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Batch induction

So far our algorithms looked at
all theories at the same time (implicitly through the version space)
and processed examples incrementally

We can turn this around:
work on the theories incrementally
and process all examples at the same time

Basic idea:
try to quickly find a complete and consistent rule
need not be in either S or G (but in the version space)

— We can define an algorithm similar to FindG:

successively refine rule by adding conditions:
evaluate all refinements and pick the one that looks best
until the rule is consistent

Machine Learning and Data Mining | Subgroup Discovery 3 V3.0 | J. Furnkranz I@
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Algorithm Batch-FindG

I. r,,,=r = most general hypothesis /rule in H
F = set of all possible features

Scan through all examples

. . 47
ll. while r covers negative examples in database:
|. for each possible feature fe C » count covered positives
a) r=ruU{f} * count covered negatives

by if r covers <« \
* all positive examples
» and fewer negative examples than r,,,

\then Fpog =T y |
I r=r, M Evaluation of a .rule by
= # covered positive and
Il. return r;_,, # covered negative
examples
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Properties

General-to-Specific (Top-Down) Search

similar to FindG:

FindG makes an arbitrary selection among possible refinements,
taking the risk that it may lead to an inconsistency later

Batch-FindG selects next refinement based on all training examples
Heuristic algorithm

among all possible refinements, we select the one that leads
to the fewest number of covered negatives

IDEA: the more negatives are excluded with the current condition,
the less have to be excluded with subsequent conditions

If /is not empty, it converges towards some theory in
not necessarily towards a theory in G

Not very efficient, but quite flexible
criteria for selecting conditions could be exchanged
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Algorithms for Learning a Single Rule

Obijective:
Find the best rule according to some measure /
Algorithms

Greedy search
top-down hill-climbing or beam search
successively add conditions that increase value of %
most popular approach
Exhaustive search
efficient variants
avoid to search permutations of conditions more than once
exploit monotonicity properties for pruning of parts of the search space
Randomized search
genetic algorithms etc.

Machine Learning and Data Mining | Subgroup Discovery 6 V3.0 | J. Furnkranz I@
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Top-Down Hill-Climbing

A rule is successively specialized

1. Start with the universal rule r that covers all examples
2. Evaluate all possible ways to add a condition to r

3. Choose the best one (according to some heuristic)

4. If r Is satisfactory, return it

5. Else goto 2.

Most greedy rule learning systems use a top-down strategy

Always remember (and refine) the best b solutions in parallel

Machine Learning and Data Mining | Subgroup Discovery 7 V3.1 | J. Furnkranz I@
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Terminology

training examples
P: total number of positive examples
N: total number of negative examples

examples covered by the rule (predicted positive)
true positives p: positive examples covered by the rule
false positives n: negative examples covered by the rule

examples not covered the rule (predicted negative)
false negatives P-p: positive examples not covered by the rule
true negatives N-n: negative examples not covered by the rule

| prediced e prediced

p (true positives) P-p (false negatives)
n (false positives) N-n (true negatives) N

B PN~ (i) PN
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Coverage Spaces

good tool for visualizing properties of covering algorithms
each point is a theory covering p positive and n negative examples

p=n..~

covered positive examples

covered negative examples

Machine Learning and Data Mining | Subgroup Discovery 9 V3.0 | J. Furnkranz I@



Coverage Spaces
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good tool for visualizing properties of covering algorithms
each point is a theory covering p positive and n negative examples

all positive and
no negative
examples
are covered

universal theory:

N

Iso-accuracy:

cover same
amount of
positive
and negative
examples

covered positive examples

empty theory:
no examples
are covered

(most specific)

a4 | allexamples

are covered
(most general)

Random theories:

maintain P/(P+N)% true
positive and N/(P+N)%
false positive examples,

opposite theory:
all negative and
no positive

R

4"

.’.
Al
.1.-'.
f
EN

/ z."

