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Decision Trees

 a decision tree consists of
 Nodes: 
 test for the value of a certain attribute

 Edges: 
 correspond to the outcome of a test
 connect to the next node or leaf

 Leaves:
 terminal nodes that predict the outcome

to classifiy an example:
1.start at the root

2.perform the test

3.follow the edge corresponding to outcome

4.goto 2. unless leaf

5.predict that outcome associated with the leaf
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Decision Tree Learning

Training

Classification

?

New Example

In Decision Tree 
Learning, a new example 
is classified by submitting 
it to a series of tests that 
determine the class label 

of the example.These tests 
are organized in a 

hierarchical structure 
called a decision tree.

The training examples 
are used for choosing

appropriate tests in the
 decision tree. Typically, a  

tree is built from top to 
bottom, where tests that 

maximize the information gain 
about the classification are 

selected first.
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A Sample Task

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

07-30 mild  rain  high false  yes 

today cool sunny normal false ?

tomorrow mild sunny normal false ?
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Decision Tree Learning

tomorrow mild sunny normal false ?
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Divide-And-Conquer Algorithms

 Family of decision tree learning algorithms
 TDIDT: Top-Down Induction of Decision Trees

 Learn trees in a Top-Down fashion:
 divide the problem in subproblems
 solve each problem

Basic Divide-And-Conquer Algorithm:

1. select a test for root node
Create branch for each possible outcome of the test

2. split instances into subsets
One for each branch extending from the node

3. repeat recursively for each branch, using only instances that reach 
the branch

4. stop recursion for a branch if all its instances have the same class
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ID3 Algorithm

Function ID3 
 Input:    Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function

ii. Generate a new node DT with A as test

iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi

Function ID3 
 Input:    Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c

 return a new leaf and label it with c
 Else

i. Select an attribute A according to some heuristic function

ii. Generate a new node DT with A as test

iii. For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi
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A Different Decision Tree

 also explains all of the training data
 will it generalize well to new data?
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Which attribute to select as the root?
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What is a good Attribute?

 We want to grow a simple tree
→ a good heuristic prefers attributes that split the data so that each 

successor node is as pure as posssible
 i.e., the distribution of examples in each node is so that it mostly contains 

examples of a single class

 In other words:
 We want a measure that prefers attributes that have a high degree of 

„order“:
 Maximum order: All examples are of the same class
 Minimum order: All classes are equally likely

→ Entropy is a measure for (un-)orderedness
 Another interpretation:
 Entropy is the amount of information that is contained in the node
 all examples of the same class → no information
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Entropy (for two classes)

 S is a set of examples

 p⊕ is the proportion of
examples in class ⊕

 p⊖ = 1 − p⊕ is the
proportion of examples 
in class ⊖

Entropy:

 Interpretation:
 amount of unorderedness in the 

class distribution of S

maximal value at equal
class distribution

minimal value if only 
one class left in S

E S =−p⊕⋅log2 p⊕− p⊖⋅log2 p⊖
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Example: Attribute Outlook

 Outlook = sunny: 2 examples yes, 3 examples no

 Outlook = overcast: 4 examples yes, 0 examples no

 Outlook = rainy : 3 examples yes, 2 examples no

`

E Outlook=rainy =−
3
5

log2  3
5 −2

5
log2  2

5 =0.971

E Outlook=overcast =−1⋅log21−0⋅log20=0

E Outlook=sunny =−
2
5

log2  2
5 −3

5
log2  3

5 =0.971

Note: this
is normally
undefined.
Here: = 0
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Entropy (for more classes)

E (S )=− p1 log2 p1− p2 log2 p2 ...− pn log2 pn=−∑i=1

n
pi log 2 pi

Entropy can be easily generalized for n > 2 classes

 p
i
 is the proportion of examples in S that belong to the i-th class

 Calculation can be simplified using absolute counts c
i
 of examples 

in class i instead of fractions
 If             : 

 Example:
E ([2,3 ,4])=− 2

9⋅log2(
2
9 )−

3
9⋅log2(

3
9 )−

4
9⋅log2(

4
9 )

=− 1
9 (2⋅log2(2)+3⋅log2(3)+4⋅log2(4)−9⋅log2(9))

