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Abstract. Recently a strong poker-playing algorithm called DeepStack was pub-
lished, which is able to find an approximate Nash equilibrium during gameplay
by using heuristic values of future states predicted by deep neural networks. This
paper analyzes new ways of encoding the inputs and outputs of DeepStack’s deep
counterfactual value networks based on traditional abstraction techniques, as well
as an unabstracted encoding, which was able to increase the network’s accuracy.
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1 Introduction

Poker has been an interesting subject for many researchers in the field of machine learn-
ing and artificial intelligence over the past decades. Unlike games like chess or checkers
it involves imperfect information, making it unsolvable using traditional game solving
techniques. For many years the state of the art approach for creating strong agents for
the most popular poker variant of No-Limit Hold’em involved computing an approxi-
mate Nash equilibrium in a smaller, abstract game, using algorithms like counterfactual
regret minimization and then mapping the results back to situations in the real game.
However, those abstracted games are several orders of magnitude smaller than the actual
game tree of No-Limit Hold’em. Hence, the poker agent has to treat many strategically
different situations as if they were the same, potentially resulting in poor performance.

Recently a work was published, combining ideas from traditional poker solving
algorithms with ideas from perfect information games, creating the strong poker agent
called DeepStack. The algorithm does not need to pre-compute a solution for the whole
game tree, instead it computes a solution during game play. In order to make solving
the game during game play computationally feasible, DeepStack does not traverse the
whole game tree, instead it uses an estimator for values of future states. For that purpose
a deep neural network was created, using several million solutions of poker sub-games
as training data, which were solved using traditional poker solving algorithms.

? This is the authors’ version of the work retrieved from http://www.ke.tu-darmstadt.de. The
final publication is available at Springer at http://dx.doi.org/10.1007/978-3-030-00111-7_26
and appeared in Trollmann F., Turhan AY. (Eds.): KI 2018: Advances in Artificial Intelligence.
41st German Conference on AI, Berlin, Germany, September 2428, 2018, Proceedings. Lecture
Notes in Computer Science, Vol. 11117. 2018. An extended version appeared in the arXiv
Computing Research Repository CoRR:1807.00900 [cs.AI], https://arxiv.org/abs/1807.00900.
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It has been proven, that, given a counterfactual value network with perfect accuracy,
the solution produced by DeepStack converges to a Nash equilibrium of the game. This
means on the other hand, that wrong predictions of the network can result in a bad so-
lution. In this paper we will analyze several new ways of encoding the input features of
DeepStack’s counterfactual value network based on traditional abstraction techniques,
as well as an unabstracted encoding, which was able to increase the network’s accuracy.
A longer version of this paper additionally analyzes the trade-off between the number
of training examples and their quality [7] and many more aspects [6].

2 The Poker-Agent DeepStack

In the popular poker variant No-limit Hold’em for two players (Heads-up) each player
receives two private cards which can be combined with five public cards [c.f., e.g. 20].
Players are then betting on whose five cards have the highest rank, according to the
rules of the game. The Counterfactual Regret Minimisation (CFR) algorithm [20] and
its variants [9, 4, 19] are state-of-the-art for finding approximate Nash equilibria [16] in
imperfect information games and were the basis for the creation of many strong poker
bots [20, 11, 18, 5] such as Libratus [17] which recently won a competition against
human professional players. CFR can be used to compute a strategy profile σ and the
corresponding counterfactual values (CV) at each information set I . The information
sets correspond to the nodes in the game tree and the strategy profile assigns a prob-
ability to each legal action in an information set. Roughly speaking, the CV vi(σ, I)
corresponds to the average utility of player i when both players play according to σ at
set I .

Since poker is too large to be solved in an offline manner (the no-limit game tree
contains 1.39 · 1048 information sets) [1, 8], CFR is applied to abstracted versions of
the game. The card abstraction approach groups cards into buckets for which CFR then
computes strategies instead. In addition to the usefulness for creating smaller games,
card abstractions can also be used to create a feature set for Deep Counterfactual Value
Networks (see next), which is the focus of this work.

Depth Limited Continual Resolving DeepStack is a strong poker AI [14] which
combines traditional imperfect game solving algorithms, such as CFR and endgame
solving, with ideas from perfect information games, while remaining theoretically sound.
In contrast to previous approaches using endgame solving [3, 2], which use a pre-
computed strategy before reaching the endgame, the authors of DeepStack propose
to always re-solve the sub-tree, starting from the current state, after every taken ac-
tion. However, on the early rounds of the game DeepStack does not traverse the full
game tree since this would be computationally infeasible. Instead, it uses deep neural
networks as an estimator of the expected CV of each hand on future rounds for its re-
solving step, resulting in the technique referred to as depth limited continual resolving.

