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Wouter Duivesteijn1, Eneldo Loza Menćıa2, Johannes Fürnkranz2, and Arno
Knobbe1

1 LIACS, Leiden University, the Netherlands, {wouterd,knobbe}@liacs.nl
2 Knowledge Engineering Group, TU Darmstadt, Germany,

{eneldo,juffi}@ke.tu-darmstadt.de

Abstract. The straightforward approach to multi-label classification is
based on decomposition, which essentially treats all labels independently
and ignores interactions between labels. We propose to enhance multi-
label classifiers with features constructed from local patterns representing
explicitly such interdependencies. An Exceptional Model Mining instance
is employed to find local patterns representing parts of the data where
the conditional dependence relations between the labels are exceptional.
We construct binary features from these patterns that can be interpreted
as partial solutions to local complexities in the data. These features are
then used as input for multi-label classifiers. We experimentally show
that using such constructed features can improve the classification per-
formance of decompositive multi-label learning techniques.
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1 Introduction

Contrary to ordinary classification, in multi-label classification (MLC) one can
assign more than one class label to each example [1]. For instance, when we have
the earth’s continents as classes, a news article about the French and American
interference in Libya could be labeled with the Africa, Europe, and North Amer-
ica classes. Originally, the main motivation for the multi-label approach came
from the fields of medical diagnosis and text categorization, but nowadays multi-
label methods are required by applications as diverse as music categorization,
semantic scene classification, and protein function classification.

Many approaches to MLC take a decompositive approach, i.e., they decom-
pose the MLC problem into a series of ordinary classification problems. The
formulation of these problems often ignores interdependencies between labels,
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implying that the predictive performance may improve if label dependencies are
taken into account. When, for instance, one considers a dataset where each label
details the presence or absence of one kind of species in a certain region, the food
chains between the species cause a plethora of strong correlations between labels.
But interplay between species is more subtle than just correlations between pairs
of species. It has, for instance, been shown [2] that a food chain between two
species (the sponge Haliclona and the nudibranch Anisodoris) may be displaced
depending on whether a third species is present (the starfish Pisaster ochraceus),
which is not directly related to the species in the food chain. Apparently, there
is some conditional dependence relation between these three species. The ability
to consider such interplay is an essential element of good multi-label classifiers.

In this paper we propose incorporating locally exceptional interactions be-
tween labels in MLC, as an instance of the LeGo framework [3]. In this frame-
work, the KDD process is split up in several phases: first local models are found
each representing only part of the data, then a subset of these models is selected,
and finally this subset is employed in constructing a global model. The crux is
that straight-forward classification methods can be used for building a global
classifier, if the locally exceptional interactions between labels are represented
by features constructed from patterns found in the local modeling phase.

We propose to find patterns representing these locally exceptional interac-
tions through an instance of Exceptional Model Mining [4]; a framework that
can be seen as an extension of traditional Subgroup Discovery. The instance
we consider [5] models the conditional dependencies between the labels by a
Bayesian network, and strives to find patterns for which the learned network
has a substantially different structure than the network learned on the whole
dataset. These patterns can each be represented by a binary feature of the data,
and the main contribution of this paper is a demonstration that the integration
of these features into the classification process improves classifier performance.

We refer the interested reader to a longer version of this paper covering
additional aspects which could not be treated here due to space restrictions [6].

2 Preliminaries

In this section, we recall the cornerstones of our work: the LeGo framework for
learning global models from local patterns (Section 2.1) and multi-label classifi-
cation (Section 2.2). We conclude with the problem formulation (Section 2.3).

2.1 The LeGo framework

As mentioned, the work in this paper relies heavily on the LeGo framework [3].
This framework assumes that the induction process is not executed by running a
single learning algorithm, but rather consists of a number of consecutive phases,
as illustrated in Figure 1. In the first phase a local pattern discovery algorithm is
employed in order to obtain a number of informative patterns, which can serve
as relevant features to be used in the subsequent phases. These patterns can



Data Source Local Patterns Pattern Set Global Model

Local Pattern

Discovery

Pattern Set

Selection

Global 

Modeling

Fig. 1. The LeGo framework

be considered partial solutions to local complexities in the data. In the second
and third phase, the patterns are filtered to reduce redundancy, and the selected
patterns are combined in a final global model, which is the outcome of the
process.