E (S )=−∑i=1

n
pi log2 pi=−

1
∣S∣

⋅(∑i=1

n
ci log2 ci−∣S∣⋅log2∣S∣)

pi=
ci

∣S∣



V2.0 | J. Fürnkranz Data Mining und Maschinelles Lernen | Decision-Tree Learning 14

Average Entropy / Information

 Problem:
 Entropy only computes the quality of a single (sub-)set of examples
 corresponds to a single value

 How can we compute the quality of the entire split?
 corresponds to an entire attribute

 Solution:
 Compute the weighted average over all sets resulting from the split
 weighted by their size

 Example:
 Average entropy for attribute Outlook:

I S , A=∑
i

∣S i∣
∣S∣

⋅E S i

I Outlook =
5

14⋅0.971
4

14⋅0
5

14⋅0.971=0.693
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Information Gain

 When an attribute A splits the set S into subsets Si

 we compute the average entropy
 and compare the sum to the entropy of the original set S

Information Gain for Attribute A

 The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!

 Note:
 maximizing information gain is equivalent to minimizing average 

entropy, because E(S) is constant for all attributes A

Gain S , A=E S − I S , A=E S −∑
i

∣S i∣
∣S∣

⋅E S i
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Example

GainS ,Outlook =0.246 Gain S ,Temperature =0.029
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Example (Ctd.)

? ?

Outlook is selected
as the root note

 Outlook = overcast
contains only

examples of class yes

further splitting
necessary
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Example (Ctd.)

Gain(Temperature ) = 0.571 bits
Gain(Humidity )      = 0.971 bits
Gain(Windy ) = 0.020 bits

Humidity is selected
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Example (Ctd.)

?

Humidity is selected

further splitting
necessary

Pure leaves
→ No further expansion necessary
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Final decision tree
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Properties of Entropy

Entropy is the only function that satisfies all of the following three 
properties

1. When node is pure, measure should be zero

2. When impurity is maximal (i.e. all classes equally likely), measure      
 should be maximal

3. Measure should obey multistage property:
 p, q, r are classes in set S, and T are examples of class t = q ˅ r 

→ decisions can be made in several stages
 For example: 

E p , q , r S =E p , t S 
∣T∣
∣S∣

⋅Eq ,r T 

E ([2,3 ,4])=E ([2,7 ])+ 7
9⋅E ([3,4])
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Highly-branching attributes

Problematic: attributes with a large number of values 

 extreme case: each example has its own value
 e.g. example ID;  Day attribute in weather data

 Subsets are more likely to be pure if there is a large number of 
different attribute values

 Information gain is biased towards choosing attributes with a large 
number of values

 This may cause several problems:
 Overfitting 
 selection of an attribute that is non-optimal for prediction

 Fragmentation
 data are fragmented into (too) many small sets
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Decision Tree for Day attribute

I Day =
1

14  E [0,1]E [0,1]...E [0,1]=0

 Entropy of split:

 Information gain is maximal for Day (0.940 bits)

   Day   

07-05 07-3007-06 07-2607-07
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Intrinsic Information of an Attribute

 Intrinsic information of a split
 entropy of distribution of instances into branches 
 i.e. how much information do we need to tell which branch an 

instance belongs to

 Example:
 Intrinsic information of Day attribute:

 Observation:
 Attributes with higher intrinsic information are less useful

IntI Day=14×− 1
14⋅log2 

1
14 =3.807

IntI S , A=−∑
i

∣S i∣
∣S∣

log2 ∣S i∣
∣S∣ 
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Gain Ratio

 modification of the information gain that reduces its bias towards 
multi-valued attributes

 takes number and size of branches into account when choosing 
an attribute
 corrects the information gain by taking the intrinsic information of a 

split into account

 Definition of Gain Ratio:

 Example:
 Gain Ratio of Day attribute

GRS , A=
Gain S , A

IntI S , A

GR Day =
0.940
3,807

=0.246
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Gain ratios for weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577  Split info: info([5,4,5])

0.029Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000  Split info: info([7,7])

0.048Gain: 0.940-0.892 0.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity

 Day attribute would still win...  
 one has to be careful which attributes to add...