Deep Counterfactual Value Networks DeepStack used a deep neural network to
predict the player’s counterfactual values on future betting rounds, which would other-
wise be obtained by applying CFR. Consequently, the deep counterfactual value net-
work (DCVNN) is trained with examples consisting of representations of poker situ-
ations as input and the counterfactual values of CFR as output. More specifically, the
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network was fed with 10 million random poker situations and the corresponding coun-
terfactual values obtained by applying CFR on the resulting sub-games [15]. For every
situation a public board, private card distributions for both players and a pot size were
randomly sampled. From this CFR is able to compute two counterfactual value vectors
vi = (vi(j, σ))j with j = 1 . . . 1326 for each possible private hand combination and
for each player i = 1, 2. Note that I = j represents the first level of the game tree
starting from the given public board.

The input to the network is given by a representation of the players’ private card dis-
tributions and the public cards. Hence, before the training of the neural network starts,
DeepStack creates a potential aware card abstraction with 1000 buckets (cf. Sec. 3). For
each training example the probabilities of holding certain private hands are then mapped
to probabilities of holding a certain bucket by accumulating the probabilities of every
private hand in said bucket. After the training of the model is completed, the CV for
each bucket in a distribution can be mapped back to CV of actual hands by creating a
reverse mapping of the used card abstraction. Fig. 1 depicts the general process, Sec. 3
describes it in more detail.

DeepStack was able to solve many issues associated with earlier game solving al-
gorithms, such as avoiding the need for explicit card abstraction. However, DCVN in-
troduce their own potential problems. For instance, the incorrect predictions caused by
encoding of the player distributions as well as the counterfactual value outputs could
potentially result in a highly exploitable strategy. The distributions and outputs are en-
coded using a potential aware card abstraction, potentially leading to similar problems
as traditional card abstraction techniques, which is something we will call implicit card
abstraction.

3 Distribution Encoding

While DeepStack never uses explicit card abstraction during its re-solving step, the
encoding of inputs and outputs of counterfactual value networks is based on a card ab-
straction, which introduces potential problems. Because the input player distributions
get mapped to a number of buckets prior to training, the training algorithm is not aware
of the exact hand distributions, but only of the distribution of bucket probabilities. Be-
cause this is a many to one mapping, the algorithm might not be able to distinguish
different situations, thus not being able to perfectly fit the training set. The second
problem stems from the encoding of the output values. Counterfactual values of several
hands are aggregated to a counterfactual value of a bucket, potentially losing precision.
Both problems are visualized in Figure 1 which also depicts the basic architecture of
DeepStack’s counterfactual value estimation.

While the problem is similar for inputs and outputs, we will focus on the loss of ac-
curacy of counterfactual value outputs. We will call the difference between the original
counterfactual values of hands, as computed by the CFR solver, and the counterfactual
values after an abstraction based encoding was used, the encoding error. The differ-
ence between the original counterfactual values and the bucket counterfactual values
will be measured using the mean squared error as well as the Huber loss (with δ = 1)
averaged over all private hands and test examples, as proposed by [14]. For instance,
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Fig. 1. Diagram depicting the 1) en-
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in Figure 1 we would apply the loss functions on the differences | − 1.0 − (−1.15)|,
| − 1.3− (−1.15)|, . . . .

We will examine three abstraction based encodings, including the potential aware
encoding, which was used by DeepStack, as well as an unabstracted encoding. We
will then compare the encoding error of each encoding, as well as the accuracy of the
resulting networks.

When measuring the accuracy of the model, we have two possible perspectives. The
first is to look at the prediction error with both inputs and outputs encoded with a card
abstraction. The second way is to map the predictions of buckets back to predicted coun-
terfactual values of private hands and compare them to the unabstracted counterfactual
values of the test examples. When measuring the error using encoded inputs and out-
puts, we will refer to the test set as abstract test set. In Figure 1 this would correspond
to the error between the bucket CVs column (after mapping from the actual private pri-
vat card CVs) and the predicted bucket CVs. When we are measuring the prediction
error for unabstracted private hands, we will call the dataset the unabstracted test set,
which in Figure 1 corresponds to comparing to the card CVs column after decoding the
predicted bucket CVs. We will use the same logic for the training set.

E[HS2] Abstraction On the last betting round the hand strength (HS) value of
a hand is the probability of winning against a uniform opponent hand distribution. On
earlier rounds the expected hand strength squared (E[HS2]) [11] is calculated by aver-
aging the square of the HS values over all possible card roll outs.

The E[HS2] abstraction uses the E[HS2] values in order to group hands into buck-
ets. There are several ways to map hands to a bucket, including percentile bucketing,
which creates equally sized buckets, clustering of hands with an algorithm such as k-
Means [12] or by simply grouping hands together, that differ only by a certain threshold
in their E[HS2] values.

Nested Public Card Abstraction A nested public card abstraction first groups
public boards into public buckets and those buckets are later subdivided according to
some metric which takes private card information into account, such as E[HS2].

In this work boards were clustered according to two features, the draw value and the
highcard value. The draw value of a turn board was defined as the number of straight
and flush combinations, which will be present on the following round. The highcard
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value is the sum of the ranks of all turn cards, with the lowest card, a deuce, having a
rank of zero and an ace having a rank of 12.

Potential Aware Card Abstraction The potential aware card abstraction [10] tries
to not only estimate a hand’s current strength, but also its potential on future betting
rounds. It does that by first creating a probability distribution of future HS values for
each hand and then clustering hands using the k-Means [12] algorithm and the earth
mover’s distance [10].