The main reason to invest the additional computational cost of a LeGo ap-
proach over a single-step algorithm, is the expected increase in accuracy of the
final model, caused by the higher level of exploration involved in the initial lo-
cal pattern discovery phase. Typically, global modeling techniques employ some
form of greedy search, and in complex tasks, subtle interactions between at-
tributes may be overlooked as a result of this. In most pattern mining methods
however, extensive consideration of combinations of attributes is quite common.
When employing such exploratory algorithms as a form of preprocessing, one
can think of the result (the patterns) as partial solutions to local complexities in
the data. The local patterns, which can be interpreted as new virtual features,
still need to be combined into a global model, but potentially hard aspects of the
original representation will have been accounted for. As a result, straightforward
methods such as Support Vector Machines with linear kernels can be used in the
global modeling phase.

The LeGo approach has shown its value in a range of settings [3], particularly
regular binary classification [7,8], but we have specific reasons for choosing this
approach in the context of multi-label classification (MLC). It is often mentioned
that in MLC, one needs to take into consideration potential interactions between
the labels, and that simultaneous classification of the labels may benefit from
knowledge about such interactions [9, 10].

In a previous publication [5], we have outlined an algorithm finding local
interactions amongst multiple targets (labels) by means of an Exceptional Model
Mining (EMM) instance. The EMM framework [4] suggests a discovery approach
involving multiple targets, using local modeling over the targets in order to find
subsets of the dataset where unusual (joint) target distributions can be observed.
In [5], we presented one instance of EMM that deals with discrete targets, and
employs Bayesian Networks in order to find patterns corresponding to unusual
dependencies between targets. This Bayesian EMM instance quenches the thirst
in MLC for representations of locally unusual combinations of labels.
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Fig. 2. Decomposition of multi-label training sets into binary (BR) or multiclass prob-
lems (LP). Yi = {yi
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to example xi. In LP the (single) target value of an instance xi is from the set
{Yi| i = 1 . . .m} ⊆ 2L of the different label subsets seen in the training data.

2.2 Multi-label classification

Throughout this paper we assume a dataset Ω. This is a bag of N elements (data
points) of the form x = {a1, . . . , ak, `1, . . . , `m}, where k and m are positive
integers. We call a1, . . . , ak the attributes of x, and `1, . . . , `m ∈ L the labels of
x. Each label `i is assumed to be discrete, and the vectors of attributes are taken
from an unspecified domain A. Together we call the attributes and labels of x
the features of x. When necessary, we distinguish the ith data point from other
data points by adding a superscript i to the relevant symbols.

The task of multi-label classification (MLC) is, given a training set E ⊂ Ω, to
learn a function f(a1, . . . , ak)→ (`1, . . . , `m) which predicts the labels for a given
example. Many multi-label learning techniques reduce this problem to ordinary
classification. The widely used binary relevance (BR) [1] approach tackles a
multi-label problem by learning a separate classifier fi(a1, . . . , ak)→ `i for each
label `i, as illustrated in Figure 2c. At query time, each binary classifier predicts
whether its class is relevant for the query example or not, resulting in a set of
relevant labels. Obviously, BR ignores possible interdependencies between classes
since it learns the relevance of each class independently. One way of addressing
this problem is by using classifier chains (CC) [10], which are able to model
label dependencies since they stack the outputs of the models: the prediction of
the model for label `i depends on the predictions for labels `1, . . . , `i−1.

An alternative approach is calibrated label ranking (CLR) [11], where the key
idea is to learn one classifier for each binary comparison of labels. CLR learns
binary classifiers fij(a1, . . . , ak) → (`i � `j), which predict for each label pair



(`i, `j) whether `i is more likely to be relevant than `j . Thus, CLR (implicitly)
takes correlations between pairs of labels into account. In addition, the decompo-
sition into pairs of classes has the advantage of simpler sub-problems and hence
commonly more accurately performing models. Finally, a simple way to take
label dependencies into account is the label powerset (LP) approach [1], treating
each combination of labels occuring in the training data as a separate label of a
classification problem (Figure 2b).