covered negative examples

examples
are covered
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Top-Down Hill-Climbing in Coverage Space I BRI

successively extends a rule by adding conditions
This corresponds to a path in : _
coverage space: oo -

The rule p: -true covers all

examples (universal theory) Prahe

Adding a condition never

increases p or n (specialization)

The rule p: -false covers

no examples (empty theory) o Vo ralse

0 I

which conditions are selected depends on a heuristic function that
estimates the quality of the rule

Machine Learning and Data Mining | Subgroup Discovery 11 V3.0 | J. Furnkranz I@
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Rule Learning Heuristics

Adding a condition to a rule should

decrease the number of covered negative examples n as much as
possible (increase consistency)

decrease the number of covered positive p examples as little as
possible (do not decrease completeness)

An evaluation heuristic should therefore trade off these two
extremes — prefer rules with larger p and smaller »

Example: Laplace heuristic h, = p+1
p+n+2
grows with p — 0
grows with 7—0 .
Example: Precision Ppec= ptn

is not a good heuristic. Why?

Machine Learning and Data Mining | Subgroup Discovery 12 V3.0 | J. Furnkranz I@
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Example e
Primary 2 2 0.5000 0.5000 0
Education = University 3 1 0.7500 0.6667 2
Secondary 4 2 0.6667 0.6250 2
Single 2 3 0.4000 0.4286 -1
Marital Status = Married 4 0 1.0000 0.8333 4
Divorced 3 2 0.6000 0.5714 1
Sex = Male 3 4 0.4286 0.4444 -1
Female 6 1 0.8571 0.7778 5
Children = Yes 3 3 0.5000 0.5000 0
No 6 2 0.7500 0.7000 4

Heuristics Precision and Laplace

add the condition Outlook= Overcast to the (empty) rule

Heuristic Accuracy /p — n
adds Sex = Female

Machine Learning and Data Mining | Subgroup Discovery 13
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3d-Visualization of Precision

1
=
S 08
S
= 0.6 -
>
= 0.2
0]
= 0 F
2d Coverage Space

T
N
positives 20 =

negatives
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Isometrics in Coverage Space

Isometrics are lines that connect points for which a function in p
and n has equal values

Examples:
Isometrics for heuristics & = p and i =-n
[N o
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Precision (Confidence)

TECHNISCHE

basic idea:
percentage of positive
examples among
covered examples

effects:
rotation around origin
(0,0)
all rules with same
angle equivalent
In particular, all rules

on P/N axes are
equivalent
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Entropy and Gini Index
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n
g =—(—2—log,——+—"—log,——)
p+n ptn p+n p+n These will be explained
h =1—(—P )2_( n_\°__ pn later (decision trees)
e p+n p+n’  (p+n)
I 7
effects: e/ W
L N
entropy and Gini index are i L) L
. ITERN: / ~
equivalent u”f”f / Y /::5/
like precision, isometrics i i N 7 _
¢ s -
rotate around (0,0) s pas T
. . . || ! / s } _,..r"""f
iIsometrics are symmetric u,',’,‘,'; R 7 e =]
. s -
around 45° line
a rule that only covers
negative examples is as

good as a rule that only
covers positives
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P+(N—n)lp_n Why are they
A< P+N equivalent?
.. . P
basic idea. P T
al ——— Y A e A Ve ——
percentage of correct e 7 /"’
classifications Jig f/ e e S
iy o ~ s
(covered positives plus S ad ’ R
] e i P ol /- p
uncovered negatives) s o P e
o = — e -~
effects: | heT3 7\:’ et
' : - d e i d 7
iIsometrics are parallel A A g e s ,,
to 45° line O e
. cyn s 7 ~ -~ ~
covering one positive L R g B e
example is as good as N e S
not covering one 0\ hace=2 N

negative example
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Weighted Relative Accuracy NIV ERSITAT
_ p+n ( p ):ﬂ_i
YR P+N p+n P+N’' P N
basic idea: N
normalize accuracy with P
the class distribution G E P
s
effects: e "
Isometrics are parallel f/”/
to diagonal e .
- _.r/
covering x% of the Pt
positive examples is e -
considered to be as i
good as not covering o -

x% of the negative
examples

Machine Learning and Data Mining | Subgroup Discovery
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Weighted Relative Accuracy