 Nevertheless: Gain ratio is more reliable than Information Gain
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Gini Index

 Many alternative measures to Information Gain
 Most popular altermative: Gini index

 used in e.g., in CART (Classification And Regression Trees)
 impurity measure (instead of entropy)

 average Gini index (instead of average entropy / information)

 Gini Gain
 could be defined analogously to information gain
 but typically averageGini index is minimized instead of maximizing 

Gini gain

Gini S =∑
i

pi⋅1− pi=1−∑
i

pi
2

Gini S , A=∑
i

∣S i∣
∣S∣

⋅Gini S i
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Comparison of Splitting Criteria

For a 2-class problem:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

f(
p)

Entropy
2*Gini
2*Error
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Why not use Error as a Splitting Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 1: Data set with 160 Examples A, 40 Examples B
 → Error rate without splitting is 20%

    40 of A      60 of A

      60 of A
     40 of B

Split 2

Split 1

For each of the two
splits, the total error
after splitting is also
(0% + 40%)/2 = 20%
→ no improvement

However, together
both splits would
give a perfect
classfier.

Based on a slide by Richard Lawton
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Why not use Error as a Splitting Criterion?

 Reason:
 The bias towards pure leaves is not strong enough

 Example 2:
 Dataset with 400 examples of class A and 400 examples of class B

400 of A
400 of B

200 of A
400 of B

200 of A
0 of B

400 of A
400 of B

300 of A
100 of B

100 of A
300 of B

Error rate = 25% Error rate = 25%
Based on a slide by Richard Lawton
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Industrial-strength algorithms

 For an algorithm to be useful in a wide range of real-world 
applications it must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept descriptions (at least in 

principle) 

→ ID3 needs to be extended to be able to deal with real-world data

 Result: C4.5
 Best-known and (probably) most widely-used learning algorithm
 original C-implementation at http://www.rulequest.com/Personal/

 Re-implementation of C4.5 Release 8 in Weka: J4.8
 Commercial successor: C5.0

http://www.rulequest.com/Personal/
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Missing values

 Examples are classified as usual
 if we are lucky, attributes with missing values are not tested by the 

tree

 If an attribute with a missing value needs to be tested:
 split the instance into fractional instances (pieces)
 one piece for each outgoing branch of the node
 a piece going down a branch receives a weight proportional to the 

popularity of the branch
 weights sum to 1

 Info gain or gain ratio work with fractional instances
 use sums of weights instead of counts

 during classification, split the instance in the same way
 Merge probability distribution using weights of fractional instances



V2.0 | J. Fürnkranz Data Mining und Maschinelles Lernen | Decision-Tree Learning 33

Numeric attributes

 Standard method: binary splits
 E.g. temp < 45

 Unlike nominal attributes, every attribute has many possible split 
points

 Solution is straightforward extension: 
 Evaluate info gain (or other measure) for every possible split point of 

attribute
 Choose “best” split point
 Info gain for best split point is info gain for attribute

→ Computationally more demanding than splits on discrete  
     attributes
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Example

 Assume a numerical attribute for Temperature
 First step: 

 Sort all examples according to the value of this attribute
 Could look like this:

      

 Split points can be placed between values or directly at values
 Has to be computed for all pairs of neighboring values

 64     65     68      69      70     71    72     72       75     75      80     81     83      85
Yes  No  Yes  Yes  Yes  No  No  Yes  Yes  Yes  No  Yes  Yes  No

I Temperature @ 71.5 =
6

14
⋅E Temperature71.5

8
14

E Temperature≥71.5=0.939

Temperature < 71.5: yes/4, no/2 Temperature ≥ 71.5: yes/5, no/3
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Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix 

and computing the evaluation measure
 Choose the split position that has the best value

Split Positions

Sorted Values
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Efficient Computation

 Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count matrix 

and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No 

Taxable Income  

60 70 75 85 90 95 100 120 125 220 

55 65 72 80 87 92 97 110 122 172 230  

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 

 

Split Positions

Sorted Values
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Binary vs. Multiway Splits

 Splitting (multi-way) on a nominal attribute exhausts all 
information in that attribute
 Nominal attribute is tested (at most) once on any path in the tree

 Not so for binary splits on numeric attributes!
 Numeric attribute may be tested several times along a path in the tree

