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 Clustering
 Basic algorithms

 k-means clustering
 bottom-up hierarchical 
clustering

 Efficient algorithms
 BIRCH
 BUBBLE
 CURE



V2.0  |  J. FürnkranzData Mining and Machine Learning | Clustering 2

Different Learning Scenarios

Supervised Learning
 A teacher provides the value for the target function 

for all training examples (labeled examples)
 concept learning, classification, regression

Unsupervised Learning
 There is no information except the training examples
 clustering, subgroup discovery, association rule discovery

Reinforcement Learning
 The teacher only provides 

feedback but not example values

Semi-supervised Learning
 Only a subset of the training 

examples are labeled 
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Clustering

Given a set of objects, divide it 
into groups (clusters) so that

 objects of same group are 
close to each other
(intra-class similarity)

 objects of different groups are 
far from each other
(inter-class dissimilarity)
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6 clusters on Iris dataset

Instance number
Attribute sepallength
Attribute sepalwidth
Attribute petallength
Attribute petalwidth
Class Attribute
Clustering
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Basic Clustering Algorithms

 k-means clustering
 given a similarity metric (like k-NN algorithms)
 initialize k cluster centers
 iteratively assign examples to closest neighbor
 until procedure converges

 bottom-up hierarchical clustering
 each example is a cluster
 iteratively merge clusters, similar to chi-merge

 Cobweb
 incrementally build up a tree structure 
 each node/cluster can estimate a probability that an example belongs 

to this cluster
 examples are sorted into the tree in a top-down way
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k-means Clustering

 Based on EM (Expectation Maximization) algorithm

 Efficiently find k clusters:

1. Randomly select k points ck as cluster centers

2. E-Step: Assign each example to the nearest cluster center

3. M-Step: Compute new cluster centers as the average of all 
points assigned to the cluster

4. Goto 2. unless no improvement

ck 
1
nk
∑
i=1

nk

d i
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Id   x   y

 0:  1.0  0.0
 1:  3.0  2.0
 2:  5.0  4.0
 3:  7.0  2.0
 4:  9.0  0.0
 5:  3.0 -2.0
 6:  5.0 -4.0
 7:  7.0 -2.0
 8: -1.0  0.0
 9: -3.0  2.0
10: -5.0  4.0
11: -7.0  2.0
12: -9.0  0.0
13: -3.0 -2.0
14: -5.0 -4.0
15: -7.0 -2.0
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k-means: Example

 find the best 2 clusters
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Seed: (9 0) (8 1)

Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

k-means-Clustering – Example
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )

k-means-Clustering – Example
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

k-means-Clustering – Example
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: ( 1 2 3 4 5 6 7 ) ( 0 8 9 10 11 12 13 14 15 )

k-means-Clustering – Example
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: ( 1 2 3 4 5 6 7 ) ( 0 8 9 10 11 12 13 14 15 )
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

k-means-Clustering – Example
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Clustering: ( 1 2 3 4 5 6 7 ) ( 0 8 9 10 11 12 13 14 15 )

Clustering: ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )

k-means-Clustering – Example
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Seed: (9 0) (8 1)
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: ( 1 2 3 4 5 6 7 ) ( 0 8 9 10 11 12 13 14 15 )
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

Clustering: ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
Cluster Centers: (5.0 0.0) (-5.0 0.0)
Average Distance: 3.41421

k-means-Clustering – Example
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Seed: (9 0) (8 1)
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Clustering: ( 4 6 7 ) ( 0 1 2 3 5 8 9 10 11 12 13 14 15)
Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 )
Cluster Centers: (6.0 -0.33334) (-3.6 0.2)
Average Distance: 3.6928

Clustering: ( 1 2 3 4 5 6 7 ) ( 0 8 9 10 11 12 13 14 15 )
Cluster Centers: (5.57143 0.0) (-4.33334 0.0)
Average Distance: 3.49115

Clustering: ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
Cluster Centers: (5.0 0.0) (-5.0 0.0)
Average Distance: 3.41421

Clustering: ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
No improvement.

k-means-Clustering – Example
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Termination Conditions and Convergence

 Several possibilities for termination conditions, e.g.,
 repeat for a fixed number of iterations.
 repeat until document partition unchanged
 repeat until centroid positions unchanged

 Convergence
 Why should the K-means algorithm ever reach a fix point?
 Fix Point: A state in which clusters don’t change.