Two Basic ideas:

Precision Gain: compare precision to precision of a rule that classifies

all examples as positive ) p

p+tn P+N

Coverage: Multiply with the percentage of covered examples

p+n
P+N
Resulting formula:
_ p+n p P
Ryra= ' -
P+N \p+n P+N

one can show that sorts rules in exactly the same way as
P 1N
h —_

Machine Learning and Data Mining | Subgroup Discovery 20 V3.0 | J. Furnkranz I@
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Linear Cost Metric

Accuracy and weighted relative accuracy are only two special
cases of the general case with linear costs:

costs ¢ mean that covering 1 positive example is as good as not
covering c/(1-c) negative examples

C measure

%. accuracy
IW(E==2N) 1 weighted relative accuracy
excluding negatives at all costs

covering positives at all costs

The general form is then h_=c-p—(1—c)n
the isometrics of #__, are parallel lines with slope (1-¢)/c

coSst

Machine Learning and Data Mining | Subgroup Discovery 21 V3.0 | J. Furnkranz I@
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Relative Cost Metric

Defined analogously to the Linear Cost Metric

Except that the trade-off is between the normalized values
of pand n
between true positive rate p/P and false positive rate n/N

n

- _..p
The general form is then hrcost—c-E—(l—c).ﬁ

the isometrics of 4, are parallel lines with slope (1-¢)/c

cost

The plots look the same as for the linear cost metric

but the semantics of the ¢ value is different:
for i it does not include the example distribution

for &

cost

it includes the example distribution

rcost
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Laplace-Estimate
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basic idea:

precision, but count
coverage for positive
and negative examples
starting with 1 instead
of 0

effects:
origin at (-1,-1)
different values on
p=0 or n=0 axes

not equivalent to
precision

covered positive examples

A p+1 _ p+l
L (p+1)+(n+1) p+n+2

Mo e === - — - - — — _ _ _

a0

|
Lo R o)
\\}.\"'
A

covered negative examples
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m-Estimate

basic idea:

initialize the counts with m h o= P+N
examples in total, distributed " p )\ (n+ N ) p+n+m
according to the prior P+N P+ N

distribution P/(P+N) of pandn. =T 7T 7T P

effects: I IV e
origin shifts to {7 s
(-mP/(P+N),-mN/(P+N)) ./_z S - P
with increasing m, the lines I A s
become more and more T Pl e Al R e
can be re-interpreted as a
trade-off between WRA and & i
precision/confidence -n_m 0 N
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Generalized m-Estimate

One can re-interpret the m-Estimate:
Re-interpret ¢ = N/(P+N) as a cost factor like in the general cost metric
Re-interpret m as a trade-off between precision and cost-metric

m = 0: precision (independent of cost factor)

m — oo; the isometrics converge towards the parallel isometrics of the cost
metric

Thus, the generalized m-Estimate may be viewed as a means of
trading off between precision and the cost metric

Machine Learning and Data Mining | Subgroup Discovery 25 V3.0 | J. Furnkranz I@
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n - p(N-n)—(P—pn
. s Corr—
basic idea: VPN (p+n)(P—p+N—n)
measure correlation
coefficient of predictions with 7= PP
target 4 AN d
p -~ ./_/ // /
effects: .« S
. : : s
non-linear isometrics , AR,
. . / s s
in comparison to WRA / g P
s L s /'/
prefers rules near the / s
edges J/ e /
. e
steepness of connection of & ol
intersections with edges . el

iIncreases
equivalent to
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Foil Gain
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Descriptive vs. Predictive Rules

Focus on discovering patterns that describe (parts of) the data
Focus on finding patterns that allow to make predictions about the data

