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Abstract. Deep neural networks are accurate predictors, but their decisions are
difficult to interpret, which limits their applicability in various fields. Symbolic
representations in the form of rule sets are one way to illustrate their behavior as a
whole, as well as the hidden concepts they model in the intermediate layers. The
main contribution of the paper is to demonstrate how to facilitate rule extraction
from a deep neural network by retraining it in order to encourage sparseness in the
weight matrices and make the hidden units be either maximally or minimally ac-
tive. Instead of using datasets which combine the attributes in an unclear manner,
we show the effectiveness of the methods on the task of reconstructing predefined
Boolean concepts so it can later be assessed to what degree the patterns were cap-
tured in the rule sets. The evaluation shows that reducing the connectivity of the
network in such a way significantly assists later rule extraction, and that when
the neurons are either minimally or maximally active it suffices to consider one
threshold per hidden unit.
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1 Introduction

Deep neural networks [10] achieve state of the art performance in a variety of different
fields, like computer vision, speech recognition and machine translation. They can be
leveraged both in supervised and unsupervised problem formulations, as they automat-
ically learn insightful features out of unprocessed data. In the last few years, they have
considerably risen in popularity as advancements in the training practices and availabil-
ity of user friendly frameworks have made it much simpler to train accurate models, as
long as sufficient data is available.

However, the fact that the models are governed by a high number of parameters
makes tracing the path that led to a classification an arduous process, which is why
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they are often regarded as black boxes. This is a significant shortcoming, as it makes
them unsuitable for safety critical applications and domains where there are juridical
barriers which either explicitly forbid their use or implicitly discourage it by making
the user liable for the model’s decisions. Amongst the legislation that aims for more
comprehensible prediction models is the General Data Protection Regulation (GDPR)1

planned to take effect in 2018. There is also an ongoing European legislative initiative
on Civil law rules on robotics2.

In fields such as health care and criminal sentencing, comprehensible models like
decision lists or trees are favored because they provide understandable evidence to sup-
port their predictions [16, 17]. Decision support systems (DSS) aim at integrating ma-
chine learning models into a human-centered decision process. Here, interpretability
is of particular advantage because a justified decision is more likely to convince the
human to support or disregard the machine’s recommendation. Besides, the extent to
which the model is used in practice depends heavily on how easily interpretable it is, as
this is a relevant criteria for eliciting trust [14].

Compared to neural networks, if-then rule sets are a representation with a good
trade-off between human and machine interpretability [9]. This is partly because they
provide a symbolic representation which more closely resembles the way humans model
logic. Also, each rule can be observed individually, so only a limited amount of infor-
mation must be considered at any time. This advantage, together with the fact that they
can be more flexibly pruned, sometimes makes them preferable over decision trees [7].

Consequently, researchers have looked into converting neural networks into a rule-
based representation. One problem with such approaches is that much information is
lost when the continuous range of activation levels of the internal neurons is mapped
to a two-valued logical representation. In this paper, we investigate ways for retraining
deep neural networks with the goal of encouraging sparse connectivity and minimally
or maximally active hidden units, with the idea of facilitating a later extraction of rules
from the network. We study the problem on the task of reconstructing Boolean func-
tions, because there we can see whether the use of the network’s structure really helps
to recover the logical structure in the target function.

We will start our discussion with a brief general overview of prior work on rule
extraction from neural networks (Sec. 2), with a particular focus on the DEEPRED
algorithm, upon which which forms the basis of our work (Sec. 3). The core contribu-
tion of this paper, an algorithm for retraining DNNs to extract better representations,
is described in Sec. 4, and experimentally evaluated on the problem of reconstructing
Boolean functions in Sec. 5.

2 Knowledge Distillation from Neural Networks

Much of the predictive strength of deep neural networks originates from their ability
to form latent concepts in the hidden layers, and the high connectivity between these
layers makes it difficult to distill the meaning of these concepts. One approach is to rely
on visualization in order to analyze the behavior of the learned network (see, e.g., [29]).