 Disadvantage: tree is hard to read

 Remedy:
 pre-discretize numeric attributes (→ discretization), or 
 use multi-way splits instead of binary ones
 can, e.g., be computed by building a subtree using a single numerical 

attribute.
 subtree can be flattened into a multiway split
 other methods possible (dynamic programming, greedy...)
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Overfitting and Pruning

 The smaller the complexity of a concept, the less danger that it 
overfits the data
 A polynomial of degree n can always fit n+1 points

 Thus, learning algorithms try to keep the learned concepts simple 
 Note a „perfect“ fit on the training data can always be found for a 

decision tree! (except when data are contradictory)

  Pre-Pruning:
 stop growing a branch when information becomes unreliable

  Post-Pruning:
 grow a decision tree that correctly classifies all training data
 simplify it later by replacing some nodes with leafs

 Postpruning preferred in practice—prepruning can “stop early”
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Prepruning

 Based on statistical significance test
 Stop growing the tree when there is no statistically significant 

association between any attribute and the class at a particular node

 Most popular test: chi-squared test
 ID3 used chi-squared test in addition to information gain

 Only statistically significant attributes were allowed to be selected by 
information gain procedure

 C4.5 uses a simpler strategy
 but combines it with → post-pruning
 parameter -m:     (default value m=2)

each node above a leave must have 
 at least two successors 
 that contain at least m examples
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 Pre-pruning may stop the growth
process prematurely: early stopping

 Classic example: XOR/Parity-problem
 No individual attribute exhibits any 

significant association to the class

→ In a dataset that contains XOR attributes a and b, and several 
irrelevant (e.g., random) attributes, ID3 can not distinguish between 
relevant and irrelevant attributes

→ Prepruning won’t expand the root node
 Structure is only visible in fully expanded tree

 But: 
 XOR-type problems rare in practice
 prepruning is faster than postpruning

0001

1102

1

1

a

014

103

classb

Early Stopping
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Post-Pruning 

 basic idea
 first grow a full tree to capture all possible attribute interactions
 later remove those that are due to chance

1.learn a complete and consistent decision tree that classifies all 
examples in the training set correctly 

2.as long as the performance increases

 try simplification operators on the tree
 evaluate the resulting trees
 make the replacement that results in the best estimated 

performance

3.return the resulting decision tree
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Postpruning

 Two subtree simplification operators
 Subtree replacement
 Subtree raising

 Possible performance evaluation strategies
 error estimation
 on separate pruning set („reduced error pruning“)
 with confidence intervals (C4.5's method)

 significance testing
 MDL principle
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Proceeds Bottom-up:
 consider replacing a tree only after considering 

all its subtrees

 may make a difference for complexity-based 
heuristics

Subtree Replacement
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 Delete node B
 Redistribute instances of 

leaves 4 and 5 into C

Subtree Raising
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Estimating Error Rates

 Prune only if it does not increase the estimated error
 Error on the training data is NOT a useful estimator

(would result in almost no pruning)

 Reduced Error Pruning
 Use hold-out set for pruning
 Essentially the same as in rule learning
 only pruning operators differ (subtree replacement)

 C4.5’s method
 Derive confidence interval from training data
 with a user-provided confidence level

 Assume that the true error is on the upper bound of this confidence 
interval (pessimistic error estimate)
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Reduced Error Pruning 

  Basic Idea

 optimize the accuracy of a decision tree on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent decision tree that classifies all 
examples in the growing set correctly 

3.as long as the error on the pruning set does not increase
 try to replace each node by a leaf (predicting the majority class)
 evaluate the resulting (sub-)tree on the pruning set
 make the replacement that results in the maximum error reduction

4.return the resulting decision tree
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),( NEUCF

 Consider classifying E examples incorrectly out of N examples as 
observing E events in N trials in the binomial distribution. 

 For a given confidence level CF, the upper limit on the error rate 
over the whole population is                 with CF% confidence.

 Example:
 100 examples in a leaf
 6 examples misclassified
 How large is the true error

assuming a pessimistic 
estimate with a confidence
of 25%?