 K-means is a special case of a general procedure known as the 
Expectation Maximization (EM) algorithm.
 EM is known to converge, but number of iterations could be large.

 However, K-means typically converges quickly

Manning and Raghavan
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Convergence of K-Means

 Define goodness measure of cluster k as sum of squared 
distances from cluster centroid c

k
:

                                 (sum over all d
i
 in cluster k)

 and goodness measure for clustering as the sum

    

 E-Step (reassignment) monotonically decreases G since each 
vector is assigned to the closest centroid
 i.e., the distance to the cluster center cannot increase

 M-Step (recomputation) monotonically decreases each G
k
 

because                 
              

minimizes the function

 Proof: 

Manning and Raghavan

Gk=∑
i=1

nk

d i−ck 
2

G=∑
k=1

K

G k

f x=∑i
d i−x 2

x= 1
nk

∑
i= 1

n k

d i=ck

f ' ( x)=∑
i= 1

nk

−2(d i−x)=0⇔∑
i= 1

nk

x=∑
i= 1

nk

d i ⇔nk⋅x=∑
i= 1

nk

d i⇔ x=ck
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Time Complexity

 Computing distance between two docs:
 O(m) where m is the dimensionality of the vectors.

 Reassigning clusters: 
 O(Kn) distance computations, in total O(Knm)

 Computing centroids: 
 Each doc gets added once to some centroid: O(nm).

 Repeat this for I iterations:  
→ Complexity is O(IKnm) in total

Manning and Raghavan
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Seed Choice

 Results can vary based on random 
seed selection.
 Some seeds can result in poor 

convergence rate, or convergence 
to sub-optimal clusterings.

 Possible Strategies:
 Select good seeds using a heuristic (e.g., 

doc least similar to any existing mean)
 Try out multiple starting points
 Initialize with the results of another 

method.

In the above, if you start
with B and E as centroids
you converge to {A,B,C}
and {D,E,F}
If you start with D and F
you converge to 
{A,B,D,E} {C,F}

Example showing
sensitivity to seeds

Manning and Raghavan
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How Many Clusters?

 The number of desired clusters K is not always given

 Finding the “right” K may be part of the problem
 Partition the instances into an “appropriate” number of subsets.

 Ideal value of K not known up front 

 Simple Strategy:
 Compute a clustering for various values of K
 choose the best one

 But how can we measure Cluster Quality?
 Why can't we use, e.g., the G-measure?

Manning and Raghavan
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Trading Off Cluster Quality and Number of 
Clusters

 Measures that measure the quality of a clustering by average 
distances to cluster centers are easy to optimize
 the optimum is always the largest K 
 see convergence proof

 limiting case: for K = N, we have G = 0

 Strategy: Combine quality measures with a penalty for high 
number of clusters
 For each cluster, we have a Cluster cost C.
 Thus for K clusters, the Total Cluster Cost is KC.
 Define the Value of a clustering to be = 

Average Distances + Total Cluster cost.

 Find the clustering of lowest value, over all choices of K.
 Total benefit increases with increasing K. But can stop when it doesn’t 

increase by “much”. The Cost term enforces this.
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K-means issues, variations, etc.

 Recomputing the centroid after every assignment (rather than 
after all points are re-assigned) can improve speed of 
convergence of K-means

 Assumes clusters are spherical in vector space
 Sensitive to coordinate changes, weighting etc. 

