
Efficient Decoding of Ternary Error-Correcting Output
Codes for Multiclass Classification

Sang-Hyeun Park and Johannes Fürnkranz

TU Darmstadt, Knowledge Engineering Group,
D-64289 Darmstadt, Germany

{park,juffi}@ke.tu-darmstadt.de

Abstract. We present an adaptive decoding algorithm for ternary ECOC ma-
trices which reduces the number of needed classifier evaluations for multiclass
classification. The resulting predictions are guaranteed to be equivalent with the
original decoding strategy except for ambiguous final predictions. The technique
works for Hamming Decoding and several commonly used alternative decoding
strategies. We show its effectiveness in an extensive empirical evaluation consid-
ering various code design types: Nearly in all cases, a considerable reduction is
possible. We also show that the performance gain depends on the sparsity and the
dimension of the ECOC coding matrix.

1 Introduction

Error-correcting output codes (ECOCs) [6] are a well-known technique for handling
multiclass classification problems, i.e., for problems where the target attribute is a cate-
gorical variable with k > 2 values. Their key idea is to reduce the k-class classification
problem to a series of n binary problems, which can be handled by a 2-class classi-
fication algorithm, such as a SVM or a rule learning algorithm. Conventional ECOCs
always use the entire dataset for training the binary classifier. Ternary ECOCs [1] are
a generalization of the basic idea, which allows to ignore some examples in the train-
ingset of the corresponding binary classifier. For example, pairwise classification [8, 9],
which trains a classifier for each pair of classifiers, is a special case of this framework.

For many common general encoding techniques, the number of binary classifiers
may exceed the number of classes by several orders of magnitude. This allows for
greater distances between the code words, so that the mapping to the closest code word
is not compromised by individual mistakes of a few classifiers. For example, for pair-
wise classification, the number of binary classifiers is quadratic in the number of classes.
Thus, the increase in predictive accuracy comes with a corresponding increase in com-
putational demands at classification time. In previous work [12], we recently proposed
the QWEIGHTED algorithm, a fast decoding method for pairwise classifiers using a
voting aggregation. Our experimental results showed that the quadratic complexity of
the decoding step could be reduced to O(k log k) in practice. In this paper, we present
QUICKECOC, a generalization of the above-mentioned algorithm to allow for quick
decoding of arbitrary ternary ECOC ensembles with various decoding techniques. The
resulting predictions are guaranteed to be equivalent to the original decoding strategy
except for ambiguous final predictions.

2 ECOC

Error-Correcting Codes (ECC) are a well-known topic in the field of Coding and Infor-
mation Theory [11]. Their main purpose is to detect and correct errors in noisy physical
communication channels. Dietterich and Bakiri [6] adapted this concept for multiclass
classification and named it in this context as Error Correcting Output Codes (ECOC).
They consider classifier predictions as information signals which ideally describe the
correct class for a given instance. Due to external influences (such as, e.g., a too small
sample size) these signals are sometimes wrong, and such errors have to be detected
and corrected. Formally, each class ci (i = 1 . . . k) is associated with a so-called code
word cwi ∈ {−1, 1}n of length n. In the context of ECOC, all relevant information
is summarized in a so-called coding matrix (mi,j) = M ∈ {−1, 1}k×n, whose i-
th row describes code word cwi, whereas the j-th column represents a classifier fj .
Furthermore, the coding matrix implicitly describes a decomposition scheme of the
original multiclass problem. In each column j the rows contain a (1) for all classes
whose training examples are used as positive examples, and (−1) for all negative ex-
amples for the corresponding classifier fj . For the classification of a test instance x,
all binary classifiers are evaluated and their predictions, which form a prediction vector
p = [f1(x), . . . , fn(x)], are compared to the code words. The class c∗ whose associated
code word cwc∗ is “nearest” to p according to some distance measure d(.) (such as the
Hamming distance) is returned as the overall prediction, i.e. c∗ = argminc d(cwc,p)

Later, Allwein et al. [1] extended the ECOC approach to the ternary case, where
code words are now of the form cwi ∈ {−1, 0, 1}n. The additional code mi,j = 0
denotes that examples of class ci are ignored for training classifier fj . We will say a
classifier fj is incident to a class ci, if the examples of ci are either positive or negative
examples for fj , i.e., if mi,j 6= 0. This extension increases the expressive power of
ECOCs, so that now nearly all common multiclass binarization methods can be mod-
elled. This includes pairwise classification, which could not be modeled previously.

2.1 Code Design

Since the introduction of ECOC, a considerable amount of research has been devoted
to code design (see, e.g., [5, 14]), but without reaching a clear conclusion. We want to
emphasize that our work does not contribute to this discussion, because we will not be
concerned with comparing the predictive quality of different coding schemes. Our goal
is to show that, irrespective of the selected coding scheme, we can achieve a substantial
reduction in prediction time, without changing the predicted outcome.

Nevertheless, we will briefly review common coding schemes, because we will later
demonstrate that our algorithm is applicable to different types of coding schemes. Es-
sentially, one can distinguish between four code families, which we will discuss in the
following four sections.