Rule Diversity and Completeness:

Predictive rules need to be able to make a prediction for every possible
instance

Predictive Evaluation:

It is important how well rules are able to predict the dependent variable
on new data

Descriptive Evaluation:
“insight” delivered by the rule
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Subgroup Discovery
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Definition

are interested in,

“Given a population of individuals and a property of those individuals that we
that are statistically

'most interesting’, e.g., are as large as possible and have the most unusual
distributional characteristics with respect to the property of interest”

(Klosgen 1996; Wrobel 1997)

Examples

IF
AND
THEN

IF
THEN

IF
AND
THEN

MaritalStatus = single
Sex = male
Approved = no

MaritalStatus = married
Approved = yes

MaritalStatus = divorced
HasChildren = yes
Approved = no

yes (0/9)

no (3/5)

7

ves (4/9)

no (0/5)

ves (0/9)

no (2/5)

Z |
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Application Study:
Life Course Analysis
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Data:

Fertility and Family Survey 1995/96 for Italians and Austrians

Features based on general descriptors and variables that describes
whether (quantum), at which age (timing) and in what order
(sequencing) typical life course events have occurred.

Objective:

Find subgroups that capture typical life courses for either country

Examples: IF LeftHome < Marriage AUT (3476/5325)] [ T4 (976/5782)
THEN AUT | E\\ |
IF Union = Marriage AUT (9/5325) ITA (1308/5782)
AND Education <= 14 | 7 |
THEN 1ITA
IF Unicn = Marriage AUT (64/5325) | TTA (541/5782)
AND Education >= 2Z | ] |
THEN ITA
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Rule Length and Comprehensibility

Some Heuristics tend to learn longer rules

If there are conditions that can be added without decreasing coverage,
they heuristics will add them first (before adding discriminative
conditions)

Typical intuition:
long rules are less understandable, therefore short rules are preferable
short rules are more general, therefore (statistically) more reliable

Should shorter rules be preferred?

Not necessarily, because longer rules may capture more information
about the object

Related to concepts in FCA, closed vs. free itemsets, discriminative
rules vs.

Open question...
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Inverted Heuristics — Motivation

While the search proceeds top-down
the evaluation of refinements happens from the point of view of

the origin (bottom-up) 5 ; o/

-1

0 N

Instead, we want to evaluate the refinement from the point of view
of the predecessor

P

o
Z ———————
P

Zlesnennenenalg)
T T

0
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Inverted Heuristics

Many heuristics can be “inverted” by replacing changing their
angle point from the origin to the current rule

=
AT t 7
': /':t i:r
F
e ————————————— e e i f "
P Jﬁ P -_| 2 .rr
g
I’ I ;r
/ i ;
;] i
i J
i : i
i 1 i
I i ’
[] 1 [
] I ,‘
] I i
r 1
[ I ;’
i ; : i ; 3
0 N 0 N
P
N—n+m—
! f ( .ED N )_ N —h ‘ P +N
1 precision p 1, 3 o h m— E.i'.fr'.l'u{.'f(‘( P; n, P ' N}: ]

(P+N)—(p+n) " (P+N)—(p+n—m)

Note: not all heuristics can be inverted
e.g. WRA is invariant w.r.t. inversion (because of symmetry)
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Inverted Heuristics — Example

First refinement step in small example dataset

— 4 Attributes, 10 data points, binary-class

-
Y,

P b ."rl /] P .;;:_'LH'HF,,_.—-':;?
———l ¢ D'r:i'- @ ]
0 1 1 1 + . -;‘,é L 1
9 S R + 7 & | )"
O 0 1 O - SIS {4
N T B T e A L
R o N T N
T 1 I L
g (0 |1 1 + Inverted heuristic function (right image) selects
1 1 1 0 - preferable refinement condition c¢=1 with coverage of
10 ¢ IR TR + (p,n)=(5,3)
I B RO -
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Implementation

