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Bias and Variance Decomposition

 Bias:
 the part of the error that is caused by bad model

 Variance:
 the part of the error that is caused by the data sample

 Bias-Variance Trade-off:

 algorithms that can easily adapt to any given decision boundary are 
very sensitive to small variations in the data 
 and vice versa

 Models with a low bias often have a high variance
 e.g., nearest neighbor, unpruned decision trees

 Models with a low variance often have a high bias
 e.g., decision stump, linear model
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Ensemble Classifiers 

 IDEA:
 do not learn a single classifier but learn a set of classifiers
 combine the predictions of multiple classifiers

 MOTIVATION: 
 reduce variance: results are less dependent on peculiarities of a 

single training set
 reduce bias: a combination of multiple classifiers may learn a 

more expressive concept class than a single classifier

 KEY STEP:
 formation of an ensemble of diverse classifiers from a single training 

set
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Why do ensembles work?

 Suppose there are 25 base classifiers

 Each classifier has error rate,  = 0.35
 Assume classifiers are independent
 i.e., probability that a classifier makes a mistake does not depend on 

whether other classifiers made a mistake
 Note: in practice they are not independent!

 Probability that the ensemble classifier makes a wrong prediction
 The ensemble makes a wrong prediction if the majority of the 

classifiers makes a wrong prediction
 The probability that 13 or more classifiers err is

∑
i=13

25

25
i  i 1− 25− i≈ 0.06≪
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Bagging: General Idea
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Generate Bootstrap Samples

 Generate new training sets using sampling with replacement 
(bootstrap samples)

 some examples may appear in more than one set
 some examples will appear more than once in a set
 for each set of size n, the probability that a given example appears in 

it is

 i.e., on average, less than 2/3 of the examples appear in any single 
bootstrap sample

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Pr  x∈Di=1− 1− 1
n


n

0.6322
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Bagging Algorithm

1. for m = 1 to t                        // t ... number of iterations

a) draw (with replacement) a bootstrap sample Dm of the data 

b) learn a classifier Cm from Dm

2. for each test example 

a) try all classifiers Cm

b) predict the class  that receives the highest number of votes

1. for m = 1 to t                        // t ... number of iterations

a) draw (with replacement) a bootstrap sample Dm of the data 

b) learn a classifier Cm from Dm

2. for each test example 

a) try all classifiers Cm

b) predict the class  that receives the highest number of votes

 variations are possible
 e.g., size of subset, sampling w/o replacement, etc.

 many related variants
 sampling of features, not instances
 learn a set of classifiers with different algorithms
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Bagged 
Decision 
Trees
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Bagged Trees
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Bagging with costs

 Bagging unpruned decision trees is known to produce good 
probability estimates
 Where, instead of voting, the individual classifiers' probability 

estimates Prn( j | x) are averaged

 Note: this can also improve the error rate

 We can use this with minimum-expected cost approach for 
learning problems with costs
 predict class c with 

 Problem: not interpretable
 MetaCost re-labels training data using bagging with costs and then 

builds single tree (Domingos, 1997)

c=arg mini∑
j

C i∣ j Pr  j∣x

Pr  j∣x=
1
t ∑ n=1

t
Prn j∣x
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Randomization

 Randomize the learning algorithm instead of the input data
 Some algorithms already have a random component

 eg. initial weights in neural net

 Most algorithms can be randomized, e.g. greedy algorithms:
 Pick from the N best options at random instead of always picking the 

best options
 Eg.: test selection in decision trees or rule learning

 Can be combined with bagging
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Random Forests

 Combines bagging and random attribute subset selection:
 Build the tree from a bootstrap sample
 Instead of choosing the best split among all attributes, select the best 

split among a random subset of k attributes 
 is equal to bagging when k equals the number of attributes

 There is a bias/variance tradeoff with k: 
 The smaller k, the greater the reduction of variance but also the 

higher the increase of bias
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Boosting

 Basic Idea:
 later classifiers focus on examples that were misclassified by earlier 

classifiers
 weight the predictions of the classifiers with their error

 Realization
 perform multiple iterations
 each time using different example weights

 weight update between iterations
 increase the weight of incorrectly classified examples
 this ensures that they will become more important in the next iterations

(misclassification errors for these examples count more heavily)

 combine results of all iterations
 weighted by their respective error measures
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Boosting – Algorithm AdaBoost.M1

1. initialize example weights wi = 1/N   (i = 1..N)

2. for m = 1 to t                        // t ... number of iterations

a) learn a classifier Cm using the current example weights

b) compute a weighted 
error estimate

c) compute a classifier weight

d) for all correctly classified examples ei :

e) for all incorrectly classified examples ei :

f) normalize the weights wi so that they sum to 1

3. for each test example 

a) try all classifiers Cm

b) predict the class  that receives the highest sum of weights α m 

1. initialize example weights wi = 1/N   (i = 1..N)

2. for m = 1 to t                        // t ... number of iterations

a) learn a classifier Cm using the current example weights

b) compute a weighted 
error estimate

c) compute a classifier weight

d) for all correctly classified examples ei :

e) for all incorrectly classified examples ei :

f) normalize the weights wi so that they sum to 1

3. for each test example 

a) try all classifiers Cm

b) predict the class  that receives the highest sum of weights α m 

m=
1
2

ln 
1− errm

errm



w i  wi e
−m

wi wi e
m

errm=
∑ wi of all incorrectly classified ei

∑ i=1

N
wi  = 1  because weights

        are normalized 

update weights so 
that sum of 
correctly classified 
examples equals 
sum of incorrectly 
classified examples
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Illustration of the Weights