 Disjoint and exhaustive
 Doesn’t have a notion of “outliers”

Manning and Raghavan
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Hierarchical Clustering

 Produces a tree hierarchy of clusters
 root: all examples
 leaves: single examples
 interior nodes: subsets of examples

 Two approaches
 Divisive (Top-down)
 start with maximal cluster (all examples)
 successively split existing clusters
 e.g., recursive application of k-means Clustering

 Agglomerative (Bottom-up)
 start with minimal clusters (single examples)
 successively merge existing clusters
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Hierarchical Agglomerative Clustering

 Assumes a similarity function for determining 
 the similarity of two instances

(and more generally the similarity of two clusters)

 Bottom-up strategy:
 Starts with all instances in a separate cluster
 then repeatedly joins the two clusters that are most similar
 until there is only one cluster.

 The history of merging forms a binary tree 
or hierarchy or dendrogram
 a clustering can be obtained by cutting

the dendrogram at a given level
 all connected components form a cluster

Manning and Raghavan
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
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1. Start with one cluster for each example: C = {Ci} = {{oi} | oi  O }

2. compute distance d(Ci , Cj )  between all pairs of Clusters Ci , Cj

3. Join clusters Ci und Cj with minimum distance into a 
    new cluster Cp; make Cp the parent node of Ci and Cj: 

    Cp = {Ci , Cj}
    C = (C \ {Ci , Cj})  {Cp}

4. Compute distances between Cp and other clusters in C

5. If  |C| > 1, goto 3.

Hierarchical Agglomerative Clustering

→ We need a method for
     computing distances 
     between clusters!
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Similarity between Clusters
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ways of computing a similarity/distance between clusters C1 and C2

 Single Link

 minimum distance between two elements of C1 and C2

d(C1, C2) = min{ d(x, y) | x ∈ C1 , y ∈ C2 }
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Similarity between Clusters

ways of computing a similarity/distance between clusters C1 and C2

 Complete Link
 maximum distance between two elements of C1 and C2

d(C1, C2) = max{ d(x, y) | x ∈ C1 , y ∈ C2 }
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Similarity between Clusters

ways of computing a similarity/distance between clusters C1 and C2

 Average Link
 average distance between two elements of C1 and C2

d(C1, C2) = ∑{ d(x, y) | x ∈ C1 , y ∈ C2 } / |C1| / |C2|
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Representing Clusters with Centers

If a cluster could be represented with a single point, cluster similarity 
could be the distance of only two points (constant time)

 Centroids
 Mean/average point of all cluster points
 point that minimizes the distance to all 

cluster points

 only in Euclidian spaces!

 Clusteroids
 Median point of all cluster points,
 cluster point that minimize the distance to

all other cluster points.

■
x

x
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Computational Complexity

There are n-1 iterations
 in each iterations 2 clusters are merged

In each iteration, it compares all cluster distances to each other
 there are (n-i+1) clusters at the start of the i-th iteration

∑i=1

n−1
(n−i+1)2=∑i=2

n
i2=1

6
n(n+1)(2n+1)−1=O(n3)
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Computational Complexity (better)

There are O(n) iterations

The distances from the previous iteration remain unchanged, we 
only need to recompute the O(n) distances of the merged cluster to 
all other clusters

and keep them sorted in a priority queue → O(log n)

But O(n2 log n) is still too much for big data...
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Balanced Iterative Reducing and 
Clustering using Hierarchies

Efficient clustering algorithm
 does not assume that all examples are in main memory

Observation:
 Building trees bottom-up is useful 
 but the lower levels of the tree (e.g., merging of single 

examples) are typically not interesting

Two Key Steps

1.Compress the data into a tree structure that fits into 
main memory

2.Extract a clustering from that tree structure

(Zhang, Ramakrishnan & Livny, 1996)
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We cannot store all points of a cluster (in main memory)

