaustive ternary codes was further investigated.
In this regard, we examined the reduction effects of the two stopping criteria
separately with varying levels on several datasets.

It is easy to see that the performance regarding the second stopping crite-
rion is strongly dependent on the incidency of the ECOC matrix. Considering
that the selection process of QuickECOC always selects incident classifiers
of the current best class c0, the number of classifier evaluations can be es-
timated as #I0 + #R0 whereas Ii is the set of incident and Ri ⊆ N \ Ii is
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Fig. 4: Dependency of stopping criteria for different levels respectively incidencies (ecoli)

a subset of non-incident classifiers of ci.5 These remaining classifiers R can
be caused by initial random pairings until a classifier involving the true class
c0 is evaluated. Even then, depending on the accuracy of the classifiers, still
some non-incident classifiers can be falsely selected and evaluated in the next
steps. In this context, the second stopping criterion can be seen as a reduction
method which tries to minimize the non-incident classifier evaluations. Con-
sidering that for increasing level l the incidency of exhaustive ternary codes is
constantly increasing, the reduction performance of the second criterion alone
is decreasing percentagewise.

On the other hand, the first stopping criterion also tries to reduce the
number of incident classifier evaluations. But this comes with a price: in general
more evaluations of classes different from c0 have to be evaluated to enable an
earlier cut. But this case comes naturally by increasing the level, since each
classifier involves an increasing number of classes, so that already with fewer
evaluations, a reasonable amount of votes have been distributed. So in short, by
increasing the level l, which increases the incidency, the reduction performance
of QuickECOC is more and more due to the first stopping criterion whereas
the impact of the second criterion decreases.

These considerations can be confirmed in Figure 4 and 5. Figure 4 shows
the performances of QuickECOC with both stopping criteria, without the
first criterion, and the incidency of the ECOC matrix for a given exhaus-
tive ternary code level using the example of the dataset ecoli (k = 8). The
differences between the red and blue lines on the left depict the additional
improvement caused by the first stopping criterion, which can be seen also
separately in Figure 5a. In line with the above considerations, one can see
that the performance of QuickECOC without the first criterion is similar to
the number of incident classifiers for a given level, it almost converges to it.
Thus, the amount of non-incident classifiers R seems to decrease. We can ob-
serve that the first criterion begins to reduce the evaluations at l = 3 and the
gain increases with increasing level (see also 5a). This additional improvement

5 Actually, for exhaustive ternary codes, it holds #Ii = #Ij and #Ri = #Rj for arbitrary
ci, cj ∈ K and fixed level l. Thus, #I and #R are in this case only dependant on l and k.
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Fig. 5: Impact of stopping criteria for reduction under varying level of exhaustive ternary
codes (ecoli)

for l = 3 is nevertheless not the only reason for the best performance, since the
improvement is too small. However, observing the figure, the right question
seems rather why QuickECOC does perform so much worse for l = 2 rather
than why l = 3 yields the best performance. For the sake of simplicity, it seems
sufficient to consider only the second stopping criterion for this matter in the
following.

For this case we describe a model which approximates the observed effect
and therefore could yield a possible explanation. Assume that all classes form
a linear order with respect to their votes, i.e. v(c1) > v(c2) > · · · > v(ck)
and that every classifier f returns a prediction in favour to the class with the
highest (true) votes among the incident classes, i.e. the evaluation of f votes
for the classes ci, whose signs equal the one of class c∗ = arg maxci∈IN(f)v(ci)
and IN(f) represents the set of incident classes of f . In addition, we reduce
QuickECOC to a simple method which follows the only rule: Pick as the next
classifier a remaining one which involves the classes with the lowest count of
lost games. Now, we consider the worst case of classifier evaluation sequences,
the maximal number of evaluations, until the true best class c0 has been eval-
uated once as an estimate for R. It turns out that this count is k − l for a
given level l of exhaustive ternary codes. Then, because of our assumptions,
the following holds: if a classifier involving the true class c0 is evaluated, all
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remaining classifiers will be an incident classifier of c0. So, the worst case com-
plexity of this setting is k − l+ #I0(l). As stated before, the cardinality of I0
is given by l and k, more precisely #I0(l) = #I(l) = l

kn(k, l). This simplified
model provides a surprisingly close fit to the empirical values, as one can see
in Figure 6.

One can show that

2 = arg max
l∈{2...k}

k − l
n(k, l)

= arg max
l∈{2...k}

k − l(
k
l

)
(2l−1 − 1)

and in particular

k − 2 + #I0(2)
n(k, 2)

>
k − 3 + #I0(3)

n(k, 3)
<
k − l + #I0(l)

n(k, l)
, where k ≥ l > 3

for k > 4.
So, the ratio of non-incident classifiers R has yet a significantly strong

influence on the reduction for l = 2, in fact, it is the only case where R exceeds
the constant increase of I0 for the next level l = 3, i.e. k−2

n(k,2) > ∆#I0
n = 1

k . This
yields a minimum of (#R+#I)/n for l = 3, since R has an exponential decay,
thus its influence for the overall reduction diminishes very fast (cf. Figure 6 or
the differences of red and green values in Figure 4), whereas #I is constantly
increasing. Here, the quantity of non-incident classifiers R was explained as
the possible maximum amount of classifier evaluations avoiding the class c0.