Modification of a conventional covering algorithm
CN2-like
No pruning, no significance test

proceeds with
In each iteration, the best condition is added to the rule until the rule
covers no more examples

proceeds with

Among all refinements on the path, the best rule is selected using a
regular heuristic
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Results:
Inverted heuristics tend to work better
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{hpT‘ft- ] {hl‘.ap~ J {hme:s.‘,- ]
Dataset hprec Upree Uiap Umest| Map Uprec Wiap Umest|Nmest Upree Wiap Umest
breast-cancer |68.53 72.38 72.03 73.43 (69.58 70.63 71.33 72.73|71.33 72.03 72.38 73.78
car 90.10 90.34 90.51 88.66(90.45 91.20 91.73 91.20|89.64 90.45 90.28 87.91

contact-lenses
futebol

glass

hepatitis
hypothyroid
horse-colic
idh

Iris

ionosphere
labor
lymphography
mushroom
monk3
primary-tumor
soybean
tic-tac-toe
vole

700

79.17 87.50 87.50 83.33
28.57 64.29 57.14 42.88
56.54 65.89 68.69 62.15
78.07 79.36 80.00 76.77
98.23 98.61 98.74 98.83
72.01 79.35 79.35 77.99
62.07 82.76 75.86 75.86
92.67 93.33 95.33 94.67
95.16 82.62 83.19 89.46
91.23 80.70 82.46 89.47
83.78 77.70 84.46 83.11
100.0 100.0 100.0 100.0
87.71 82.79 82.79 84.43
33.63 39.23 35.10 30.97
90.04 91.51 92.24 91.36
97.39 98.02 97.60 97.81
94.94 93.56 94.25 94.48
84.16 88.12 92.08 90.01

79.17 87.50 87.50 83.33
28.57 64.29 57.14 42.88
61.22 65.89 68.69 62.15
78.71 79.36 80.00 76.74
98.39 98.61 98.74 98.83
70.65 79.35 80.16 77.99
62.07 82.76 75.86 75.86
94.00 93.33 95.33 94.67
94.87 82.62 93.19 89.46
91.23 80.70 82.46 89.47
85.14 77.70 84.46 83.11
100.0 100.0 100.0° 100.0
88.53 85.25 84.43 86.89
32.45 39.23 35.99 30.38
90.34 91.80 92.39 90.63
97.60 98.02 97.60 97.91
95.40 94.25 94.25 94.94
86.14 88.12 92.08 90.10

87.50 87.50 87.50 83.33
50.00 64.29 57.14 42.86
69.16 67.29 71.50 63.55
78.07 79.36 80.00 76.77
98.80 98.61 98.74 98.83
77.45 79.35 78.80 77.99
68.97 82.76 75.86 75.86
94.00 93.33 95.33 94.67
91.74 82.91 83.19 91.17
85.97 80.70 82.46 89.47
75.00 76.35 81.08 83.78
100.0 100.0 100.0 100.0
81.15 79.51 81.15 82.79
33.92 37.76 34.51 30.68
91.51 90.92 90.48 91.36
98.12 98.02 97.60 97.81
93.33 93.56 94.71 96.09
89.11 88.12 92.08 90.10

average rank

3.075 2.400 1.975 2.550

3.000 2.500 1.975 2.525

2.700 2.625 2.225 2.450
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Results:

Inverted heuristics tend to work better
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Dataset

[ h_ur'r:t; . J

hprr_‘r_‘ llp:r!?-:" [Irap [lrnEF!