We will use each of these techniques for decomposing a multi-label problem
into an ordinary classification problem in the third LeGo phase (Section 4).

2.3 Problem statement

The main question this paper addresses is whether a LeGo approach can improve
multi-label classification, compared to existing methods that do not employ a
preliminary local pattern mining phase. Thus, our approach encompasses:

1. find a set P of patterns representing local anomalies in conditional depen-
dence relations between labels, using the method introduced in [5];

2. filter out a meaningful subset S ⊆ P ;
3. use the patterns in S as constructed features to enhance multi-label classifi-

cation methods.

In this paper we will use sophisticated methods in phases 1 and 3. In phase
2, we simply draw S as a random sample of P . Alternative methods were in-
vestigated in [6] but they did not provide relevant insights for our purpose. The
following two sections will explore what we do in phases 1 and 3.

3 Local Pattern Discovery phase

To find the local patterns with which we will enhance the MLC feature set,
we employ an instance of Exceptional Model Mining (EMM). This instance is
tailored to find subgroups in the data where the conditional dependence relations
between a set of target features (our labels) is significantly different from those
relations on the whole dataset. Before we recall the EMM instance in more detail,
we will outline the general EMM framework.

3.1 Exceptional Model Mining

Exceptional Model Mining is a framework that can be considered an extension
of the traditional Subgroup Discovery (SD) framework, a supervised learning
task which strives to find patterns (defined on the input variables) that satisfy
a number of user-defined constraints. A pattern is a function p : A → {0, 1},
which is said to cover a data point xi if and only if p

(
ai1, . . . , a

i
k

)
= 1. We refer

to the set of data points covered by a pattern p as the subgroup corresponding
to p. The size of a subgroup is the number of data points the corresponding
pattern covers. The user-defined constraints typically include lower bounds on



the subgroup size and on the quality of the pattern, which is usually defined on
the output variables. A run of an SD algorithm results in a quality-ranked list
of patterns satisfying the user-defined constraints.

In traditional SD, we have only a single target variable. The quality of a
subgroup is typically gauged by weighing its target distribution deviation and its
size. EMM extends SD by allowing for more complex target concepts defined on
multiple target variables. It partitions the features into two sets: the attributes
and the labels. On the labels a model class is defined, and an exceptionality
measure ϕ for that model class is selected. Such a measure assigns a quality
value ϕ(p) to a candidate pattern p. EMM algorithms traverse a search lattice
of candidate patterns, constructed on the attributes, in order to find patterns
that have exceptional values of ϕ on the labels.

3.2 Exceptional Model Mining meets Bayesian networks

As discussed in Section 2, we assume a partition of the k + m features in our
dataset into k attributes, which can be from any domain, and m labels, which
are assumed to be discrete. The EMM instance we employ [5] proposes to use
Bayesian networks (BNs) over those m labels as model class. These networks are
directed acyclic graphs (DAGs) that model the conditional dependence relations
between their nodes. A pattern has a model that is exceptional in this setting,
when the conditional dependence relations between the m labels are significantly
different on the data covered by the pattern than on the whole dataset. Hence
the exceptionality measure needs to measure this difference. We will employ the
Weighed Entropy and Edit Distance measure (denoted ϕweed), as introduced
in [5]. This measure indicates the extent to which the BNs differ in structure.
Because of the peculiarities of BNs, we cannot simply use traditional edit dis-
tance between graphs [12] here. Instead, a variant of edit distance for BNs was
introduced, that basically counts the number of violations of the famous theorem
by Verma and Pearl on the conditions for equivalence of DAG models [13]:

Theorem 1 (Equivalent DAGs). Two DAGs are equivalent if and only if
they have the same skeleton and the same v-structures.

Since these two conditions determine whether two DAGs are equivalent, it
makes sense to consider the number of differences in skeletons and v-structures
as a measure of how different two DAGs are. For more details on ϕweed, see [5].

