Data Mining and Machine Learning

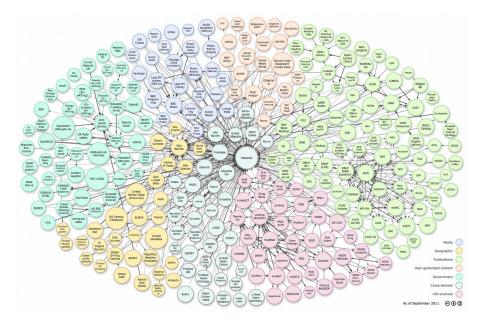
Concept Learning and Version Spaces

- Introduction
 - Concept Learning
 - Generality Relations
 - Refinement Operators
 - Structured Hypothesis Spaces

- Simple algorithms
 - Find-S
 - Find-G
- Version Spaces
 - Version Spaces
 - Candidate-Elimination Algorithm

Why Rules?

- Rules provide a good (the best?) trade-off between
 - human understandability
 - machine executability
- Used in many applications which will gain importance in the near future
 - Security
 - Spam Mail Filters
 - Semantic Web
- But they are not a universal tool
 - e.g., learned rules sometimes lack in predictive accuracy
 - → challenge to close or narrow this gap



Concept

- Attribute-Value Representation
 - each object is represented with a finite number of attributes
- Concept
 - A concept is a subset of all possible objects

Example 1:

- objects are points in a 2-d plane
- a concept can be any subarea in the plane
 - can have many disconnected components
- # objects and # concepts is infinite

Example 2:

- all attributes are Boolean, objects are Boolean vectors
- a concept can be any subset of the set of possible objects
- # concepts and # objects is finite

Concept Learning

- Given:
 - Positive Examples E+
 - examples for the concept to learn (e.g., days with golf)
 - Negative Examples E
 - counter-examples for the concept (e.g., days without golf)
 - Hypothesis Space H
 - a (possibly infinite) set of candidate hypotheses
 - e.g., rules, rule sets, decision trees, linear functions, neural networks, ...
- Find:
 - Find the target hypothesis $h \in H$
 - the target hypothesis is the concept that was used (or could have been used) to generate the training examples

Correctness

- What is a good rule?
 - Obviously, a correct rule would be good
 - Other criteria: interpretability, simplicity, efficiency, ...
- Problem:
 - We cannot compare the learned hypothesis to the target hypothesis because we don't know the target
 - Otherwise we wouldn't have to learn...
- Correctness on training examples
 - completeness: Each positive example should be covered by the target hypothesis
 - consistency: No negative example should be covered by the target hypothesis
- But what we want is correctness on all possible examples!

Conjunctive Rule

if
$$(att_i = val_{iI})$$
 and $(att_j = val_{jJ})$

Body of the rule (IF-part)

- contains a conjunction of conditions
- a condition typically consists of comparison of attribute values

then +

Head of the rule (THEN-part)

- contains a prediction
- typically + if object belongs to concept,
 - otherwise

- Coverage
 - A rule is said to cover an example if the example satisfies the conditions of the rule.
- Prediction
 - If a rule covers an example, the rule's head is predicted for this example.

Propositional Logic

- simple logic of propositions
 - combination of simple facts (features)
 - no variables, no functions, no relations
 (→ predicate calculus)
 - Operators:
 - conjunction \wedge , disjunction \vee , negation \neg , implication \rightarrow , ...
- rules with attribute/value tests may be viewed as statements in propositional logic
 - because all statements in the rule implicitly refer to the same object
 - each attribute/value pair is one possible condition
- Example:
 - if windy = false and outlook = sunny then golf
 - in propositional logic: ¬ windy ∧ sunny_outlook → golf

Features

A feature is a Boolean property of an object

Feature types

- Selectors
 - select a nominal value:

Sex = female

compare to a numerical value:

Salary > 100,000

Sales

average

North America

Mexico

- Ordered features
 - the nominal values form an ordered set
- Hierarchical features
 - the nominal values form a hierarchy
- Relational features
 - relate two or more values to each other
- Length > Height

USA

high

Region

Asia

China

Japan

compare to a set of values (e.g., a set of words)

Europe

Slovenia

Generality Relation

- Intuitively:
 - A statement is more general than another statement if it refers to a superset of its objects
- Examples:

1

All students are good in Machine Learning.