1 EU Regulation 2016/679: http://eur-lex.europa.eu/eli/reg/2016/679/oj, http://www.eugdpr.org
2 http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2015/2103(INL)
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However, another line of research concentrates on ways of making the knowledge that
is implicitly captured in these nodes explicit and amenable to human inspection. Typi-
cally this is done by transforming the neural network into more interpretable knowledge
representations such as rules or decision trees. A prerequisite for such work is often to
simplify the network by pruning unnecessary connections and neurons. We will briefly
recapitulate work in these areas in Secs. 2.1 and 2.2, respectively.

2.1 Rule Extraction

Many approaches have been developed to extract symbolic representations from neural
networks. However, most either do not consider the network’s internal structure or are
only applicable to shallow architectures. A distinction can be made between pedagog-
ical methods, which regard the network as a black box and map relationships between
the outputs and the inputs, decompositional ones that observe the contribution of indi-
vidual parameters or neurons and eclectic methods which fall between the other two [4].
Other categorizations refer to the computational complexity of the approach, what data
is used to build the model and whether a particular training regime is performed [2].

A first group is made up of subset approaches [8,27,28]. These are decompositional
and typically assume a polarization of the activations and the use of exclusively binary
inputs. They search the entire feature space and construct one expression per neuron of
interest. Typically, a threshold is applied to the neuron’s output to define an active and
an inactive state. Rules are then learnt for the active state by finding combinations of
the incoming weights that cause the bias of the hidden unit to be exceeded.

A shortcoming of these methods is that considering all subset combinations grows
at an exponential rate with the number of incoming connections, which limits their
applicability to larger networks. It also cannot be assumed that any network can be
converted to one with only maximally or minimally active neurons while maintaining
the initial accuracy. An even more difficult requirement to fulfill is that inputs should
be discrete so they can be binarized without information loss.

Another problem that arises when sampling all possible inputs is that the way the
network reacts to implausible instances may not be meaningful, so capturing this logic
may result in an overly complicated rule model which is not better at classifying unseen,
naturally occurring examples. Some methods thus focus primarily on the instances used
to train the network when building the symbolic model.

Such is the case for the pedagogical TREPAN algorithm [5], which explains the
outputs of the network with respect to the inputs by building decision trees directly be-
tween these layers. The tree building process makes use of queried instances, generated
from the marginal distribution of each attribute, to avoid low amounts of data as the
tree branches. However, in a comparison of different variants [18], that which did not
generate new examples performed best.

CRED [20] also builds decision trees between network layers using the train data,
but it works in a decompositional manner. First, a target condition is specified to dis-
cretize the class values, and decision trees are built to explain this output pattern with
the hidden units as attributes, using the corresponding activation values of the training
instances. The range of each hidden unit is partitioned in an online manner, so several
thresholds may be considered per unit, and some units may be ignored. The trees are
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then converted into sets of decision rules. Redundant and unsatisfiable rules and terms
are deleted, and rules are merged by forming their least general generalization (lgg) by
selecting the most general condition of the attributes they share, and dropping all con-
ditions of attributes they do not share. For instance, a ≤ 0.3∧ b > 4∧ c > 2→ C1 and
a ≤ 0.2 ∧ b > 3 ∧ d > 2 → C1 would become a ≤ 0.3 ∧ b > 3 → C1. Afterwards,
analogous rule sets are built which explain each split value considered for a the hidden
units with respect to the inputs, which now make up the attributes. Finally, the total
rules are formed by substituting the hidden split values with these new rule sets.

2.2 Connection Pruning

Pruning connections or whole neurons of trained neural networks is a common way to
adapt the topology of the network to the effective size of the problem, thus discouraging
overfitting and increasing the generalization capabilities. It can also be leveraged to
require less time and resources when making classifications [12, 15, 26].