 Note:
 this is only a heuristic!
 but one that works well

U0.25(100,6)L0.25(100,6)

6

Possibility(%)

2 10

75% confidence interval

Pessimistic Error Rates
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C4.5’s method

 Pessimistic error estimate for a node

 z is derived from the desired confidence value
 If c = 25% then z = 0.69 (from normal distribution)

 f is the error on the training data
 N is the number of instances covered by the leaf

 Error estimate for subtree is weighted sum of error estimates for 
all its leaves

→ A node is pruned if error estimate of subtree is higher than error 
estimate of the node

e=
f  z 2

2N z  f
N −

f 2

N 
z2

4N2

1 z2

N
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f=0.33 e=0.47 f=0.5 e=0.72 f=0.33 e=0.47

f = 5/14 
e = 0.46
e < 0.51
so prune!

Combined using ratios 6:2:6 gives 0.51

Example
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C4.5: choices and options

 C4.5 has several parameters

 -c Confidence value (default 25%):
lower values incur heavier pruning

 -m Minimum number of instances in the two most popular branches 
(default 2)

 Others for, e.g., having only two-way splits (also on symbolic 
attributes), etc.
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Sample Experimental Evaluation

Typical behavior with grow-
ing m and decreasing c

 tree size and training 
accuracy (= purity)

 always decrease

 predictive accuracy

 first increases
(overfitting avoidance)

 then decreases
(over-generalization)

 ideal value on this data 
set near

 m = 30

 c  = 10
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Complexity of tree induction

 Assume
 m attributes, n training instances
 tree depth O(log n)
 tree has O(n) nodes (≤ one leaf per example)

Costs for 
 Building a tree O(m n log n)
 Subtree replacement   O(n)

 counts of covered instances can be reused from training

 Subtree raising O(n (log n)2)
 Every instance may have to be redistributed at every node between its 

leaf and the root
 Cost for redistribution (on average): O(log n)

→ Total cost: O(m n log n) + O(n (log n)2)
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Error-Complexity Measure

 CART uses the following measure

 f is the error rate on the training data
 L is the number of leaves in the tree 

 α is a parameter that trades off tree complexity vs. test error

 Different values of α prefer different trees
 smaller values of α prefer trees with low training error
 larger values of α prefer smaller trees
 would nowadays be called a regularization parameter

Rα(T )= f (T )+α⋅L(T )
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Error-Complexity Pruning
(CART, Breiman et al. 1984)

 Generate a sequence of trees with decreasing complexity

 T
0
 is the full tree, T

m
 is the tree that consists only of the root node

 Each tree is generated from its predecessor by replacing a subtree 
with a node. 
 It selects the node which results in the smallest increase in the error 

function, weighted by the number of leaves in the subtree

 this sequence of trees optimizes R
α
 for successive ranges of α-values

 T
0
 is optimal for the range

 T
1
 is optimal for the range   

 ...

 Optimal values for α are then determined with cross-validation on the 
training data 

T 0→T 1→…→T m

[0,α1]

[α1, α2]
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From Trees To Rules

 Simple way: 
 one rule for each leaf

yes :- Outlook = sunny, 
       Humidity = normal.

no :- Outlook = sunny, 
      Humidity = high.

yes :- Outlook = overcast. 

no :- Outlook = rain, 
      Windy = true.

yes :- Outlook = rain,
       Windy = false.
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C4.5rules and successors

 C4.5rules: 
 greedily prune conditions from each rule if this reduces its estimated 

error
 Can produce duplicate rules
 Check for this at the end

 Then look at each class in turn
 consider the rules for that class
 find a “good” subset (guided by MDL)
 rank the subsets to avoid conflicts

 Finally, remove rules (greedily) if this decreases error on the training 
data

 C4.5rules slow for large and noisy datasets
 Commercial version C5.0rules uses a different technique

 Much faster and a bit more accurate
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Decision Lists and Decision Graphs

 Decision Lists
 An ordered list of rules
 the first rule that fires makes the prediction
 can be learned with a covering approach

 Decision Graphs
 Similar to decision trees, but nodes may have multiple predecessors
 DAGs: Directed, acyclic graphs
 there are a few algorithms that can learn DAGs
 learn much smaller structures
 but in general not very successful

 Special case:
 a decision list may be viewed as a special case of a DAG
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Example

 A decision list for a rule set with rules
 with 4, 2, 2, 1 conditions, respectively
 drawn as a decision graph