After running the EMM algorithm, we obtain a set P of patterns each rep-
resenting a local exceptionality in the conditional dependence relations between
the m labels, hence completing the Local Pattern Discovery phase.

4 Global Modeling phase

As stated in Section 2.3, we do nothing sophisticated in the Pattern Set Selection
phase. Instead, we filter out a pattern subset S ⊆ P by taking a random sample
from P . In the current section, we use this subset S to learn a global model.
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Fig. 3. A multi-label classification problem (a), its representation in pattern space (b)
given the set of patterns p1, . . . , p|S|, and the LeGo combination (c)

For the learning of the global multi-label classification models in the Global
Modeling phase, we experiment with standard approaches including binary rele-
vance (BR) and label powerset (LP) decompositions [1], as well as effective recent
state-of-the-art learners such as calibrated label ranking (CLR) [11], and classi-
fier chains (CC) [10]. The chosen algorithms cover a wide range of approaches
and techniques used for learning multi-label problems (see Section 2.2), and are
all included in Mulan, a library for multi-label classification algorithms [1].

For each classifier configuration, we learn three classifiers based on different
feature sets. The first classifier uses the k features that make up the original
dataset, and is denoted CO (Figure 3a). The second classifier, denoted CS , uses
features constructed from our pattern set S. Each of these patterns maps each
record in the original dataset to either zero or one. Hence they can be trivially
transformed into binary features, that together make up the feature space for
classifier CS (Figure 3b). The third classifier employs both the k original and
|S| constructed features, in the spirit of LeGo, and is hence denoted CL.

5 Experimental setup

To experimentally validate the outlined LeGo method, we will compare the per-
formance of the three classifiers based on different feature sets CO, CS , and CL.
We refer the reader to the longer version of the paper for a differentiating anal-
ysis of the results regarding the performance of the decomposition approaches,
the impact on the different multi-label measures and the beneficial effect of using
the binary LeGo patterns on efficiency [6].



Table 1. Datasets used in the experiments, shown with the number of examples (N),
attributes (k), and labels (m), as well as the average number of labels per example

Dataset Domain N k m Cardinality

Emotions Music 593 72 6 1.87
Scene Vision 2407 294 6 1.07
Yeast Biology 2417 103 14 4.24

For the experiments we selected three multi-labeled datasets from different
domains. Statistics on these datasets can be found in Table 1. The column Car-
dinality displays the average number of relevant labels for a data point.

We combine the multi-label decomposition methods mentioned in Section 4
with several base learners: J48 with default settings [14], standard LibSVM [15],
and LibSVM with a grid search on the parameters. In this last approach, mul-
tiple values for the SVM kernel parameters are tried, and the one with the best
3-fold cross-validation accuracy is selected for learning on the training set (as
suggested by [15]). Both SVM methods are run once with the Gaussian Radial
Basis Function as kernel, and once with a linear kernel using the efficient Lib-
Linear implementation [16]. We will refer to LibSVM with the parameter grid
search as MetaLibSVM, and denote the used kernel by a superscript rbf or lin.

5.1 Experimental procedure

All statistics on the classification processes are estimated via a 10-fold cross-
validation. To enable a fair comparison of the LeGo classifier with the other
classifiers, we let the entire learning process consider only the training set for
each fold. This means that we have to run the Local Pattern Discovery and
Pattern Subset Discovery phase separately for each fold.

For every fold on every dataset, we determine the best 10,000 patterns, mea-
suring the exceptionality with ϕweed as described in Section 3.2. The search space
in EMM cannot be explored exhaustively when there are numerical attributes
and a nontrivial quality measure, and both are the case here. Hence we resort
to a beam search strategy, configured with a beam width of w = 10 and a max-
imum search level of 2 (for more details on beam search in EMM, see [5]). We
specifically select a search of modest depth, in order to prevent producing an
abundance of highly similar patterns. We further bound the search by setting
the minimal coverage of a pattern at 10% of the dataset.