A connection w l
j,k between two neurons hl−1,k and hl,j can be pruned by equaling

the weight entry to zero. This is similar to applying dropout [25] but whereas dropout
temporarily removes randomly chosen connections for one epoch at a time, pruning per-
manently removes selected connections from the network. Connections can be pruned
iteratively by retraining the network after each pruning step, which allows to discard
a considerably higher number [11]. Note that pruning connections can result in indi-
rectly pruning whole inputs or hidden units, as a neuron without output connections is
disconnected from the network.

In [23] a method is introduced to prune connections from shallow neural networks.
First, the networks are trained with a weight-decay penalty. Connections w2

p,j between
the hidden and output layers are then pruned if∣∣w2

p,j

∣∣ ≤ η , (1)

and connections w1
j,k between the inputs and hidden units are pruned if

maxp
∣∣w2

p,j .w
1
j,k

∣∣ ≤ η . (2)

If no connection fulfills one of those conditions, then the entry w1
j,k for which the min-

imum of the maximum products is lowest is pruned. Afterwards, the network is re-
trained. If the final error falls below an acceptable level, the pruning step is repeated;
otherwise the last acceptable parameters are restored and the process is stopped.

The author uses this approach extensively as a preprocessing step before applying
rule extraction algorithms [21, 24]. The pruning phase is usually followed by a dis-
cretization of the hidden unit activations. In [22], the connectivity of the hidden units
is further reduced by ’splitting’ those with many input connections. Each new unit is
treated as an output and a hidden layer is inserted in the middle between the inputs and
the new output layer. The network is retrained and the new subnetwork pruned, and the
process is repeated until each neuron only has a small number of inputs.
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Fig. 1. The general workflow of DEEPRED.

3 The DEEPRED Algorithm

In order to extract representations from deep neural networks which not only explain
the network’s predictive behavior but also uncover hidden features, we make use of
the DEEPRED algorithm [30], which extends CRED (Sec. 2.1) to deep neural net-
works. It is scalable to large architectures, works in a decompositional manner and has
been shown to be capable of extracting accurate models from deep neural networks. We
extended DEEPRED with a post-pruning step (Sec. 3.3) meant to contain error propa-
gation and reduce the complexity. This is carried out each time a rule set is generated
from a decision tree, and between substitution steps when building the expression of
the target with regards to the inputs.

3.1 Overview

The DEEPRED algorithm extracts rules between any two layers by building decision
trees for layer hl using the activations from layer hl−1 as attributes. The trees are then
transformed to rule sets, and a merging step converts the intermediate representations
into a single rule set connecting the inputs with the outputs. Redundant and unsatis-
fiable rules and conditions are deleted, but unlike in CRED no further pruning takes
place. There is a version of the algorithm that performs a feature selection prior to rule
extraction by considering the contribution of each input for correctly classifying the
training data and removing inputs that do have a great impact. This proves to be very
advantageous when the network is used for high-dimensional data.

Fig. 1 exemplifies how DEEPRED would extract rule representations from a shal-
low neural network which emulates a Boolean function. The model is sampled to obtain
activation values for each training instance. A first tree is built to predict under what ac-
tivation settings of layer h1 the target concept is fulfilled, namely that class C1 has a
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higher probability than C0. The tree is converted into a DNF representation and the
expression is simplified. A tree is then built for each literal which appears in the sim-
plified expression, using the input values as attribute data. Each of these expressions is
extracted and simplified, and a last step substitutes the literals with regards to the hidden
layer so that the expression which predicts class C1 is in terms of the inputs.

3.2 Extraction of DNF Formulas from Trees

A rule can be regarded as a conjunction of terms, where a term is a condition indicating
whether the activation state of a neuron falls or not above some threshold, and a rule
set as an expression in disjunctive normal form (DNF). Each tree built by DEEPRED
determines whether an input or the activation of a hidden unit fulfills one such term,
using terms with respect of the adjacent shallower layer. For instance, a tree could
determine if the value 0.5 is exceeded by the second neuron in the first hidden layer.
Such a tree would have two possible classes, h1,2 > 0.5 and h1,2 ≤ 0.5. A DNF for
each of them can be obtained by joining the respective terms on all paths from the root
to the corresponding leafs of the tree.