Exhaustive Ternary Codes Exhaustive ternary codes cover all possible classifiers in-
volving a given number of classes l. More formally, a (k, l)-exhaustive ternary code
defines a ternary coding matrix M , for which every column j contains exactly l val-
ues, i.e.,

∑
i∈K |mi,j | = l. Obviously, in the context of multiclass classification, only

columns with at least one positive (+1) and one negative (−1) class are useful.

The number of classifiers for a (k, l) exhaustive ternary code is
(
k
l

)
(2l−1−1), since

the number of binary exhaustive codes is 2l−1 − 1 and the number of combinations
to select l row positions from k rows is

(
k
l

)
. These codes are a straightforward gener-

alization of the exhaustive binary codes, which were considered in the first works on
ECOC [6], to the ternary case. Note that (k, 2)-exhaustive codes correspond to pairwise
classification.

In addition, we define a cumulative version of exhaustive ternary codes, which sub-
sumes all (k, i)-codes with i = 2 . . . l up to a specific level l. In this case, we speak
of (k, l)-cumulative exhaustive codes, which generate a total of

∑l
i=2

(
k
i

)
(2i−1 − 1)

columns. For a dataset with k classes, (k, k)-cumulative exhaustive codes represent the
set of all possible binary classifiers.

Random Codes We consider two types of randomly generated codes. The first variant
allows to control the probability distribution of the set of possible symbols {−1, 0, 1}
from which random columns are drawn. By specifying a parameter r ∈ [0, 1], the prob-
ability for the zero symbol is set to p({0}) = r, whereas the remainder is equally
subdivided to the other symbols: p({1}) = p({−1}) = 1−p

2 . This type of code allows
to control the sparsity of the coding matrix, which will be useful for evaluating which
factors determine the performance of the QUICKECOC algorithm.

The second random code generation method selects randomly a subset from the set
of all possible classifiers Nall. This corresponds to the cumulative ternary code matrix
with l = k. Obviously, this variant guarantees that no duplicate classifiers are generated,
whereas it can occur in the other variant. We do not enforce this, because we wanted to
model and evaluate two interpretations of randomly generated codes: randomly filled
matrices and randomly selected classifiers.

Coding Theory, BCH-Codes Many different code types were developed within coding
theory. We pick the so-called BCH Codes [3] as a representative, because they have
been studied in depth and have properties which are favourable in practical applications.
For example, the desired minimum Hamming distance of M can be specified, and fast
decoding methods are available. Note, however, that efficient decoding in coding theory
has the goal to minimize the complexity of finding the nearest code word given the
received full code word, while we are interested in minimizing the classifier evaluations
needed for finding the nearest code word respectively class. Although some concepts
of efficient decoding in coding theory seem to be transferable to our setting, they lack,
contrary to QUICKECOC, the capability to be a general purpose decoding method for
arbitrary coding matrices.

A detailed description of this code family is beyond the scope of this paper, but
we refer to [3, 11] for a detailed description and further information regarding BCH-
Codes. In our evaluation, we considered binary BCH codes of lengths 7, 15, 31, 63, 127
and 255. Similarly to [6], we randomly selected k code words from the set of codes, if
the number of classes is k.

The above techniques are general in the sense that they are applicable to every
possible dataset. Often, it is possible to project data-specific relationships or expert
knowledge explicitly to the coding matrix (see, e.g., [4]). We did not consider these
types of codes in this paper, but note that our algorithm is applicable to all code types.

2.2 Decoding

The traditional ECOC framework is accompanied with the Hamming Distance. After
receiving an ensemble of base predictions, the class with the shortest Hamming Dis-
tance is selected as the output. In the meantime, several decoding strategies have been
proposed. Along with the generalisation of ECOCs to the ternary case, Allwein et al
[1] proposed a loss-based strategy. Escalera et al. [7] discussed the shortcomings of
traditional Hamming distance for ternary ECOCs and presented two novel decoding
strategies, which should be more appropriate for dealing with the zero symbol. We con-
sidered all these decoding strategies in our work, and summarize them below.

In the following, let cwi = (mi,1, . . . ,mi,n) a code word from a ternary ECOC
matrix and p = (p1, . . . , pn) be the prediction vector.

Hamming Distance: describes the number of bit positions in which cwi and p dif-
fer. Zero symbols (mi,j = 0) increase the distance by 1

2 . Note that the prediction vector
is considered as a set of binary predictions which can only predict either −1 or 1.

dH(cwi,p) =
∑n

j=1
|mi,j−pj |

2

Euclidian Distance: computes the distance of the two n-dimensional vectors in Eu-
clidian space.

dE(cwi,p) = ||cwi − p||2 =
√∑n

j=1(mi,j − pj)2

Attenuated Euclidian/Hamming Distance: These measures simply ignore the zero
symbols for computing the distance.

dAE(cwi,p) =
√∑n

j=1 |mi,j |(mi,j − pj)2

dAH(cwi,p) =
∑n

j=1 |mi,j | |mi,j−pj |
2

Loss based: In loss based decoding we assume that we have given a score-based clas-
sifier f(.).

dL(cwi,p) =
∑n

j=1 l(mi,j · fj)

where l(.) is the loss function. Typical functions are l(s) = −s and l(s) = e−s.