All students who took a course in Machine Learning and Data Mining are good in Machine Learning

All students who took course DM&ML at the TU Darmstadt are good in Machine Learning

All students who took course DM&ML at the TU Darmstadt and passed with 2 or better are good in Machine Learning.

Generality Relation for Rules

Rule r₁ is more general than r₂

- $r_1 \ge r_2$
- if it covers all examples that are covered by r₂.
- Rule r₁ is more specific than r₂

 $r_1 \leq r_2$

- if r₂ is more general than r₁.
- Rule r₁ is equivalent to r₂

- $r_1 \equiv r_2$
- if it is more specific and more general than r₂.

Examples:

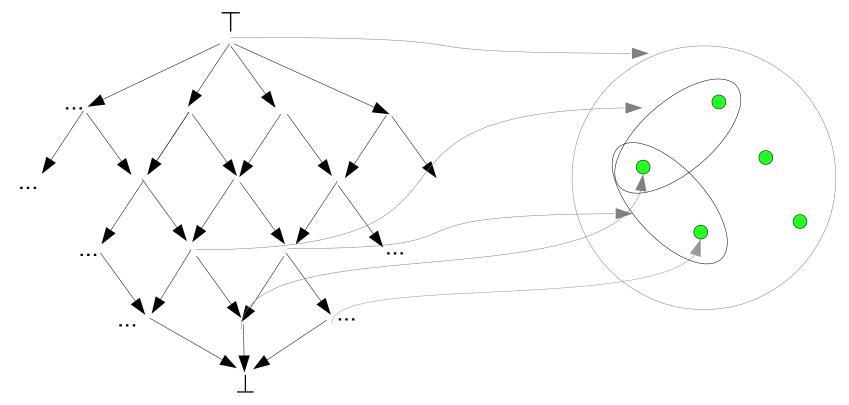
- if size > 5 then + if size > 3 then +
- if animal = mammal then +
 if feeds_children = milk then +
- if outlook = sunny then +
 - if outlook = sunny and windy = false then +

Special Rules

- Most general rule T
 - typically the rule that covers all examples
 - the rule with the body true
 - if disjunctions are allowed: the rule that allows all possible values for all attributes
- Most specific rule ⊥
 - typically the rule that covers no examples
 - the rule with the body false
 - the conjunction of all possible values of each attribute
 - evaluates to false (only one value per attribute is possible)
- Each training example can be interpreted as a rule
 - body: all attribute-value tests that appear inside the example
 - ullet the resulting rule is an immediate generalization of $oldsymbol{\perp}$
 - covers only a single example

Structured Hypothesis Space

The availability of a generality relation allows to structure the hypothesis space:



Structured Hypothesis Space

arrows to represent "is more general than"

Instance Space

Testing for Generality

- In general, we cannot check the generality of hypotheses
 - We do not have all examples of the domain available (and it would be too expensive to generate them)
- For single rules, we can approximate generality via a syntactic generality check:
 - Example: Rule r₁ is more general than r₂ if the set of conditions of r₁ forms a subset of the set of conditions of r₂.
 - Why is this only an approximation?
- For the general case, computable generality relations will rarely be available
 - E.g., rule sets
- Structured hypothesis spaces and version spaces are also a theoretical model for learning

Refinement Operators

- A refinement operator modifies a hypothesis
 - can be used to search for good hypotheses
- Generalization Operator:
 - Modify a hypothesis so that it becomes more general
 - e.g.: remove a condition from the body of a rule
 - necessary when a positive example is uncovered
- Specialization Operator:
 - Modify a hypothesis so that it becomes more specific
 - e.g., add a condition to the body of a rule
 - necessary when a negative examples is covered
- Other Refinement Operators:
 - in some cases, the hypothesis is modified in a way that neither generalizes nor specializes
 - e.g., stochastic or genetic search