A separate DNF formula is maintained for each class, so there are two DNFs per
split value, each of which fires as soon as one of its rules fires. A DNF formula for the
event of neuron h2,2 exceeding the threshold 0.5 may look like (h1,1 > 0.5 ∧ h1,2 ≤
0.3) ∨ (h1,2 > 0.3 ∧ h1,3 > 0.7) → h2,2 > 0.5.

The expressions for opposite class conditions, as would be those for h2,2 > 0.5 and
h2,2 ≤ 0.5, are complementary after being extracted for the tree, but this may no longer
hold once pruning is applied. Thus, both may fire for a given example, or neither may do
so. Usually, additional criteria such as a priority list for tie-breaking between multiple
predictions or a default rule for the latter case are employed. However, in our case
only one expression is maintained for the selected class, so the inconsistencies within
intermediate expressions do not translate to ambiguities in the final class prediction.

3.3 Simplification and Post-pruning of Expressions

Transforming a decision tree into a rule set, as well as the process of building the ex-
pression of the target with regards to the inputs by sequentially substituting terms by
DNFs, can result in expressions with redundant and unsatisfiable rules and redundant
conditions. These are removed each time an expression is extracted from a decision tree
and between substitution steps.

Very similar rules may still remain which do not provide more information than
a simpler rule would. This affects the comprehensibility and can promote error prop-
agation between layers. Yet, a too strong generalization of the intermediate concepts
should be avoided as its repercussions on the final expression cannot be observed until
the end. CRED (cf. Sec. 2.1) employs a pruning approach which is advantageous in
shallow networks but proved in preliminary experiments to be too aggressive for deep
networks. Instead, we use a method of reduced error pruning that only makes a change
if this positively affects the accuracy with respect to the head of the rule.

Rules are ordered in terms of increasing precision. For each rule, the change in accu-
racy is calculated in case the rule is deleted, a term is removed from the rule (calculated
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for all terms) and the rule being merged with another one from the set (calculated for
all remaining rules). The modification which leads to the highest accuracy is performed
if it improves the accuracy over the current rule set. Unless the modification consists
on removing the rule completely, the precision is calculated for the new rule, which is
regarded as unseen. This is repeated until there are no unseen rules left.

4 Retraining DNNs to Extract Better Representations

One problem with rule extraction from neural networks is that the activations assume
continuous values within some range, whereas a mapping to a decision tree or rule set
reduces them to a discrete setting. The key idea of our work is that the transformation
process may be supported by forcing the network weights to assume more extreme val-
ues. In this section, we therefore present methods for retraining a deep neural network
in order to encourage sparseness in the weight matrices and make the hidden units be
either maximally or minimally active. For this work, we consider the accuracy on the
entire dataset for guiding the retraining, because our goal is to train the networks to ex-
actly emulate predefined concepts. However, in a different setting it might be advisable
to use a separate validation set, which is not used to optimize the parameters.

4.1 Weight Sparseness Pruning

We employ a connection pruning technique that is quite similar to that described in
Sec. 2.2. In contrast to that method, ours can be applied to deep networks, and its aim
is to sparsify all weight matrices so that the total number of connections between any
two layers is reduced. This has the effect that single neurons are neither connected
to a majority of the neurons of the following layer nor to a majority of those from
the previous layer. The expectation is that, as observed by [22], rules extracted from
minimally connected neurons will be simpler and more accurate.

The motivation for targeting such connections also comes from the performance
of DEEPRED when applied to a network manually constructed to emulate the parity
function with eight inputs [30]. The network constructed for this experiment has a re-
cursive structure from the eight inputs to the output layer and is minimally connected.
DEEPRED is not only able to extract the modeled DNF representation using a signif-
icantly lower number of instances than a pedagogical approach, but its intermediate
rules also exactly replicate the recursive features.