Laplace Strategy:

dLA(cwi,p) =
E + 1

E + C + T
=
dAH(cwi,p) + 1∑n

j=1 |mi,j |+ T

where C is the number of bit positions in which they are equal and E in which they
differ. T is the number of involved classes, in our case T = 2, since we employ binary
classifiers. Thus, the default value of dLA(.) is 1

2 .

Beta Density Distribution Pessimistic Strategy: This measure assumes that the dis-
tance is a Beta-distributed random variable parametrized byC andE of two code words.
It can be seen as a probabilistic version of the Laplace strategy, because its expected
value equals the one from the Laplace strategy. Please refer to [13, 7] for a detailed
description.

3 Efficient Decoding for ECOC

In this section, we will introduce the QUICKECOC algorithm for efficiently determin-
ing the predicted class without the need to evaluate all binary classifiers. It builds upon
the QWEIGHTED algorithm [12], which is tailored to the special case of pairwise clas-
sification with voting aggregation as a decoding technique. We will first briefly reca-
pitulate this algorithm in Section 3.1, and then discuss the three key modifications that
have to be made: first, Hamming decoding has to be reduced to a voting process (Sec-
tion 3.2), second, the heuristic for selecting the next classifier has to be adapted to
the case where multiple classifiers can be incident with a pair of classes (Section 3.3),
and finally the stopping criterion can be improved to take multiple incidences into ac-
count (Section 3.4). We will then present the generalized QUICKECOC algorithm for
Hamming decoding in Section 3.5. Finally, we will discuss how QUICKECOC can be
adapted to different decoding techniques (Section 3.6).

3.1 QWeighted for Pairwise Classification

Pairwise classification [8] tackles the problem of multiclass classification by decom-
posing the main problem into a set of binary problems, one problem for each pair of
classes. At prediction time, all binary classifiers are queried, and each classifier emits a
vote for one of its two classes. The class which receives the maximum amount of votes
is eventually predicted.

Though it can be shown that the training time of pairwise classification is smaller
than in the one-against-all case [9], a quadratic number of classifiers still has to be eval-
uated at classification time. The QWEIGHTED algorithm [12] addresses this problem
by exploiting the fact that usually not all evaluations are necessary to compute the class
with the maximum votes. If one class has received more votes than every other class can
possibly achieve in their remaining evaluations, this class can be safely predicted. The
QWEIGHTED algorithm tries to enforce this situation by always focusing on the class
that has lost the least amount of voting mass. Experiments showed that QWEIGHTED
uses an average runtime of O(k log k) instead of the O(k2) that would be required for
computing the same prediction with all evaluations.

3.2 Reducing Hamming Distances to Voting

Obviously, pairwise classification may be considered as a special case of ternary
ECOCs, where each column of the coding matrix contains exactly one positive (+1),
one negative (−1), and k−2 ignore values (0). Thus, it is natural to ask the the question
whether the QWEIGHTED algorithm can be generalized to arbitrary ternary ECOCs.

To do so, we first have to consider that ECOCs typically use Hamming distance for
decoding, whereas pairwise classification typically uses a simple voting procedure.1 In

1 Other choices for decoding pairwise classifiers are possible (cf., e.g., [16]), but voting is sur-
prisingly stable. For example, one can show that weighted voting, where each binary vote
is split according to the probability distribution estimated by the binary classifier, minimizes
the Spearman rank correlation with the correct ranking of classes, provided that the classifier
provides good probability estimates [10].

voting aggregation, the class that receives the most votes from the binary classifiers is
predicted, i.e.,

c̃ := argmax
i∈K

∑
j 6=i,j∈K

fi,j

where fi,j is the prediction of the pairwise classifier that discriminates between classes
ci and cj .

Traditional ECOC with Hamming decoding predicts the class c∗ whose code word
cwc∗ has the minimal Hamming Distance dH(cwc∗ ,p) to the prediction vector p =
(p1, . . . , pn). The following lemma allows to reduce minimization of Hamming dis-
tances to voting aggregation:

Lemma 1. Let vi,j :=
(
1− |mi,j−pj |

2

)
be a voting procedure for classifier j for class

ci then

argmin
i=1...n

dH(cwi,p) = argmax
i=1...n

∑
j∈N

vi,j

Proof. Recall that

dH(cwi,p) =
n∑

a=1

|cwia
− pa|
2

=
n∑

a=1

|mi,a − pa|
2

and let bi,a := |mi,a−pa|
2 . Since bi,a ∈ {0, 0.5, 1} and

min
i∈1...k

n∑
a=1

bi,a → max
i∈1...k

n∑
a=1

1− bi,a = max
i∈1...k

n∑
a=1

vi,a

holds, we obtain the statement. ut

To be clear, the above used definition of vi,j formalizes a voting procedure, for which
class ci receives one vote (+1), if the prediction pj of classifier j equals the correspond-
ing encoding bit mi,j and an half vote (+0.5) for the case mi,j = 0 where the classifier
was not trained with instances from ci.

This voting schemes differs slightly from the commonly known voting aggregation.
The exact voting aggregation procedure described within the ECOC framework would
be

vi,j = |mi,j | ·
(

1− |mi,j − pj |
2

)
which ignores the zero symbols and is not equivalent with Hamming decoding for arbi-
trary ternary coding matrices (but for e.g. pairwise codes w.r.t final prediction). Never-
theless, it is easy to see, that voting aggregation is equivalent to ECOC decoding using
the Attenuated Hamming distance.