→ we need to summarize information in each cluster

 N
 number of points in the cluster

   
 sum of points in the cluster

   
 squared sum of points in the cluster

Cluster Feature

CF=⟨N , LS , SS ⟩

LS=∑i=1

N
x i

SS=∑i=1

N
x i

2

■
x

x̄= LS
N

r2= SS
N

−( LS
N

)
2
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Merging clusters is trivial because of Additivity Theorem

Cluster Merging

C1 C2

■
x

C1∪C2=⟨N 1 , LS1 , SS1⟩∪⟨N 2 , LS2 , SS2⟩

C

■ x
■

=⟨N 1+N 2 , LS1+LS2 , SS1+SS2⟩=C
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Data Compression by Building the CF Tree

Phase 1: Tree Construction: For each example x do
 Identify the appropriate leaf L
 recursively descend the CF tree and choose the child with the closest 

centroid until a leaf is reached

 If                       
 add the example to the node (update CF

L
)  

 Otherwise 
 split the node

 if number of nodes exceeds B
add a node at parent level
 if necessary increase depth of tree 

 Update the path
 update CF information in every visited node

d (x , x̄ L)<T parent

L
T

x
2

L L
2

x
L

x

Graphic based on M. Davitkov
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Threshold Parameter

 Crucial is the choice of the threshold T
 If T is too large → initial clustering is very coarse
 If T is too small → tree may not fit into memory

In the second case:
 If memory is exhausted, rebuild the tree with a larger T

1.Start new empty tree

2.Take every leaf of the old tree and insert it in the new tree 
(→ some leafs may be joined in the process)

 Continue your pass through the examples

Choosing T:
 aim for doubling the number of processed examples
 crude approximation (d-dimensional sphere): T i+1=

d√2⋅T i
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Further Compression

Phase 2: Condense Tree (optional)
 the tree resulting from phase 1 may be 
 too large
 too fractured
 inconsistent (e.g., the same example may end up in different leaves)

 Another pass for tree restructuring after the end of Phase 1 may 
help
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Finding the Clustering

Phase 3: Global Clustering
 All clusters at the leaves are the input
 use any clustering algorithm for finding a final clustering
 e.g., hierarchical agglomerative clustering
 complexity not so bad, because the number of leaves is much smaller 

than N 

Phase 4: Iterative Improvement (optional)
 use the clustering found in Phase 3 and perform EM-like 

improvement steps (analogous to k-means clustering)
 assign each data point to nearest cluster center
 compute new cluster centers
 repeat ad libitum
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Key Properties

Pros:
 Clustering decisions are local (should a node be split or not)
 First clustering can be obtained with a single pass through the 

data (incremental algorithm)

Neutral:
 Global optimization requires additional passes through the data

Cons:
 Assumes Euclidian space (centroids must exist)
 Assumes elliptic shapes of clusters
 Result depends on order of the examples
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BUBBLE – Adapting BIRCH to general spaces

We need to remember
 points in order to be able to compute a clusteroid
 distances between points in order to estimate cluster distances

BUBBLE stores in a node

 N : number of points in the cluster 

 q: the cluster center (clusteroid) of the cluster (corresponds to LS) 


 sum of squared distances to points in the cluster (corresponds to SS)

 a sample of points and their RowSums
 MinSet: the k points closest to q 
 MaxSet: the k points most distant from q

RowSum (q)=∑i=1

N
d2(q , xi)

Note: q is the point with
the minimum RowSum
of all cluster points

Note: q is the point with
the minimum RowSum
of all cluster points

(Ganti et al. 1999)
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1. approximate the RowSum for p:

2.increase the count: 

3.update the 2k + 1 RowSums:

Node Update for a new instance p

RowSum (x)=RowSum (x)+d2(x , p)

N=N +1

RowSum (p)≈RowSum (q)+N⋅d2(p ,q)RowSum (p)≈RowSum (q)+N⋅d2(p ,q)

RowSum (p)=∑i=1

N
d2(p , xi)≈∑i=1

N
(d2(p ,q)+d2(q , x i))

=N⋅d2(p ,q)+RowSum (q)

Note: in very high dimensional spaces, point 
angles are almost always close to orthogonal
(Curse of Dimensionality).