In preliminary experiments, we could not repeat this effect on fully connected net-
works of the same topology trained with backpropagation, even if all combinations
were used for training. When rules are extracted from such networks using a reduced
set of instances, the majority of the logic is concentrated between the inputs and the
first hidden layer. The rule sets extracted between these layers overfit the train data,
and each depends on the majority of the inputs. Therefore, the accuracy on the unseen
instances never exceeds fifty percent and actually decreases with increasing amounts of
training data (a phenomenon that also affects C4.5). If, on the other hand, the number
of connections is reduced, the network may be encouraged to learn a reduced amount
of hidden features that are more abstract and apply to a greater percentage of examples.
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General Methodology. A connection wl
j,k is represented by the index of the weight

matrix l and the row and column indices j and k. The number of entries that have
already been pruned in each row or column of each weight matrix is maintained in
order to calculate the neighborhood sparseness of the remaining entries. This value is
determined by the sum of entries that have been pruned in row j of matrix W l plus
those that have been pruned in column k of the same matrix.

On each step, a list of all existing connections is sorted in terms of increasing neigh-
borhood sparseness, and it is attempted to prune the next head element, which is likely
to be surrounded by unpruned entries. The target training accuracy that must be reached
after retraining for the connection to remain pruned is the original train accuracy minus
an allowed decrease. If the accuracy is satisfactory, the connection is pruned, the counts
for column and row pruned entries are updated, and the list is re-sorted. Otherwise, the
last accepted parameters are restored, and the next connection is removed from the list.

Iterations Used for Retraining. Preliminary experiments showed that often a small
number of iterations suffice to determine whether a connection can be pruned, because
the network gets stuck in a local minimum. On the other hand, some connections cause
a steep decrease in accuracy when they are first removed, but the network later adapts.
To allow the latter connections to be eliminated while not considerably increasing the
retraining time, the retraining epochs are divided into smaller sets. If after a set the
accuracy is equal or greater than the target accuracy, the connection is pruned, otherwise
the retraining continues until either n retraining steps were performed from the time a
connection was pruned or there were no improvements in the last m steps, with n ≥ m.

Re-exploration of a Connection. It was also observed that if a connection could not
be pruned at some stage, it was unlikely that it could be pruned later on, even if other
connections had been pruned which affected the neurons it joined. Therefore, in the
experiments outlined in Sec. 5 there was only one attempt of pruning per connection.

4.2 Activation Polarization

The activation range of the hidden units being continuous has several negative repercus-
sions, such as making it more costly to classify new instances, so techniques have been
developed for binarizing the parameters and activation values [1,3]. Yet, most networks
are trained in such a way that the hidden units can take any value within the range.

As representing each neuron with only one expression is a more comprehensible
way to illustrate that neuron’s purpose in the network than if different expressions have
to be regarded for an array of activation intervals, many decompositional rule extraction
approaches reduce the possible states each neuron takes to being either at the bottom or
the top of the activation range (cf. Sec. 2.1).

In order to extract rules which are true to the network while making this assumption,
the networks must be trained in a way that the activations are polarized. There are
several ways to achieve this. We propose a retraining step similar to that used in [19] to
encourage sparse activations. The key idea is to penalize the loss function with a term
based on the KL divergence between the mean absolute value of each activation

ρ̂l,n =
1

|D|
∑
i

∣∣ail,n∣∣ (3)
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and a ρ close to one, which results from the use of a hyperbolic tangent function. These
terms are summed up over all hidden units, yielding∑

l,n

KL(ρ ‖ ρ̂l,n) =
∑
l,n

ρ log
ρ

ρ̂l,n
+ (1− ρ) log

1− ρ
1− ρ̂l,n

. (4)

This term introduces the additional parameters ρ for the optimal activation average and
β for the weighting of the penalty term. Instead of having to define β, the retraining
method as implemented for this work starts by setting β = 0, and increases this value
iteratively. Between each increment, a number of epochs are conducted, for as long as
there is no decrease in accuracy, and the divergence stays above some threshold. The
last weight and bias parameters are stored before each increase of β. If the process stops
because the accuracy falls, the parameters which were saved last are restored.