3.3 Next Classifier Selection

The QWEIGHTED algorithm always pairs the current favorite (the class with the least
amount of voting loss) with its strongest competitor (the class that has the least amount
of voting loss among all classes with which it has not yet been paired), and evaluates
the resulting classifier. The rationale behind this approach is that the current favorite
can emerge as a winner as quickly as possible. In pairwise classification, the choice of
a classifier for a given pair of classes is deterministic because, obviously, there is only
one classifier that is incident with any given pair of classes.

General ECOC coding matrices, on the other hand, can involve more than two
classes, and, conversely, a pair of classes may be incident to multiple binary classifiers.
This has the consequence that the selection of the next classifier to evaluate has gained
an additional degree of freedom. For example, assume a 4-class problem (A,B,C,D)
using 3-level ternary exhaustive codes, and classes A and B have currently the great-
est vote amount, we could select one of four different classifiers that discriminate the
classes A and B, namely A|BC, A|BD, AC|B and AD|B.

QUICKECOC uses a selection process which conforms to the key idea of QWEIGH-
TED: Given the current favorite class ci0 , we select all incident classifiers Ni0 . Let
Kj denote the set of classes, which are involved in the binary classifier fj , but with a
different sign than ci0 . In other words, it contains all rows i of column j in the coding
matrix M , for which holds: mi,j 6= mi0,j ∧mi,j 6= 0. We then compute a score

s(j) =
∑
i∈Kj

k − r(i)

for every classifier cj ∈ Ni0 , where r(i) is a function which returns the position of
class ci in a ranking, where all classes are increasingly ordered by their current votings
respectively ordered decreasingly by distances. Finally, we select the classifier fj0 with
the maximal score s(j0). Roughly speaking, this relates to selecting the classifier which
discriminates ci0 to the greatest number of currently highly ranked classes.

We experienced that this simple score based selection was superior among other
tested methods, whose presentation and evaluation we omit here. One point to note is,
that for the special case of pairwise codes, this scheme is identical to the one used by
QWEIGHTED.

3.4 Stopping Criterion

The key idea of the algorithm is to stop the evaluation of binary classifiers as soon as it
is clear which class will be predicted, irrespective of the outcome of all other classifiers.
Thus, the QUICKECOC algorithm has to check whether ci0 , the current class with the
minimal Hamming distance to p, can be caught up by other classes at the current state.
If not, ci0 can be safely predicted.

A straight-forward adaptation of the QWEIGHTED algorithm for pairwise classifi-
cation would simply compute the maximal possible Hamming distance for ci0 and com-
pare this distance to the current Hamming distances li of all other classes ci ∈ K\{ci0}.
The maximal possible Hamming distance for ci0 can be estimated by assuming that all

outstanding evaluations involving ci0 will increase its Hamming distance. Thus, we
simply add the number of remaining incident classifiers of ci0 to its current distance li0 .

However, this simple method makes the assumption that all binary classifiers only
increase the Hamming distance of ci0 , but not of the other classes. This is unnecessarily
pessimistic, because each classifier will always increase the Hamming distance of all
(or none) of the incident classifiers that have the same sign (positive or negative). Thus,
we can refine the above procedure by computing a separate upper bound of li0 for each
class ci. This bound does not assume that all remaining incident classifiers will increase
the distance for ci0 , but only those where ci and ci0 are on different sides of the training
set. For the cases where ci was ignored in the training phase, 1

2 is added to the distance,
according to the definition of the Hamming distance for ternary code words. If there
exist no class which can overtake ci0 , the algorithm returns ci0 as the prediction.

Note that the stopping criterion can only test whether no class can surpass the cur-
rent favorite class. However, there may be other classes with the same Hamming dis-
tance. As the QUICKECOC algorithm will always return the first class that cannot be
surpassed by other classes, this may not be the same class that is returned by the full
ECOC ensemble. Thus, in the case, where the decoding is not unique, QUICKECOC
may return a different prediction. However, in all cases where the code word minimal
Hamming distance is unique, QUICKECOC will return exactly the same prediction.

3.5 Quick ECOC Algorithm

Algorithm 1 shows the pseudocode of the QUICKECOC algorithm. The algorithm
maintains a vector l = (l1, . . . , lk) ∈ Rk, where li indicates the current accumulated
Hamming distance of the associated code word cwi of class ci to the currently evalu-
ated prediction bits p. The li can be seen as lower bounds of the distances dH(cwi,p),
which are updated incrementally in a loop which essentially consists of four steps:

(1) Selection of the Next Classifier
(2) Classifier Evaluation and Update of Bounds l
(3) First Stopping Criterion
(4) Second Stopping Criterion

(1): First, the next classifier is selected. Depending on the current Hamming distance
values, the routine SELECTNEXTCLASSIFIER returns a classifier that pairs the current
favorite i0 = argminili with another class that is selected as described in Section 3.3.
In the beginning all values li are zero, so that SELECTNEXTCLASSFIER returns an ar-
bitrary classifier fj .
(2): After the evaluation of fj , l is updated using the Hamming distance projected to
this classifier (as described in Section 3.2) and fj is removed from the set of possible
classifiers.
(3): In line 10, the first stopping criterion is checked. It checks whether the current fa-
vorite class i0 can already be safely determined as the class with the maximum number
of votes, as described in Section 3.4.
(4): At line 17, the algorithm stops when all incident classifiers of ci0 have been eval-
uated (this criterion is actually a special case of (3) but it will be useful later). In this
case, since it holds that li0 ≤ li for all classes ci with li0 fixed and considering that li
can only increase monotonically, we can safely ignore all remaining evaluations.