Abstraction-free Direct Encoding Instead of using a card abstraction in order to
aggregate private hand distributions to bucket distributions and private hand CVs to
bucket CVs, this encoding uses the private hand data directly. The input distributions
are represented as a vector of probabilities of holding one of the 1326 possible card
combinations. The boards are represented using one hot encoded vectors where each of
the 52 dimensions represents whether a specific card is present on the public board.

4 Evaluation

In order to compare the encodings, first a version of each card abstraction described in
the previous section was created. Like in the original DeepStack implementation, the
potential aware card abstraction used 1000 buckets. The E[HS2] abstraction used 1326
buckets based on a equal width partition of the value interval [0, 1]. The public nested
card abstraction was created by first clustering the public boards into 10 public clusters
according to their draw and highcard value and subdividing each public cluster into 100
E[HS2] buckets, resulting in a total of 1000 buckets. For the analysis of the encoding
error, the CVs of each training example were then encoded using each of the three card
abstractions, meaning that they were aggregated to a CV of their bucket. Those bucket
CVs were then compared with the original CVs of the hands in said bucket and the
average error over all available training examples was computed.

Our computational resource only allowed us to create 300,000 endgame solution-
sinstead of the 10 million available to DeepStack. All 300,000 training examples were
used for testing the encoding error of each abstraction. For the second comparison the
DCVN were trained using each of the 3 abstraction based encodings, as well as the
unabstracted encoding. The training set consisted of 80% of the total 300,000 endgame
solutions, while the test set consisted of 20%. The networks were trained for 350 epochs
using the Adam Gradient descent [13] and the Huber Loss.1

Encoding and Prediction Errors Table 1 shows the encoding error of the abstraction
based encodings. Table 2 reports the errors of the trained neural networks. Remember
that the abstraction-free encodings do not produce any encoding error, therefore, their
performance is also the same on the abstracted and unabstracted sets. Note also that
the errors on the abstracted sets are not directly comparable to each other due to the
different encoding.

1 As in DeepStack, the inputs to the networks with 7 layers with 500 nodes each using parametric
ReLUs and an outer network ensuring the zero-sum property are the respective encodings.
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Table 1. Encoding error of different encoding schemes on the turn.

Encoding Approach E[HS2] Public Nested Potential Aware

Huber loss 0.0240 0.0406 0.0258
MSE 0.0509 0.0886 0.0544

Table 2. Prediction error of neural network using different input encodings on the abstracted and
unabstracted train and test sets, on the turn.

Encoding Approach E[HS2] Public Nested Potential Aware Abstraction–Free

Abstracted Train 0.0254 0.0080 0.0052 0.0102
Unabstracted Train 0.0387 0.0436 0.0267 0.0102

Abstracted Test 0.0330 0.0161 0.0102 0.0143
Unabstracted Test 0.0434 0.0478 0.0297 0.0143

We can observe that the E[HS2] abstraction introduces a smaller encoding error
than the potential aware card abstraction, although not by a big margin. However, it
is outperformed in terms of the accuracy of the neural networks. The potential aware
abstraction performed better in its own abstraction, as well as after mapping the coun-
terfactual values of buckets back to counterfactual values of cards.

A contrary behaviour can be observed for the public nested encoding. Whereas it
has major difficulties in encoding, the resulting encodings carry enough information for
the network to predict relatively well on the bucketed CVs. However, mapping the CVs
back to the actual hands strongly suffers from the initial encoding problems.

However, the most noteworthy (and surprising) result is the performance of the
abstraction-free encoding. Whereas the potential aware encoding was able to produce
a lower Huber Loss in its own abstraction, the abstraction-free encoding outperformed
the abstraction on the unabstracted training set and the unabstracted test set. The direct
encoding was therefore better than the potential aware encoding at predicting counter-
factual values of actual hands instead of buckets, which is the most important measure
in actual game play. These results suggest that the neural network was able to general-
ize among the public boards even though no explicit or implicit support was given in
this respect. Note that this was possible even though we only used a small number of
training instances compared to DeepStack.

5 Conclusions

In this paper we have analyzed several ways of encoding inputs and outputs of deep
counterfactual value networks. We have introduced the concept of the encoding error,
which is a result of using an encoding based on lossy card abstractions. An encoding
based on card abstraction can lower the accuracy of training data by averaging coun-
terfactual values of multiple private hands, introducing an error before the training of
the neural network even started. We have observed that the encoding error can have a
substantial impact on the accuracy of the trained network, as observed in the case of the
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public nested card abstraction which performed well on its abstract test set but lost a lot
of accuracy when the counterfactual values of buckets were mapped back to hands.

The potential aware card abstraction produced the best results of all the abstraction
based encodings, which corresponds to the results achieved by the abstraction in older
algorithms, where it is the most successful abstraction at this point. However, the un-
abstracted encoding produced the lowest prediction error. While a good result on the
training set was expected, it was unclear if the neural network would generalize well to
unseen test examples. This result again shows the importance of minimizing the encod-
ing error when designing a deep counterfactual value network.
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