5 Experiments

In order to show that we can derive meaningful conceptual descriptions from deep neu-
ral networks, we performed experiments on artificial datasets. Our goal was to demon-
strate that our algorithms can reconstruct Boolean input functions from networks trained
to model them. For this, we first made a quality assessment of the concepts extracted
when the entire dataset is available. After exploring the limits of each approach, we
compared the generalization abilities of the different variants by utilizing a subset of the
combinations as training data and analyzing the accuracy on the remaining instances.

5.1 Experimental Setup

Data. We used twenty datasets constructed from Boolean functions with six to fourteen
literals. Nineteen were generated by joining groups of randomly selected literals with
alternating OR and AND operators and choosing to apply negation over each group with
a 0.2 probability, and one was the parity function with eight inputs. The expressions
were simplified with the ESPRESSO heuristic logic minimizer [13]. Each dataset was
made up of all combinations of literals in the simplified expression.

Network Architecture and Training. The networks had three hidden layers, the first
with twice as many neurons as inputs, the second with the average of that number
and two and the third and output layers with two neurons. The hyperbolic tangent was
used as activation function, and a softmax function was applied on the last layer. The
networks were trained using the TensorFlow framework and cross-entropy as the loss
function. They were trained with all input combinations until achieving a perfect accu-
racy. In this way, it was certain that they mimicked the logic of the predefined formulas.

Compared Algorithms. We compared several variants of our approach where (i) no
retraining took place, (ii) weights sparseness pruning was performed, and (iii) a polar-
ization of the activations was followed by weight sparseness pruning. Also, as observing
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one expression per hidden neuron of interest, which predicts when that unit is in an ac-
tive state, is more comprehensible than having to consider an array of expressions, it
was analyzed how the models would be affected if instead of allowing the online dis-
cretization of C4.5 to select thresholds of the activation range, only the midpoint of this
range was considered.

Hyperparameter setting. C4.5 was set to stop growing a tree when the percentage of
the majority class exceeded 99% or only less than 1% of the original instances remained
in a node. Only binary splits were allowed and the trees had a maximum depth of twenty
nodes. For activation polarization, ρ was set to 0.99 and β was increased by 0.1 at a
time. For weight sparseness pruning, a 1% decrease in accuracy was allowed. In both
cases, each epoch set consisted of 1000 epochs. For the networks which were retrained
in both manners, the penalty term from the activation polarization was added to the loss
function used during connection pruning, multiplied by the last accepted value of β.

Evaluation Measures. The comprehensibility of the intermediate logic – which is to
say that between subsequent layers – was assessed with the number of expressions and
the total number of terms. The semantic quality was measured using the accuracy, which
is to say the proportion of correctly classified instances among all classifications. Note
that as the networks used perfectly replicate the Boolean functions, this corresponds to
the fidelity of the extracted rules mimicking the network’s behavior.

For determining whether observed performance differences between two classifiers
were statistically significant, the sign and Wilcoxon signed ranks tests were used for
a significance level of p = 0.05. Following [6], ties were distributed, and in the event
of an uneven number of ties, the number N of datasets was reduced by one. Also sub-
tracted from this number were comparisons which could not be performed because of
uncompleted experiments. This occurred when the time or memory constraints for the
extraction – set respectively at 24 hours and 5000 MegaBytes – were surpassed or when
no model could be built using one threshold per hidden unit. At least one experiment
could not be completed for a total of three datasets, including that of the parity function.