Algorithm 1 QuickECOC
Require: ECOC Matrix M = (mi,j) ∈ {−1, 0, 1}k×n, binary classifiers f1, . . . , fn,

testing instance x ∈ X
1: l ∈ Rk ⇐ 0 # Hamming distance vector
2: c∗ ← NULL , N ← {1, . . . , n}
3: while c∗ = NULL do
4: j ←SELECTNEXTCLASSIFIER(M , l)
5: p← fj(x) # Evaluate classifier
6: for each i ∈ K do
7: li ← li +

|mi,j−p|
2

8: M ←M\Mj , N ← N\{j}
9: i0 = argmin

i∈K
li

10: # First stop Criterion
11: abort← true
12: for each i ∈ K\{i0} do
13: eFull ← |{j ∈ N |mi,j ×mi0,j = −1} |
14: eHalf ← |{j ∈ N |mi,j 6= 0 and mi0,j = 0} |
15: if li0 + eFull + 1

2
eHalf > li then

16: abort← false
17: # Second stop Criterion
18: if abort or ∀j ∈ N.mi0,j = 0 then
19: c∗ ← ci0

20: return c∗

3.6 Decoding Adaptions

All decoding methods that we discussed in section 2.2 are compatible with QUICK-
ECOC by applying small modifications. In general, there are two locations where adap-
tations are needed. First, the statistics update step and the first stopping criteria have to
be adapted according to the used distance measure. Second, some decoding strategies
require a special treatment of the zero symbol, which can, in general, be modeled as a
preprocessing step. We will briefly describe the modifications for all considered decod-
ing strategies:

Euclidian Distance: For minimizing the Euclidian distance we can ignore the root
operation and simply substitute the update statement of the pseudocode (line 7) with:
li ← li + (mi,j − p)2. The factor for eHalf is changed to 1 and the one for eFull to 4.

Att. Euclidian Distance: Similar to the above modifications we change line 7 with:
li ← li + |mi,j |(mi,j − p)2 and set the factor of eFull to 4 and remove the occurrences
of eHalf .

Loss based linear: For both loss based versions, we assume that we have given a
normalizing function w(.) which projects fi(x) from [−∞ :∞] to [−1, 1], e.g.,

w(x) =

{
x

max f(x) x ≥ 0
x

|min f(x)| x < 0

We substitute line 6 with: p ← w(fj(x)) and the update procedure with: li ← li +
1−p·mi,j

2 and remove the occurrences of eHalf .2

Loss based exponential: For the exponential loss, we have to change line 6 as above
and the update step with li ← li + e−p·mi,j . In addition, the factor of eFull is set to e1

and eHalf to e−1.
Laplace Strategy: This strategy can be used by incorporating a class- respectively

row-based incrementer. Note that each error bit between a code word cw and the pre-
diction vector p amounts 1

b+T towards the total distance dLA(cw,p), where b is the
number of non-zero bits of cw. This incrementer denoted by Ii for class ci can be com-
puted as a preprocessing step from the given ECOC Matrix. So, the update step has to
be changed to li ← li + Ii and the factor of eFull changes to Ii. Besides, eHalf can be
removed.

Beta Density Distribution Pessimistic Strategy: Here, we use an approximation of
the original strategy. First, similar to the Laplace Strategy, an incrementer is used to de-
termine Zi = E

E+C . And second, instead of using a numerical integration to determine
Zi+ai, its standard deviation is added, which is in compliance with the intended seman-
tic of this overall strategy to incorporate the uncertainty. The incrementer Ii is again set
during a preprocessing step and we change the update step to li ← li+min(1, (Ii+σi)).
The factor for eFull has to be changed to Ii and eHalf has to be removed.3

In general, a distance measure is compatible to QUICKECOC if the distance can be
determined bit-wise or incremental, and the iterative estimate of li has to be monotoni-
cally increasing, but must never over-estimate the true distance.

4 Experimental Evaluation

In this section, we evaluate the performance of QUICKECOC for a variety of different
codes. In addition, we were interested to see if it works for all decoding methods and
whether we can gain insights on which factors determine its performance.

4.1 Experimental Setup

All experiments were performed within the WEKA [15] framework using the deci-
sion tree learner J48 with default parameters as a base learner. All evaluations were
performed using 10-fold stratified cross-validation. Our setup consisted of 5 encoding
strategies (BCH Codes and two versions each of exhaustive and random codes), 7 de-
coding methods (Hamming, Euclidian, Att. Euclidian, linear loss-based, exponential
loss-based, Laplacian Strategy and Beta Density Probabilistic Pessimistic) and 7 multi-
class datasets selected from the UCI Machine Repository [2].