{h:up...,'l {t].’”r—_’.ﬁ,r'!"]l

h"”]' ][prm" I[!'r'.l,r.u llmc.ﬂ! h””—"-"f l[jlrﬁl.’.' Ihap !I]‘:I!F.‘f_

breast-cancer

68.53 72.38 72.03 73.43

69.58 70.63 71.33 72.73171.33 72.03 72.38 73.78

vole
Z00

94.94 93.56 94.25 94.48
84.16 88.12 92.08 90.0]

Critical Distance

9 8 | 6 5 4

Lo ! 1 4 1 4 | 4 |
(hprec :hprC} (h-'ap :q.'ap )
(hl'ap :h!ap ) (hprec,ulfap )
( hmeshhmesr) (hmesr: u.fap )
(hmest: '[Jprec) (hfap ,Qprec ,}
(hprec :qmes!‘) (hprec :upre-: }
(hmestYmest)
(h.'ap sumesf)
tic‘-tac-tm: 9?:3‘? QS:EE 9?:&“ 9?:;31 '}T:_ﬁ{} 98:{12 L}?:Eﬂ} ‘J?: hl it}ﬂ:‘ll *}8:{]2 Q'T:ﬁﬂ 1}?:;31

95.40 94.25 94.25 94.94{93.33 93.56 94.71 96.09
86.14 88.12 92.08 90.10/89.11 88.12 92.08 90.10

3.075 2.400 1.975 2.550

average rank

3.000 2.500 1.975 2.525]2.700 2.625 2.225 2.450
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Inverted Heuristics — Rule Length

Inverted Heuristics tend to learn longer rules

If there are conditions that can be added without decreasing coverage
on the positive examples, inverted heuristics will add them first
(before adding discriminative conditions)

(htap, hiap)|(hiap, hiap) (htap, htap)|(hiap, hiay)
Dataset R L R L ||Dataset B L R L
breast-cancer | 25 67 38 173 ||lionosphere 17 25 8 42
car 107 495 [107 506 ||labor T 4 32
contact-lenses| 5 14 5 15 ||lymphography| 18 42 11 47
futebol 4 17 20 9 monk3 13 38 11 32
alass 50 103 | 14 83 [[mushroom 11 13 133
hepatitis 13 26 7 46 ||primary-tumor{ 80 319 | 72 5I8
horse-colic 4 114 | 19 111 ||soybean 62 134 | 45 195
hypothyroid | 27 65 9 69 |[|tic-tac-toe 22 84 16 6Y
Iris T 15 5 17 |[|vote 13 48 12 58
idh 4 5 - 200 19 19 6 14
averages 28.2 B85.6/20.6 106.2
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Discriminative Rules

Allow to quickly discriminate an object of one category from
objects of other categories

Typically a few properties suffice

Example:
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Discriminative Rules

= Allow to quickly discriminate an object of one category from
objects of other categories

= Typically a few properties suffice

= Example:
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Characteristic Rules

= Allow to characterize an object of a category

* Focus is on all properties that are typical for objects of that
category

= Example:
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Characteristic Rules

“ An alternative view of characteristic rules is to invert the
implication sign
= All properties that are implied by the category

= Example:
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Example: Mushroom dataset

DARMSTADT
The best three rules learned with conventional heuristics
IF odor = £ THEN poisonous
IF gill-color = Db THEN poisonous
IF odor = p THEN poisonous
The best three rules learned with inverted heuristics
IF veil-color = w, gill-spacing = c¢, bruises? = £,
ring-number = o, stalk-surface-above-ring = k
THEN poilsonous
ITF veill-color = w, gill-spacing = ¢, gill-size = n,
population = v, stalk-shape = t
THEN poilsonous
TF stalk-color-below-ring = w, ring-type = p,
stalk-color-above-ring = w, ring-number = o,
cap-surface = s, stalk-root = b, gill-spacing = c

THEN poilsonous
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Summary

Single Rules can be learned in from data by searching for
rules that optimize a trade-off between covered positive and negative
examples

can be defined for optimizing this trade-off

can be used to visualize the behavior or such
heuristics

heuristics tend to find the steepest ascent

heuristics assume a cost ratio between positive and
negative examples

may be viewed as a trade-off between these two
is a task of its own ...
where typically the found description is the important result
. but subgroups may
— |earning rule sets to ensure completeness
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