Note: in very high dimensional spaces, point 
angles are almost always close to orthogonal
(Curse of Dimensionality).pq

x
i

Intuition behind the approximation:
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Update of Cluster Structure

 Add point
 if RowSum(p) is small (large) enough, it replaces the max (min) 

distance point among the k MinSet (MaxSet) points

 New clusteroid
 if after step 3.                                               for one of the k MinSet 

points x, then x and q swap their roles

 Splitting of cluster
 if cluster radius                                   too large, the cluster is split
 divide the cluster so that the RowSums in each part are minimized

 Merging of clusters
 if tree size exceeds memory, nodes need to be merged
 for this the MaxSet points are considered as clusteroids

r=√RowSum (q)/N

RowSum (x)<RowSum (q)
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Characteristica of BUBBLE

 Needs more storage space than BIRCH
 In each cluster, we need to store 2k points (or pointers to disk space) 

plus the corresponding RowSums

 but does not depend on shape of clusters or distances
 only produces an approximate solution
 Uses multiple points to represent a cluster (→ CURE)
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Key idea of CURE

 Represent each cluster with multiple points
 which are chosen in a way to maximize distances

(Guha, Rastogi & Shim, 1998)
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Other Ideas in CURE

 Shrinking:
 representative points are contracted by a factor α towards the centroid:
 α = 1 corresponds to using all points as given

 α = 0 corresponds to replacing all points with a clusteroid

→ idea is to fight outliers

 Identifying outlier clusters:
 Outliers are isolated points, so they will get few members → can be 

identified during growing (slow growth) or removed at the end

 Random Sampling / Partitioning
 In order to make it more efficient, the algorithm uses a random sample

or multiple partitions for finding the clusters
 and then assigns the remaining points to the cluster (points are 

assigned to the cluster with the closest representative)



V2.0  |  J. FürnkranzData Mining and Machine Learning | Clustering 64

CURE algorithm

Picture taken from (Aggarwal & Reddy, 2014)
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Properties of CURE

 use of multiple points for representing a cluster → allows to fit 
arbitrary shapes

 efficiency via the use of sampling or partitioning
 outliers are handled quite well
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Some Applications of Clustering

 Query disambiguation
 Eg: Query“Star” retrieves documents about astronomy, plants, 

animals, movies etc. 
– Solution:

• Clustering document responses to queries
• e.g., http://www.clusty.com/

 Manual construction of topic hierarchies and taxonomies
– Solution: 
 Preliminary clustering of large samples of web documents.

 Speeding up similarity search
– Solution:
 Restrict the search for documents similar to a query to  most representative cluster(s).
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For better navigation of search results

 For grouping search results thematically
 clusty.com / Vivisimo

Manning and Raghavan

http://www.clusty.com/
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Application: Build up a Web Catalogue

dairy
crops

agronomyforestry

AI

HCI
craft

missions

botany

evolution

cell
magnetism

relativity

courses

agriculture biology physics CS space

... ... ...

… (30)

www.yahoo.com/Science

... ...

Manning and Raghavan
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Application: Build up a Web Catalogue

Manning and Raghavan
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Browsing Documents: Scatter/Gather (Cutting, Karger, 
and Pedersen)

Manning and Raghavan

http://www.dmoz.org/
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Now you should know...

 What is the difference between clustering and classification?
 How does k-means clustering work?
 What is the difference between divisive and agglomerative 

clustering?
 Why is the complexity of HAC prohibitive for big data?
 What is the key idea of BIRCH for reducing the complexity?
 What cluster features does it remember and why?
 Will it produce exactly the same result as HAC?
 How many passes through the data does it require?
 How to choose a good threshold, what are the trade-offs?
 How can it be adapted to non-convex shapes?
 How can it be adapted to non-Euclidean spaces?
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