For the encoding strategies, we also tried several different parameters. Regarding
the exhaustive codes, we evaluated all (k, l) codes ranging from l = 2 to l = k per

2 Note that we did not use such a normalizing function in our actual evaluation since we used a
decision tree learner as our base learner. Although the normalization of score based functions,
such as SVMs, is not a trivial task, the sketched function w(.) could be possibly determined
by estimating min f(x) and max f(x) during training time (e.g. saving the largest distances
between instances to the hyperplane for each classifier).

3 Note that this approximation yielded in all our evaluations the same prediction as the original
strategy.

Table 1. QUICKECOC performance using Hamming decoding and exhaustive ternary codes

l vehicle derm. auto glass zoo ecoli machine
2 3.82 0.637 7.12 0.475 7.95 0.379 9.99 0.476 9.48 0.451 11.75 0.420 11.60 0.414
3 7.91 0.659 26.05 0.434 42.86 0.408 43.47 0.414 41.64 0.397 58.85 0.350 57.90 0.345
4 5.65 0.808 46.30 0.441 115.22 0.470 116.45 0.475 107.03 0.437 199.31 0.407 194.81 0.398
5 43.11 0.479 163.67 0.520 163.98 0.521 148.50 0.471 369.06 0.439 355.23 0.423
6 16.54 0.534 114.87 0.529 116.77 0.538 102.41 0.472 394.25 0.454 369.19 0.425
7 34.24 0.543 37.84 0.601 31.52 0.500 234.80 0.466 218.09 0.433
8 62.17 0.490 57.27 0.451

dataset and analogously for the cumulative version. For the generation of the first type
of random codes the zero symbol probability was parametrized by r = 0.2, 0.4, 0.6, 0.8
and the dimension of the coding matrix was fixed to 50 % of the maximum possible
dimension with respect to the number of classes. The second type of random codes
was generated by randomly selecting 20 %, 40 %, 60 % and 80 % from the set of all
valid classifiers respectively columns (all columns of an (k, k) cumulative ternary cod-
ing matrix) without repetition. Regarding BCH Codes, we generated 7, 15, 31, 63, 127
and 255-bit BCH codes and randomly selected n rows matching the class count of the
currently evaluated dataset. For the datasets machine and ecoli where the number of
classes is greater than 7, we excluded the evaluation with 7-bit BCH codes.

The datasets were selected to have a rather low number of different classes. The
main reason for this limitation was that for some considered code types the number of
classifiers grows exponentially. Especially for the datasets with the maximum number
of eight classes (machine and ecoli), the cumulative ternary exhaustive codes generates
up to 3025 classifiers. In addition, we evaluated all possible combinations of decoding
methods, code types with various parameters, which we can not present here completely
(in total 1246 experiments) because of lack of space. Nevertheless, we want to stress
that our technique is applicable to larger number of classes (with reasonable codes),
and, as our results will show, the expected gain increases with the number of classes.

Because of the high number of experiments, we cannot present all results in detail,
but will try to focus on the most interesting aspects. In addition to assess the general
performance of QUICKECOC, we will analyze the influence of the sparsity of the code
matrix, of the code length, and of different decoding strategies.

4.2 Reduction in Number of Evaluations

Table 1 shows the reduction in the number of classifier evaluations with QUICKECOC
on all evaluated datasets with Hamming decoding and ternary exhaustive codes. In every
column the average number of classifier evaluations is stated with its corresponding
ratio to the number of generated classifiers in italics (the lower the better). The datasets
are ordered from left to right by ascending class-count. As the level parameter l is
bounded by the class-count k, some of the cells are empty.

One can clearly see that QUICKECOC is able to reduce the number of classifier
evaluations for all datasets. The percentage of needed evaluations ranges from about

Table 2. QUICKECOC performance on BCH codes

vehicle derm. auto glass zoo ecoli machine
7 0.764 0.774 0.851 0.880 0.834 - -
15 0.646 0.656 0.699 0.717 0.659 0.670 0.648
31 0.571 0.564 0.607 0.662 0.581 0.602 0.558
63 0.519 0.506 0.567 0.616 0.517 0.540 0.509

127 0.489 0.447 0.522 0.565 0.477 0.493 0.459
255 0.410 0.380 0.450 0.467 0.397 0.417 0.388

81 % (vehicle, l = 4) to only 35 % (machine, l = 3). Furthermore, one can observe a
general trend of higher reduction by increasing class-count. This is particularly obvious,
if we compare the reduction on the exhaustive codes (the last line of each column, where
l = k), but can also be observed for individual code sizes (e.g., for l = 3). Although we
have not performed a full evaluation on datasets with a larger amount of classes because
of the exponential growth in the number of classifiers, a few informal and quick tests
supported the trend: the higher the class-count, the higher the reduction.

Another interesting observation is that except for dataset vehicle the exhaustive
ternary codes for level l = 3 consistently lead to the best QUICKECOC performance
over all datasets. A possible explanation based on a “combinatorial trade-off” can be
found in [13], which was omitted here because of space restrictions.