For each dataset for each fold, we train classifiers from the three training
sets CO, CS , and CL for each combination of a decomposition approach and
base learner. We randomly select |S| = k patterns (cf. Section 4), i.e. exactly as
many pattern-based features for CS and CL as there are original features in CO.



Table 2. Average ranks ri of the three classifiers Ci, i ∈ {O,S, L}, with critical differ-
ence CD, over all test configurations, and over all test configurations barring J48

rO rS rL CD

Overall 1.863 2.340 1.797 0.191
Without J48 1.971 2.296 1.733 0.214

5.2 Evaluation measures

We evaluate the effectiveness of the three classifiers for each combination on the
respective test sets for each fold with five measures: Micro-Averaged Precision
and Recall, Subset Accuracy, Ranking Loss, and Average Precision (for details
on computation cf. [11] and [1]). We find these five measures a well balanced
selection from the vast set of multi-label measures, evaluating different aspects of
multi-label predictions such as good ranking performance and correct bipartition.

From a confusion matrix aggregated over all labels and examples, Preci-
sion computes the percentage of predicted labels that are relevant, and Recall
computes the percentage of relevant labels that are predicted. Subset Accuracy
denotes the percentage of perfectly predicted label sets, basically forming a multi-
label version of traditional accuracy. We also computed the following rank-based
loss measures. Ranking Loss returns the number of pairs of labels which are not
correctly ordered, normalized by the total number of pairs. Average Precision
computes the precision at each relevant label in the ranking, and averages these
percentages over all relevant labels. These two ranking measures are computed
for each example and then averaged over all examples.

All values for all settings are averaged over the folds of the cross-validation.
Thus we obtain 300 test cases (5 evaluation measures × 5 base learners × 4
decomposition approaches × 3 datasets). To draw conclusions from these raw
results, we use the Friedman test with post-hoc Nemenyi test [17].

6 Experimental Results

Table 2 compares the three different representations CO, CS , and CL over the
grand total of 300 test cases in terms of average ranks.3 We see that both CO

and CL perform significantly (α = 5%) better than CS , i.e. the pattern-only
classifier cannot compete with the original features or the combined classifier.
However, when we consider only the LibSVMrbf base learner, we find that the
pattern-only classifier outperforms the classifier trained on original features.

The difference in performance between CO and CL is not significant. Al-
though the average rank for the LeGo-based classifier is somewhat higher, we
cannot claim that adding local patterns leads to a significant improvement. How-
ever, when splitting out the results for the different base learners, we notice a

3 The results were consistent over all 5 measures with respect to the used feature sets
so we did not further differentiate, cf. also [6].



striking difference in average ranks between J48 and the rest. When we restrict
ourselves to the results obtained with J48, we find that rO = 1.433, rS = 2.517,
and rL = 2.050, with CD = 0.428. Here, the classifier built from original features
significantly (α = 5%) outperforms the LeGo classifier.

One reason for the performance gap between J48 and the SVM approach
lies in the way these approaches construct their decision boundary. The SVM
approaches draw one hyperplane through the attribute space, whereas J48 con-
structs a decision tree, which corresponds to a decision boundary consisting of
axis-parallel fragments. The patterns the EMM algorithm finds in the Local Pat-
tern Discovery phase are constructed by several conditions on single attributes.
Hence the domain of each pattern has a shape similar to a J48 decision boundary,
unlike a (non-degenerate) SVM decision boundary. Hence, the expected perfor-
mance gain when adding such local patterns to the attribute space is much higher
for the SVM approaches than for the J48 approach.

Because the J48 approach results in such deviating ranks, we investigate the
relative performance of the base learners. We compare their performance on the
three classifiers CO, CS , and CL, with decomposition methods BR, CC, CLR,
and LP, on the datasets from Table 1, evaluated with the measures introduced in
Section 5.1. The average ranks of the base learners over these 180 test cases can
be found in Table 3; J48 performs significantly worse than all SVM methods.

We have determined that the performance difference between CO and CL

is not significant. In order to see if we can make a weaker statement of signif-
icance between CO and CL, and having just established that this is the worst-
performing base learner, we repeat our comparison of the classifiers CO, CS , and
CL on the four base learner approaches that perform best: the SVM variants.
The average ranks of the three classifiers on these 240 test cases can be found in
the last row of Table 2. On the SVM methods, the LeGo classifier is significantly
(α = 5%) better than the classifier built from original features.