Generalization Operators for Symbolic Attributes

There are different ways to generalize a rule, e.g.:

Subset Generalization

- a condition is removed
- used by most rule learning algorithms

Disjunctive Generalization

another option is added to the test

Hierarchical Generalization

a generalization hierarchy is exploited

shape = square & color = blue
$$\rightarrow$$
 + \Rightarrow color = blue \rightarrow +

shape = square & color = blue
$$\rightarrow$$
 +
 \Rightarrow
shape = (square \lor rectangle)
& color = blue \rightarrow +

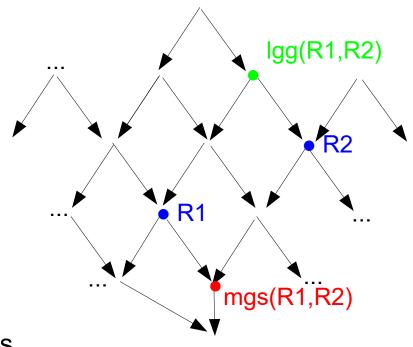
shape = square & color = blue
$$\rightarrow$$
 + \Rightarrow shape = quadrangle & color = blue \rightarrow +

Minimal Refinement Operators

- In many cases it is desirable, to only make minimal changes to a hypothesis
 - specialize only so much as is necessary to uncover a previously covered negative example
 - generalize only so much as is necessary to cover a previously uncovered positive example
- Minimal Generalization of a rule r relative to an example e:
 - Find a generalization g of rule r and example e so that
 - g covers example e $(r \operatorname{did} \operatorname{not} \operatorname{cover} e)$
 - there is no other rule g' so that $e \le g' < g$ and $g' \ge r$
 - need not be unique
- Minimal Specialization of a rule r relative to an example e:
 - Analogously (specialize r so that it does not cover e)

Minimal Generalization/Specialization

- least general generalization (lgg) of two rules
 - for Subset Generalization: the intersection of the conditions of the rules (or a rule and an example)
- most general specialization (mgs) of two rules
 - for Subset Generalization:
 the union of the conditions of the rules



Algorithm Find-S

- h = most specific hypothesis in H $(\text{covering no examples}) \qquad \text{The hypothesis}$
- II. for each training example *e*
 - a) if e is negative
 - do nothing
 - b) if e is positive
 - for each condition c in h
 - if c does not cover e
 - delete c from h

Minimal Subset generalization (other generalizations possible)

if false then +

III.return h

Note: when the first positive example is encountered, step II.b) amounts to converting the example into a rule (The most specific hypothesis can be written as a conjunction of all possible values of each attribute.)

Example

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

xample

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

H₀: if false then + if (sky = sunny & sky = rainy & ... & forecast = same & forecast = change) then +
$$<\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset>$$

H₁: <sunny, hot, normal, strong, warm, same>

H₂: <sunny, hot, ?, strong, warm, same>

H₃: <sunny, hot, ?, strong, warm, same>

 H_4 : <sunny, hot, ?, strong, ?, ? >

Short-hand notation:

- only body (head is +)
- one value per attribute
- ⊘ for false (full conjunction)
- ? for true (full disjunction)

Properties of Find-S

- completeness:
 - h covers all positive examples
- consistency:
 - h will not cover any negative training examples
 - but only if the hypothesis space contains a target concept (i.e., there is a single conjunctive rule that describes the target concept)
- Properties:
 - no way of knowing whether it has found the target concept (there might be more than one theory that are complete and consistent)
 - it only maintains one specific hypothesis
 (in other hypothesis languages there might be more than one)
 - Find-S prefers more specific hypotheses (hence the name)
 (it will never generalize unless forced by a training example)

Can we also find the most general hypothesis?