For BCH Codes, we can report also that in all cases a reduction was possible, as one
can see in Table 2. Note that all coding matrices in this case are dense, i.e., no coding
matrix contains a (0). Even in this case, we see that there was no situation, where all
classifiers were needed for multiclass classification. And again, we observe that for
higher dimensions (increasing the BCH bit code) higher reductions can be observed.

We do not show a detailed table of results for random codes, but they will be used
in the following sections.

4.3 Sparsity of Coding Matrices

We define the sparsity of the ECOC matrix as the fraction of (0)-values it contains.
Random codes provide a direct control over the matrix sparsity (as described in sec-
tion 2.1), and are thus suitable for analyzing the influence of the sparsity degree of the
ECOC matrix for QUICKECOC. Note, however, that the observed influences regarding
sparsity and dimension of the matrix on the QUICKECOC performance can also be
seen in the evaluations of the other code types, but not as clearly or structured as here.

Figure 1 shows QUICKECOC applied to random codes with varying matrix spar-
sity. A clear trend can be observed that the higher the sparsity of the coding matrix the
better the reduction for all datasets. Keep in mind that the baseline performance (eval-
uating all binary classifiers) is a parallel to the x-axis with the y-value of 1.0. Note that
the absolute reduction tends to be minimal over all considered datasets at datasets with
higher class-counts i.e machine at 80 % sparsity, and the lowest reduction can be seen
for the dataset vehicle with the smallest number of classes n = 4 at 20 % sparsity.

The main effect of an increase of sparsity on the coding matrices is that for each
class the number of incident classifiers decreases. For sparsity 0, all classes are involved

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
ui

ck
E

C
O

C

ECOC Matrix Sparsity

vehicle
dermatology

auto
glass

zoo
ecoli

machine

Fig. 1. QUICKECOC performance of random codes in dependence of sparsity

in all classifiers, for sparsity 0.5, each class is (on average) involved in only half of the
classifiers. This will clearly affect the performance of the QUICKECOC algorithm.
In particular, the second stopping criterion essentially specifies that the true class is
found if all incident classifiers for the favorite class i0 have been evaluated. Clearly, the
algorithm will terminate faster for higher sparsity levels (ignoring, for the moment, the
possibility that the first stopping criterion may lead to even faster termination).

4.4 Code Length

The second type of random codes, which were generated by randomly selecting a fixed
number from the set of all possible binary classifiers can be seen in Fig. 2. All coding
matrices for a k-class dataset have nearly the same sparsity, which relates to the average
sparsity of (k, k) cumulative exhaustive codes and differ only in the length of the coding
matrix (in percent of the total number of possible binary classifiers). This allows us to
observe the effect of different numbers of classifiers on the QUICKECOC performance.
Here, we can also see an consistent relationship, that higher dimensions lead to better
performance, but the differences are not as remarkable as for sparse matrices.

For a possible explanation, assume a coding matrix with fixed sparsity and we vary
the dimension. For a higher dimension the ratio of number of classifiers per class in-
creases. Thus, on average, the number of incident classifiers for each class also in-
creases. If we now assume that this increase is uniform for all classes, this has the effect
that the distance vector l is multiplied by a positive factor x > 1, i.e., l+ = l ∗ x.
This alone would not change the QUICKECOC performance, but if we consider that
classifiers are not always perfect, we can expect that for higher number of classifiers,
the variance of the overall prediction will be smaller. This smaller variance will lead
to a more reliable voting vectors, which can, in turn, lead to earlier stopping. It also
seems reasonable that this effect will not have such a strong impact as the sparsity of
the coding matrix, which we discussed in the previous section.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q
ui

ck
E

C
O

C

ECOC Matrix Dimension

vehicle
dermatology

auto
glass

zoo
ecoli

machine

Fig. 2. QUICKECOC performance of random codes in dependence of code length

4.5 Different Decoding Strategies

As previously stated, because of the large number of experiments, we can not give
a complete account of all results. We evaluated all combinations of experiments, that
includes also all mentioned decoding methods. All the previously shown results were
based on Hamming decoding, since it is still one of the commonly used decoding strate-
gies even for ternary ECOC matrices. However, we emphasize, that all observations on
this small subset of results can also be found in the experiments on the other decoding
strategies. As an exemplary data point, Table 3 shows an overview of the QUICKECOC
performance for all decoding strategies for the dataset ecoli using cumulative exhaustive
ternary codes. It can be seen that the performance is quite comparable on all datasets.
Even the optimal reduction for l = 3 can be found in the results of all decoding strate-
gies.

Table 3. QUICKECOC performance on ecoli with all decoding methods and cumulative exhaus-
tive ternary codes

Hamming Euclidian A. Euclidian LBL LBE Laplace BDDP |N |
l = 2 0.420 0.420 0.420 0.399 0.398 0.406 0.426 28
l = 3 0.331 0.331 0.331 0.335 0.350 0.332 0.333 196
l = 4 0.377 0.377 0.377 0.383 0.402 0.374 0.375 686
l = 5 0.400 0.400 0.400 0.414 0.439 0.399 0.401 1526
l = 6 0.421 0.421 0.421 0.437 0.466 0.419 0.418 2394
l = 7 0.427 0.427 0.427 0.444 0.475 0.426 0.425 2898
l = 8 0.428 0.428 0.428 0.446 0.477 0.427 0.426 3025

