Maschinelles Lernen: Symbolische Ansätze WS 14/15

Prof. J. Fürnkranz Technische Universität Darmstadt — Wintersemester 2014/2015 Termin: 17. 2. 2015

English translation

This is **not the official exam**, this is only meant to be an aid for students not speaking German. It is **not guaranteed** that the translation is complete or correct. In particular, this translation contains **no figures or tables!** Always **refer to the official exam** and use this only as a help.

Do not write your solutions on these pages! You may answer in English on the regular exam.

Aufgabe 1 Miscellaneous

- 1–a What is the purpose of the use of kd-trees with a k-NN classifier?
- 1-b Explain in words (without formulas) the concepts false positives and false positive rate.
- 1–c In which case can you maintain that you do not need any more additional training examples for the candidate elimination algorithm?
- 1-d What have all classifiers that are contained in the version space in common with respect to the training data? (exactly one answer is correct)
 - $\bullet\,$ They are all neither complete nor consistent
 - They are complete but not necessarily consistent
 - They are consistent but not necessarily complete
 - They are all both complete and consistent
 - The classifiers in the G-set are complete, the classifiers in the S-Set are consistent, for all others you can't say with certainty.
- 1–e You use bagging for training an ensemble of classifiers. For what purpose could you use *stacking* in this context?
- 1–f Both boosting and bagging can be realized by sampling from the original training data of size n a new training set of size n. What is the difference between the used sampling strategies?
- 1-g Assume a heuristic $h(x) \to [0,1]$ which assigns a value between 0 and 1 to each rule, and a heuristic $g(x) = h^2(x)$, which squares the heuristic h(x). Have h and g the same isometrics? Why (not)?

Aufgabe 2 Decision Trees

Given are the following 10 training instances for the prediction of T using the three nominal attributes L, M, and N.

- 2–a Given is the following measure for measuring the impurity of a set E with e_+ positive and e_- negative examples.
 - Define on the basis of this measure a gain heuristic analogously to the definition of information gain where entropy is used as a measure of impurity.
- 2-b Use the gain heuristic defined in a) for learning a decision tree from these data.
 - Remark: If you could not solve a), you can also use a measure that we discussed in the course (e.g., Gini index).
- 2-c Convert the resulting tree into a rule set and specify it. Which conditions of the rule set can be pruned without increasing the error on the training data?

- 2-d Which method would you use on this training set for evaluating your decision tree learner (exactly one answer is correct)
 - 10-fold cross validation
 - leave-one-out cross validation
 - does not matter

Justify your answer.

Aufgabe 3 Multi-Class and Meta classification

Given is the following multi-class dataset:

- 3–a You want to tackle this dataset with a concept learner and use *pairwise classification* for this purpose. Give the training sets that you have to generate for the concept learner.
- 3-b As an alternative, error-correcting output codes are proposed to you, where you are expected to use the following coding matrix, in which the classes are coded in the order (a, b, c):

Answer the following questions:

- 1. How many binary classifiers do you have to train?
- 2. How many training examples for these binary classifiers are *in total* (across all datasets) labeled as positive, how many as negative?
- 3. Assume that the classifiers return the following class vector: Which of the classes (a,b,c) would you predict? Why?
- 3-c How would the coding matrix look like if you want to realize one-against-all classification with the help of ECOCs?
- 3–d You are using the examples $\{\#3, \#4, \#5\}$ in a first iteration of windowing. There, the following *decision* list is learned:

Which examples will be used as training set in the next iteration of windowing, and why?

Aufgabe 4 Evaluation

For the following 10 examples x is given their true class h(x) as well as the probability P(+|x) with which a learner will classify this example as positive.

- 4–a Draw the ROC curve for the above 10 examples.
 - **Hint:** The above checkered part of the paper is meant to be a drawing aid. You are not required to use it, and you can use it in any scale you wish. Don't forget to also draw the limits of the ROC space.
- 4-b Determine the area under the ROC curve (AUC).
- 4–c The area under ROC curve may be considered as a probability. Explain in words what this probability measures.
- 4-d You want to convert this ranker into a classifier K_t by introducing a threshold t for the probabilities P(+|x) so that all examples with P(+|x) > t are classified as positive, all others as negative. Determine from the ROC curve a possible threshold that maximizes the *accuracy* of the classifier, and compute this maximal accuracy.
- 4–e Compare the classifier $K_{0.5}$, which classifies all examples with P(+|x) > 0.5 as positive, to the classifier $K_{0.2}$, which classifies all examples with P(+|x) > 0.2 as positive. Starting with which cost ratio $\frac{c_-}{c_+}$ is it better to use $K_{0.2}$ than $K_{0.5}$?

3

Aufgabe 5 Association Rules

A fruit store makes the following observations about the buying habits of its customers:

Here is a list of all pairs of products that have been bought by at least 40% of the customers:

Hint: You can abbreviate the different fruits with their starting letters.

- 5–a Which candidates for itemsets of length 3 will be generated by APRIORI using the method discussed in the lecture?
 - Hint: The items in a shopping basket are sorted alphabetically.
- 5-b Which itemsets generated in a) can be removed from C_3 before their frequency has to be counted?
- 5–c Which itemsets form eventually the set S_3 of frequent itemsets of length 3? Specify the support of each member of S_3 .
- 5–d Compute the lift of the association rule $Apfel \rightarrow Erdbeere$.
- 5-e Which of the six elements of S_2 belongs to the positive border?
- 5–f Give an example of a 2-element itemset of the negative border.
- 5–g Give all association rules with $c_{min} = 0.8$ that can be formed from the itemset $\{Apfel, Erdbeere, Clementine\}.$