Algorithm Find-G

- I. h = most general hypothesis in H(covering all examples) The hypothesis
- II. for each training example e
 - a) if e is positive
 - do nothing
 - b) if e is negative
 - for some condition c in e
 - if c is not part of h
 - add a condition that negates c and covers all previous positive examples to h

III.return h

Minimal Subset specialization (other specializations possible)

if true then +

Example

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

Example

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

$$H_0$$
: if true then + if (sky = sunny || sky = rainy) & ... & (forecast = same || forecaset = change) then + $,?,?,?,?$

$$H_1: , ?, ?, ?, ?, ?$$

H₄: ????

There is no way to refine H_3 so that it covers example 4.

Other possibilities:

- <?, hot, ?, ?, ?, ?>
- <sunny, ?, ?, ?, ?, ?>

Uniqueness of Refinement Operators

- Subset Specialization is not unique
 - we could specialize any condition in the rule that currently covers the negative example
 - we could specialize it to any value other than the one that is used in the example
 - → a wrong choice may lead to an impasse
- Possible Solutions:
 - more expressive hypothesis language (e.g., disjunctions of values)
 - backtracking
 - remember all possible specializations and remove bad ones later → Find-GSet algorithm
- Note: Generalization operators also need not be unique!
 - depends on the hypothesis language

Algorithm Find-GSet

- I. h = most general hypothesis in H (covering all examples)
- ||. $G = \{h\}$
- III. for each training example e
 - a) if e is positive
 - remove all $h \in G$ that do not cover e
 - b) if e is negative
 - for all hypotheses $h \in G$ that cover e
 - $G = G \setminus \{h\}$
 - for every condition c in e that is not part of h
 - for all conditions c' that negate c
 - $h' = h \cup \{c'\}$
 - if h' covers all previous positive examples
 - $G = G \cup \{h'\}$

IV.return G

Example

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

$$G_0$$
: { , ?, ?, ?, ?, ?}

We now have a set of hypotheses!

$$G_1$$
: { , ?, ?, ?, ?, ? }

$$G_2\!\!: \{\, <\!?,\,?,\,?,\,?,\,?,\,?>\,\}$$

Remember all possible refinements that exclude example 3

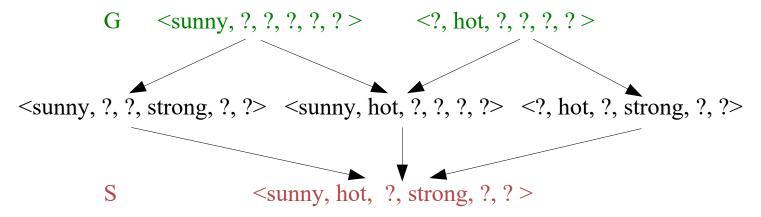
$$G_4$$
: { , , hot, ?, ?, ?}

Correct Hypotheses

- Find-GSet:
 - finds most general hypotheses that are correct on the data
 - → has a bias towards general hypotheses
- Find-SSet:
 - can be defined analogously
 - finds most specific hypotheses that are correct on the data
 - → has a bias towards specific hypotheses
- Thus, the hypotheses found by Find-GSet or Find-SSet are not necessarily identical!
 - → Could there be hypotheses that are correct but are neither found by Find-GSet nor by Find-SSet?

Version Space

- The version space is the set of hypothesis that are correct (complet and consistent) on the training examples
 - in our example consists of 6 hypotheses



- Find-GSet will find the rules in G
 - G are the most general rules in the version space
- Find-SSet will find the rules in S
 - S are the most specific rules in the version space

Version Space

- The Version Space V is the set of all hypotheses that
 - cover all positive examples (completeness)
 - do not cover any negative examples (consistency)
- For structured hypothesis spaces there is an efficient representation consisting of
 - the general boundary G
 - ullet all hypotheses in V for which no generalization is in V
 - the <u>specific boundary</u> S
 - all hypotheses in V for which no specialization is in V
- a hypothesis in V that is neither in G nor in S is
 - a generalization of at least one hypothesis in S
 - a specialization of at least one hypothesis in G