5.2 Characteristics of the Trained Networks

After retraining the networks it was observed how many weights had been pruned, and
how well the neurons could be polarized by calculating the deviation of the activations
from zero averaged over all hidden units and examples. The results suggest that a trade-
off takes place between the divergence from the range center and the number of pruned
connections, as can be observed in Fig. 2. The pruning approach eliminated a great
percentage of the connections, but at the cost of distributing the activation values more
evenly across the range. When the networks were first polarized and the penalty term
was maintained during the latter connection pruning, the activation values gathered even
closer to the range boundaries, but considerably less connections were eliminated.
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5.3 Reconstruction Using the Entire Dataset

There was a noticeable change in the number of intermediate expressions which were
extracted – as well as in their complexity measured with the number of terms – when
the networks were retrained under weight sparseness pruning. As can be observed in
Fig. 3, models taken from less connected networks were much more compact.

How this reflects in the extracted models is exemplified in Fig. 4 for the expression
(x3 ∧ x1 ∧ x5)∨ (x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5). The model extracted from the original net-
work finds an adequate representation for the second conjunction in h1,6 > 0.32, as
well as for the first part of the first conjunction in h1,0 ≤ −0.26, but fails to do so for
x5. The model extracted from the polarized and pruned network includes instead only
expressions with only a couple of literals each and it therefore much simpler to trace.
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Model extracted from original network
h3,1 ≤ 0.15 → target
h2,6 > 0.32 ∨ h2,4 > 0.56 → h3,1 ≤ 0.15
(h1,0 ≤ −0.26 ∧ h1,7 ≤ −0.65) ∨
(h1,0 ≤ −0.26 ∧ h1,8 > 0.12)

→ h2,4 > 0.56

h1,6 > 0.32 → h2,6 > 0.32
(x4 ∧ x5) ∨ (x1 ∧ x̄2 ∧ x5) ∨
(x1 ∧ x̄2 ∧ x̄3 ∧ x4) ∨ (x1 ∧ x̄3 ∧ x5)

→ h1,8 > 0.12

(x̄0 ∧ x3 ∧ x5) ∨ (x2 ∧ x3 ∧ x5) ∨
(x̄1 ∧ x2 ∧ x4 ∧ x5) ∨
(x̄0 ∧ x2 ∧ x̄3) ∨ (x3 ∧ x4 ∧ x5)

→ h1,7 ≤ −0.65

x1 ∧ x3 → h1,0 ≤ −0.26

x̄0 ∧ x2 ∧ x̄3 ∧ x̄4 ∧ x̄5 → h1,6 > 0.32

Model extracted from
polarized and pruned network

h3,1 ≤ −0.10 → target
h2,6 > 0.88∨ h2,6 ≤ −0.99 → h3,1 ≤ −0.10
h1,0 ≤ −0.01 ∧ h1,8 >
−0.01

→ h2,6 ≤ −0.99

h1,5 > −0.01 ∧ h1,8 ≤
−0.01 ∧ h1,9 > −0.93

→ h2,6 > 0.88

x̄0 ∧ x̄4 → h1,9 > −0.93

x1 ∧ x3 → h1,0 ≤ −0.01

x̄5 → h1,8 ≤ −0.01

x5 → h1,8 > −0.01

x2 ∧ x̄3 → h1,5 > −0.01

Fig. 4. Effect of preceding DEEPRED with activation polarization and weight sparseness pruning
in the model that reconstructs the expression (x3 ∧ x1 ∧ x5) ∨ (x̄3 ∧ x̄0 ∧ x̄4 ∧ x2 ∧ x̄5).

Applying the different retraining methods on the networks did not cause a substan-
tial change in accuracy when any threshold could be considered. Neither was a signifi-
cant difference found when only zero was used to partition the activation ranges of the
hidden units, except for when the networks had been subjected to weight sparseness
pruning but no activation polarization. This effect is shown in Fig. 5. The black circles,
which refer to the models extracted from unpolarized and pruned networks which only
include conditions of the hidden units with zero as threshold, illustrate a clear fall in
accuracy when compared to the rest of the models.