 Classifier Weights am

 differences near 0 or 1 
are emphasized

 Example Weights w
i

 multiplier for correct and 
incorrect examples, depending 
on error
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Boosting – Error rate example
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 boosting of decision stumps on simulated data
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Toy Example

(taken from Verma & Thrun, Slides to CALD Course  CMU 15-781, 
                                               Machine Learning, Fall 2000)

 An Applet demonstrating AdaBoost
 http://www.cse.ucsd.edu/~yfreund/adaboost/
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Round 1
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Round 2
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Round 3
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Final Hypothesis
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Dealing with Weighted Examples

Two possibilities (→ cost-sensitive learning)
 directly

 example ei has weight wi

 number of examples n  Þ  total example weight 

 via sampling
 interpret the weights as probabilities
 examples with larger weights are more likely to be sampled
 assumptions
 sampling with replacement
 weights are well distributed in [0,1]
 learning algorithm sensible to varying numbers of identical examples in 

training data

 boosting can thus be used in very much the same way as bagging

∑ i=1

n
wi
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Comparison Bagging/Boosting

 Bagging
 noise-tolerant

 produces better class 
probability estimates

 not so accurate
 statistical basis

 related to random sampling

 Boosting
 very susceptible to noise in 

the data
 produces rather bad class 

probability estimates
 if it works, it works really well
 based on learning theory

(statistical interpretations are 
possible)

 related to windowing
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Example
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Additive regression

 It turns out that boosting is a greedy algorithm for fitting additive 
models

 More specifically, implements forward stagewise additive 
modeling

 Same kind of algorithm for numeric prediction:

1.Build standard regression model (e.g. tree)

2.Gather residuals

3.learn model predicting residuals (e.g. tree)

4.goto 2.

 To predict, simply sum up individual predictions from all models
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Combining Predictions

 voting
 each ensemble member votes for one of the classes
 predict the class with the highest number of vote (e.g., bagging)

 weighted voting
 make a weighted sum of the votes of the ensemble members
 weights typically depend 
 on the classifiers confidence in its prediction (e.g., the estimated probability 

of the predicted class)
 on error estimates of the classifier (e.g., boosting)

 stacking 
 Why not use a classifier for making the final decision?
 training material are the class labels of the training data and the 

(cross-validated) predictions of the ensemble members
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Stacking

 Basic Idea:
 learn a function that combines the predictions of the individual 

classifiers

 Algorithm:

 train n different classifiers C1...Cn (the base classifiers)

 obtain predictions of the classifiers for the training examples
 form a new data set (the meta data)
 classes
 the same as the original dataset

 attributes
 one attribute for each base classifier
 value is the prediction of this classifier on the example

 train a separate classifier M (the meta classifier)

This is better done
with cross-validation!
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Stacking (2)

 Using a stacked 
classifier:
 try each of the 

classifiers C1...Cn

 form a feature 
vector consisting 
of their 
predictions

 submit these 
feature vectors
to the meta 
classifier M

 Example:
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Error-correcting output codes
(Dietterich & Bakiri, 1995)

0  0  0  1d

0  0  1  0c

0  1  0  0b

1  0  0  0a

class vectorclass

0 1 0 1 0 1 0d

0 0 1 1 0 0 1c

0 0 0 0 1 1 1b

1 1 1 1 1 1 1a

class vectorclass

 Class Binarization technique
 Multiclass problem → binary problems
 Simple scheme: 

One-vs-all coding

 Idea: use error-correcting 
codes instead
 one code vector per class

 Prediction:
 base classifiers predict

1011111, true class = ??

 Use code words that have large 
pairwise Hamming distance d
 Can correct up to (d – 1)/2 single-bit errors

7 binary classifiers
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More on ECOCs

 Two criteria :
 Row separation:

minimum distance between rows
 Column separation:

minimum distance between columns
 (and columns’ complements)
 Why? Because if columns are identical, base classifiers will likely make the 

same errors
 Error-correction is weakened if errors are correlated

 3 classes → only 23 possible columns 
 (and 4 out of the 8 are complements)
 Cannot achieve row and column separation

 Only works for problems with > 3 classes
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Exhaustive ECOCs

0101010d

0011001c

0000111b

1111111a

class vectorclass

Exhaustive code, k = 4
 Exhaustive code for k classes:

 Columns comprise every
possible k-string …

 … except for complements
and all-zero/one strings

 Each code word contains
2k–1 – 1 bits

 Class 1: code word is all ones

 Class 2: 2k–2 zeroes followed by 2k–2 –1 ones

 Class i : alternating runs of 2k–i 0s and 1s
 last run is one bit shorter than the others
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Extensions of ECOCs

 Many different coding strategies have been proposed
 exhaustive codes infeasible for large numbers of classes
 Number of columns increases exponentially

 Random code words have good error-correcting properties on 
average!

 Ternary ECOCs (Allwein et al., 2000)
 use three-valued codes -1/0/1, i.e., positive / ignore / negative
 this can, e.g., also model pairwise classification

 ECOCs don’t work with NN classifier
 because the same neighbor(s) are used in all binary classifiers for 

making the prediction
 But: works if different attribute subsets are used to predict each output 

bit
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Summary: Forming an Ensemble 

 Modifying the data
 Subsampling
 bagging 
 boosting 

 feature subsets
 randomly feature samples

 Modifying the learning task
 pairwise classification / round 

robin learning
 error-correcting output codes 

 Exploiting the algorithm 
characterisitics
 algorithms with random 

components
 neural networks

 randomizing algorithms
 randomized decision trees

 use multiple algorithms with 
different characteristics

 Exploiting problem 
characteristics
 e.g., hyperlink ensembles 
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