Candidate Elimination Algorithm

- G = set of maximally general hypotheses S = set of maximally specific hypotheses
- For each training example e
 - if e is positive
 - For each hypothesis g in G that does not cover e
 - remove g from G
 - For each hypothesis s in S that does not cover e
 - remove s from S
 - $S = S \cup \text{all hypotheses h such that}$
 - h is a minimal generalization of s
 - ► h covers e
 - some hypothesis in G is more general than h
 - remove from S any hypothesis that is more general than another hypothesis in S

Candidate Elimination Algorithm (Ctd.)

- if e is negative
 - For each hypothesis s in S that covers e
 - remove s from S
 - For each hypothesis g in G that covers e
 - remove g from G
 - $G = G \cup \text{all hypotheses h such that}$
 - h is a minimal specialization of g
 - h does not cover e
 - \succ some hypothesis in S is more specific than h
 - remove from G any hypothesis that is less general than another hypothesis in G

Example

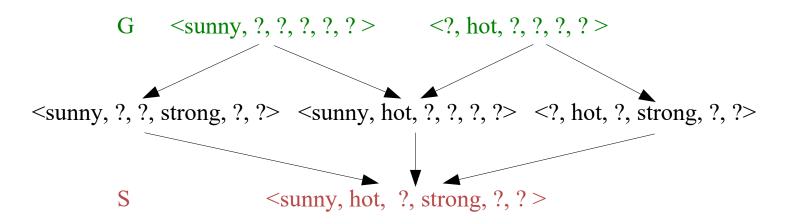
No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

Example

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

How to Classify these Examples?

Version Space:



How to Classify these Examples?

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	cool	change	
2	rainy	cool	normal	light	warm	same	
3	sunny	hot	normal	light	warm	same	
4	sunny	cool	normal	strong	warm	same	

How to Classify these Examples?

Version Space:



How to Classify these Examples?

No	Sky	Temperature	Humidity	Windy	Water	Forecast	Golf?
1	sunny	hot	normal	strong	cool	change	yes
2	rainy	cool	normal	light	warm	same	no
3	sunny	hot	normal	light	warm	same	?
4	sunny	cool	normal	strong	warm	same	maybe no

Properties

- Convergence towards target theory
 - convergence as soon as S = G
- Reliable classification with partially learned concepts
 - an example that matches all elements in S must be a member of the target concept
 - an example that matches no element in G cannot be a member of the target concept
 - ullet examples that match parts of S and G are undecidable
- no need to remember examples (incremental learning)
- Assumptions
 - no errors in the training set
 - the hypothesis space contains the target theory
 - practical only if generality relation is (efficiently) computable

Generalization Operators for Numerical Attributes

- Subset Generalization
 - generalization works as in symbolic case
 - specialization is difficult as there are infinitely many different values to specialize to
- Disjunctive Generalization
 - specialization and generalization as in symbolic case
 - problematic if no repetition of numeric values can be expected
 - generalization will only happen on training data
 - no new unseen examples are covered after a generalization
- Interval Generalization
 - the range of possible values is represented by an open or a closed interval
 - generalize by widening the interval to include the new point
 - specialize by shortening the interval to exclude the new point

Other Generality Relations

- First-Order
 - generalize the arguments of each pair of literals of the same relation
- Hierarchical Values
 - generalization and specialization for individual attributes follows the ontology

Summary

- The hypothesis space of rules (typically) consists of conjunctions of propositional features
 - Other rule representations are possible (e.g., disjunctive rules)
- It can be structured via a generality relation between rules, which can in many cases be checked syntactically
 - i.e., without explicitly looking at the covered examples
- The version space is the set of theories that are complete and consistent with the training examples
- In a structured search space it can be found by identifying the set of most general and most specific hypotheses
 - The candidate elimination algorithm does that
- Not all concepts can be represented with single rules