5 Discussion

At first glance, the results may not be striking, because a saving of a little less than
40 % does not appear to be such a large gain. However, one must put these results in
perspective. For example, for the vehicle dataset with a (4, 3)-exhaustive code, QUICK-
ECOC evaluated 65.9 % of all classifiers (cf. Table 1). A (4, 3)-exhaustive code has
12 classifiers, and each individual class is involved in 75 % of these classifiers (cf. the
example in section 2.1). Thus, on average, QUICKECOC did not even evaluate all the
classifiers that involve the winning class before this class was predicted. Similarly, for
(k, k)-exhaustive codes all classes are involved in all binary classifiers, but nevertheless,
considerable savings are possible. It would be interesting to derive a lower bound on the
possible optimal performance, and to relate these empirical results to such a bound.

One could also argue that in applications where the classification time is crucial, a
parallel approach could be applied much more effectively. Since each classifier defined
by a column of the ECOC matrix can be evaluated independently, the implementation
could be done very easily. QUICKECOC loses this advantage because the choice of the
next classifier to evaluate depends on the results of the previous evaluations. However,
QUICKECOC can still be parallelized on the instance level instead of the classifier
level. Given n processors or n threads we want to utilize, we select n incoming test
instances and apply QUICKECOC for each of them. With this method a higher speed
up can be expected as with a straight-forward parallelization of ECOC.

Another point is that the gains obtained by QUICKECOC are negligible in compar-
ison to what can be gained by more efficient coding techniques. While this is true, we
note that QUICKECOC can obtain gains independent of the used coding technique, and
can thus be combined with any coding technique. In particular in time-critical applica-
tions, where classifiers are trained once in batch and then need to classify on-line on a
stream of in-coming examples, the obtained savings can be decisive.

6 Conclusions

We have shown a general algorithm for reducing the number of classifier evaluations
for ternary ECOC matrices without compromising the overall prediction. It is based on
a similar algorithm that was tailored to pairwise classification. Since ternary ECOCs
subsume nearly all possible binary decomposition schemes, the reduction applies now
to a broader spectrum of applications. For example, data-specific optimal codes can
now also take advantage of reduced classifier evaluations. Regardless of the used code,
QUICKECOC improves the overall prediction efficiency. At first sight, the amount of
improvement may not seem to be as striking as for the pairwise case, where we could
report a reduction from k2 to k log k [12], but one must keep in mind that in ECOC
codings, each class has a much larger number of incident classifiers, and thus a higher
number of evaluations must be expected to determine the winning class. We observed
that the performance gain increases with higher sparsity of the coding matrix, again
putting pairwise classification at the more efficient end of the spectrum. We also noted
an increase in the performance gain with increasing code lengths of the chosen code.

There might still be some potential for improving our results with better heuristics
for the selection of the next classifier, we have not yet thoroughly explored this param-
eter. For example, one could try to adapt ideas from active learning for this process.
Furthermore, we consider an in-depth analysis of existing fast decoding methods in
Coding Theory and the investigation of the transferability to the multiclass classifica-
tion setting, because they seem to share some similarities.

Acknowledgments We would like to thank Eyke Hüllermeier and Lorenz Weizsäcker for
helpful suggestions and discussions. This work was supported by the German Science Founda-
tion (DFG).

References
1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach

for margin classifiers. Journal of Machine Learning Research 1 (2000) 113–141
2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
3. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Infor-

mation and Control 3(1) (March 1960) 68–79
4. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: The data replication method.

Journal of Machine Learning Research 8 (2007) 1393–1429
5. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass prob-

lems. Machine Learning 47(2-3) (2002) 201–233
6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output

codes. Journal of Artificial Intelligence Research 2 (1995) 263–286
7. Escalera, S., Pujol, O., Radeva, P.: Decoding of ternary error correcting output codes. In

Trinidad, J.F.M., Carrasco-Ochoa, J.A., Kittler, J., eds.: CIARP. Volume 4225 of Lecture
Notes in Computer Science., Springer (2006) 753–763

8. Friedman, J.H.: Another approach to polychotomous classification. Technical report, De-
partment of Statistics, Stanford University, Stanford, CA (1996)

9. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2 (2002)
721–747

10. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise
preferences. Artificial Intelligence 172 (2008) 1897–1916

11. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland
Mathematical Library. North Holland (January 1983)

12. Park, S.-H., Fürnkranz, J.: Efficient pairwise classification. In Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A., eds.: Proceedings of 18th
European Conference on Machine Learning (ECML-07), Warsaw, Poland, Springer-Verlag
(2007) 658–665

13. Park, S.-H., Fürnkranz, J.: Efficient decoding of ternary error-correcting output codes for
multiclass classification. Technical Report TUD-KE-2009-01, TU Darmstadt, Knowledge
Engineering Group (2009)

14. Pimenta, E., Gama, J., de Leon Ferreira de Carvalho, A.C.P.: The dimension of ECOCs
for multiclass classification problems. International Journal on Artificial Intelligence Tools
17(3) (2008) 433–447

15. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd
Edition. Morgan Kaufmann, San Francisco (2005)

16. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by
pairwise coupling. Journal of Machine Learning Research 5 (August 2004) 975–1005