These results reinforce the hypothesis that, when a high number of network connec-
tions are pruned and a retraining phase is performed between pruning steps, the logic
modeled by the network is more heavily concentrated in the remaining neurons, thus
needing to subdivide the neuron range into more intervals to describe it.

5.4 Reconstruction Using Part of the Dataset

For these experiments, the data was split into ten, four or two stratified folds and a
cross-validation was performed. Also, the folds were inverted to observe the situation
where lower data percentages were available. This resulted in ten experiments where
10% and 90% of the data was used, four with 25% and 75% being available, and two
for the 50% case. The evaluation measure was averaged over all folds.

Again, the analysis focused on the effect of the different retraining methodologies.
As models extracted from networks that had been pruned but not polarized using the
range midpoint as sole threshold had a very low train accuracy, the effect of enforcing
this constraint was only analyzed for the variant including both activation polarization
and weight sparseness pruning.

Generally, the best performing models were those for which weight sparseness prun-
ing had been performed, but significant differences were only found when less data was
available. When more data was used to build the models, the predictive accuracy ap-
proached the accuracy on the train data. A special case was the parity function, for
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Fig. 5. Extent to which the concepts modeled by the neural networks were reconstructed when
using all input combinations. Different configurations are compared to that where the network is
not retrained and the term thresholds are selected by C4.5 in an online manner.

which none of the approaches extracted a well generalizing model, with the accuracies
laying at 0.5 or below. Though the models extracted from pruned networks displayed
slightly higher accuracies, we were eventually not able to resolve the issue for this very
special case, which was our initial motivation for the pruning and re-training approaches
(cf. Sec. 4.1), and leave further investigation for future work.

The results when using 50% of the data or less are illustrated in Fig. 6. The per-
formances are shown in direct comparison to using plain C4.5 between the input and
output data. Compared to C4.5, the variant which did not perform network pruning did
not show any significant difference. That which only included weight sparseness prun-
ing outperformed C4.5 when 50% and 10% of the data was present according to the
Wilcoxon test (with Z = 2.22 and Z = 2.63) and for both tests when 25% was used
(16 wins out ofN = 20, Z = 3.06). The same held for the polarized and pruned variant
(with, respectively, Z = 2.31, Z = 2.52, 14 wins out of N = 19 and Z = 2.75). This
variant also outperformed C4.5 using only one threshold per neuron according to both
tests when 25% of the data was used (with 16 wins from N = 19 and Z = 3.40).

The unpolarized pruned variant outperformed that with no retraining according to
both significance tests when 25% of the data was used (with 16 from N = 19 wins,
Z = 3.11). The variant for which both retraining methods had been applied was deemed
better by the Wilcoxon test when using 10% of the data (Z = 2.07).

6 Conclusion

Reducing the connectivity of the network proved to be a robust way for extracting sim-
pler intermediate concepts, which were also better at classifying unseen instances. Yet
it seems that encouraging low connectivity not only identifies irrelevant logic created
from training too large architectures, but also concentrates the hidden features which
are in fact relevant for the classification into fewer neurons. Thus a finer-grained parti-
tioning of the activation ranges is required to regain the hidden patterns.
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Fig. 6. Test accuracy of the models when using 10%, 25% and 50% of the dataset as train data and
the remaining instances as test data. Different configurations are compared to the C4.5 algorithm,
which disregards the internal structure.

This was partly shown by an analysis of the characteristics of the network, which
exposed a trade-off between the extent to which the activation values could be polarized
and the percentage of connections that could be pruned. The negative consequences of
this effect for rule extraction were confirmed by the dismal performance of models
which combined connection pruning with only considering the center of the activation
range as threshold.

However, when polarization of the activations was done jointly with connection
pruning, the benefits of the latter could be leveraged while avoiding the undesired ef-
fect of concentrating more logic into less neurons. Although the number of connections
which could be pruned in these networks was substantially lower, the intermediate mod-
els were not significantly more complex, and in terms of accuracy these approaches
consistently performed within the highest.
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