Rule 1

Rule 2

Rule 3 Rule 4
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Rules vs. Trees 

 Each decision tree can be converted into a rule set

→ Rule sets are at least as expressive as decision trees
 a decision tree can be viewed as a set of non-overlapping rules
 typically learned via divide-and-conquer algorithms (recursive 

partitioning)

 Transformation of rule sets / decision lists into trees is less trivial
 Many concepts have a shorter description as a rule set
 low complexity decision lists are more expressive than low 

complexity decision trees (Rivest, 1987)
 exceptions: if one or more attributes are relevant for the classification 

of all examples (e.g., parity)

 Learning strategies:
 Separate-and-Conquer vs. Divide-and-Conquer
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Discussion TDIDT

 The most extensively studied method of machine learning used in 
data mining

 Different criteria for attribute/test selection rarely make a large 
difference

 Different pruning methods mainly change the size of the resulting 
pruned tree

 C4.5 builds univariate decision trees
 Some TDIDT systems can build multivariate trees (e.g. CART)

 multi-variate: a split is not based on a single attribute but on a function 
defined on multiple attributes
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Regression Problems

 Regression Task
 the target variable y = f (x) is numerical instead of discrete
 Various error functions, e.g., Mean-squared error:

Two principal approaches
 Discretize the numerical target variable

 e.g., equal-width intervals, or equal-frequency

 and use a classification learning algorithm

 Adapt the classification algorithm to regression data
→ Regression Trees and Model Trees

L( f , ̂f )=∑x
( f ( x)− ̂f ( x))2
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Regression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:
 Predict the average value of all instances in this leaf

 Splitting criterion:
 Minimize the variance of the values in each subset Si

 Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)

 lower bound on standard deviation in a node
 lower bound on number of examples in a node

 Pruning criterion:
 Numeric error measures, e.g. Mean-Squared Error

SDR A , S =SD S −∑
i

∣S i∣
∣S∣

SD S i
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CART (Breiman et al. 1984)

 Algorithm for learning Classification And Regression Trees
 Quite similar to ID3/C4.5, but developed indepedently in the statistics 

community

 Splitting criterion:
 Gini-Index for Classification
 Sum-of-Squares for Regression

 Pruning:
 Cost-Complexity Pruning
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Regression Tree Example

 Task: 
understand how computer performance is related to a number of 
variables which describe the features of a PC

 Data: 
 the size of the cache, 
 the cycle time of the computer, 
 the memory size 
 the number of channels (both the last two were not measured but 

minimum and maximum values obtained).

Based on a slide by Richard Lawton



 Data Mining und Maschinelles Lernen | Decision-Tree Learning

|cach< 27

mmax< 6100

mmax< 1750

mmax< 2500

chmax< 4.5

syct< 110

syct>=360

chmin< 5.5

cach< 0.5

chmin>=1.5

mmax< 1.4e+04

mmax< 2.8e+04

cach< 96.5

mmax< 1.124e+04

chmax< 14

cach< 56

1.09

1.33

1.35

1.411.54

1.28

1.53

1.69

1.761.87

1.971.83

2.042.23

2.322.272.67

Regression Tree

Based on a slide by Richard Lawton
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Model Trees

 In a Leaf node
 Classification Trees predict a class value
 Regression Trees predict the average value of all instances in the 

model
 Model Trees use a linear model for making the predictions 
 growing of the tree is as with Regression Trees

 Linear Model:
                                  where vi(x) is the value of attribute Ai 

                                    for example x and wi is a weight 

 The attributes that have been used in the path of the tree can be 
ignored

 Weights can be fitted with standard math packages
 Minimize the Mean Squared Error

LM x =∑
i

w i v i x

MSE=
1
n∑j

 y j−r j
2
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Summary

 Classification Problems require the prediction of a discrete target 
value
 can be solved using decision tree learning
 iteratively select the best attribute and split up the values according to 

this attribute

 Regression Problems require the prediction of a numerical target 
value
 can be solved with regression trees and model trees
 difference is in the models that are used at the leafs
 are grown like decision trees, but with different splitting criteria

 Overfitting is a serious problem!
 simpler, seemingly less accurate trees are often preferable
 evaluation has to be done on separate test sets
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