As stated in Section 2.2, to predict label `i the CC decomposition approach
allows using the predictions made for labels `1, . . . , `i−1. Hence we can view CC
as a feature enriching approach, adding a feature set C. We find that adding
C has an effect on performance similar to adding S, which is amplified when
both are added, particularly for BR. Hence the patterns in S provide additional
information on the label dependencies which is not covered by C. This aspect is
also treated in more detail in the longer version of this paper [6].

7 Conclusions

We have proposed enhancing multi-label classification methods with local pat-
terns in a LeGo setting. These patterns are found through an instance of Ex-
ceptional Model Mining, a generalization of Subgroup Discovery striving to find
subsets of the data with aberrant conditional dependence relations between tar-
get features. Hence each pattern delivered represents a local anomaly in con-
ditional dependence relations between targets. Each pattern corresponds to a
binary feature which we add to the dataset, to improve classifier performance.



Table 3. Average ranks of the base learners, with critical difference CD

Approach MetaLibSVMrbf MetaLibSVMlin LibSVMlin LibSVMrbf J48 CD

Rank 1.489 2.972 3.228 3.417 3.894 0.455

Experiments on three datasets show that for multi-label SVM classifiers the
performance of the LeGo approach is significantly better than the traditional
classification performance: investing extra time in running the EMM algorithm
pays off when the resulting patterns are used as constructed features. The J48
classifier does not benefit from the local pattern addition, which can be at-
tributed to the similarity of the local decision boundaries produced by the EMM
algorithm to those produced by the decision tree learner. Hence the expected
performance gain when adding local patterns is lower for J48 than for approaches
that learn different types of decision boundaries, such as SVM approaches.

The Friedman-Nemenyi analysis also shows that the constructed features
generally cannot replace the original features without significant loss in classifi-
cation performance. We find this reasonable, since these features are constructed
from patterns found by a search process that is not at all concerned with the po-
tential of the patterns for classification, but is focused on exceptionality. In fact,
the pattern set may be highly redundant. Additionally it is likely that the less
exceptional part of the data, which by definition is the majority of the dataset,
is underrepresented by the constructed features.

To the best of our knowledge, this is a first shot at discovering multi-label
patterns and testing their utility for classification in a LeGo setting. Therefore
this work can be extended in various ways. It might be interesting to develop
more efficient techniques without losing performance. One could also explore
other quality measures, such as the plain edit distance measure from [5], or
other search strategies. In particular, optimizing the beam-search in order to
properly balance its levels of exploration and exploitation, could fruitfully pro-
duce a more diverse set of features [18] in the Local Pattern Discovery phase.
Alternatively, pattern diversity could be addressed in the Pattern Subset Selec-
tion phase, ensuring diversity within the subset S rather than enforcing diversity
over the whole pattern set P .

As future work, we would like to expand our evaluation of these methods.
Recently, it has been suggested that for multi-label classification, it is better to
use stratified sampling than random sampling when cross-validating [19]. Also,
experimentation on more datasets seems prudent. In this paper, we have exper-
imented on merely three datasets, selected for having a relatively low number of
labels. As stated in Section 3.2, we have to fit a Bayesian network on the labels
for each subgroup under consideration, which is a computationally expensive op-
eration. The availability of more datasets with not too many labels (say, m < 50)
would allow for more thorough empirical evaluation, especially since it would al-
low us to draw potentially significant conclusions from Friedman and Nemenyi
tests per evaluation measure per base classifier per decomposition scheme. With



three datasets this would be impossible, so we elected to aggregate all these
test cases in one big test. The observed consistent results over all evaluation
measures provide evidence that this aggregation is not completely wrong, but
theoretically this violates the assumption of the tests that all test cases are inde-
pendent. Therefore, the empirically drawn conclusions in this paper should not
be taken as irrefutable proof, but more as evidence contributing to our beliefs.
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