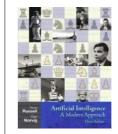
Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Backtracking Search
 - Forward Checking
 - Constraint Propagation
 - Local Search
 - Tree-Structured CSPs



Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Constraint Satisfaction Problems

Special Type of search problem:

- state is defined by variables X_i with d values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Examples:

- Sudoku

5	3			7					5	3	4	6	7	8	9	1	2
6			1	9	5				6	7	2	1	9	5	3	4	8
	9	8					6		1	9	8	3	4	2	5	6	7
8				6				3	8	5	9	7	6	1	4	2	3
4			8		3			1	4	2	6	8	5	3	7	9	1
7				2				6	7	1	3	9	2	4	8	5	6
	6					2	8		9	6	1	5	3	7	2	8	4
			4	1	9			5	2	8	7	4	1	9	6	3	5
				8			7	9	3	4	5	2	8	6	1	7	9

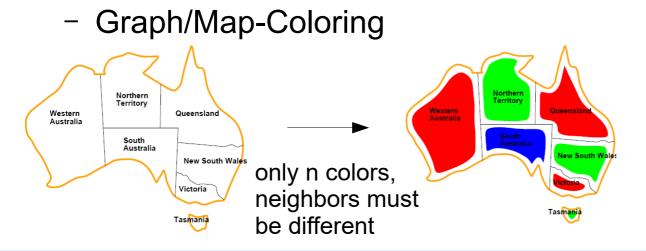
 cryptarithmetic puzzle

SEND

+ MORE

MONEY

n-queens



Real-World CSPs

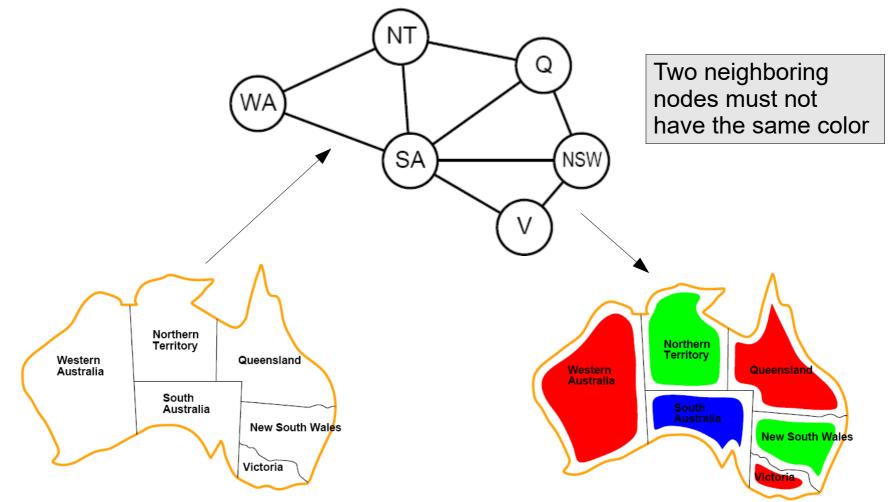
- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Scheduling
 - Job scheduling
 - Constraints are, e.g., start and end times for each job
 - Transportation scheduling
 - Factory scheduling
- Floorplanning

Notice that many real-world problems involve real-valued variables

- Linear constraints solvable in polynomial time using linear programming
- Problems with nonlinear constraints undecidable

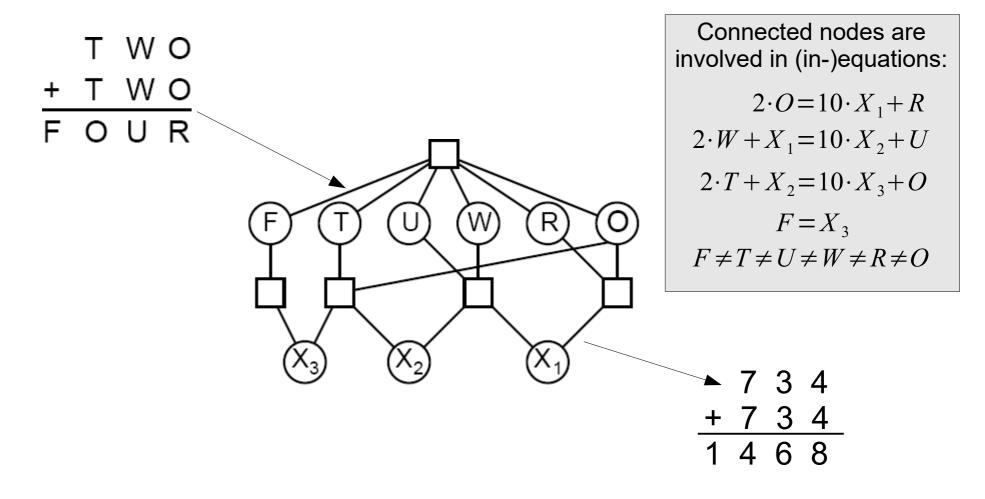
Constraint Graph

- nodes are variables
- edges indicate constraints between them



Constraint Graph

- nodes are variables
- edges indicate constraints between them



Types of Constraints

- Unary constraints involve a single variable,
 - e.g., South Australia \neq green
- Binary constraints involve pairs of variables,
 - e.g., South Australia ≠ Western Australia
- Higher-order constraints involve 3 or more variables – e.g., $2 \cdot W + X_1 = 10 \cdot X_2 + U$
- Preferences (soft constraints)
 - e.g., red is better than green
 - are not binding, but task is to respect as many as possible
 - \rightarrow constrained optimization problems

Solving CSP Problems

Two principal approaches:

Search:

- successively assign values to variable
- check all constraints
- if a constraint is violated \rightarrow backtrack
- until all variables have assigned values
- Constraint Propagation:
 - maintain a set of possible values D_i for each variable X_i
 - try to reduce the size of D_i by identifying values that violate some constraints

Solving Constraint Problems with Search

- Constraint problems define a simple search space:
 - The start node is an empty assignment of values to variables
 - Its successors are all possible ways of assigning one value to a variable (depth 1)
 - Their successors are those with 2 variables assigned (depth 2)
 -
 - Until at the end all variables have been assigned a value (depth n)
- Goal test:
 - Does a node at depth n satisfy all constraints?
- Observation:
 - All solution nodes will appear at depth $n \rightarrow$ depth-first search is feasible without losing completeness

Complexity of Naive Search

- Assumptions
 - we have *n* variables
 - \rightarrow all solutions are at depth *n* in the search tree
 - all variables have v possible values
- Then
 - at level 1 we have $n \cdot v$ possible assignments (we can choose one of *n* variables and one of *v* values for it)
 - at level 2, we have $(n-1)\cdot v$ possible assignments for each previously assigned variable

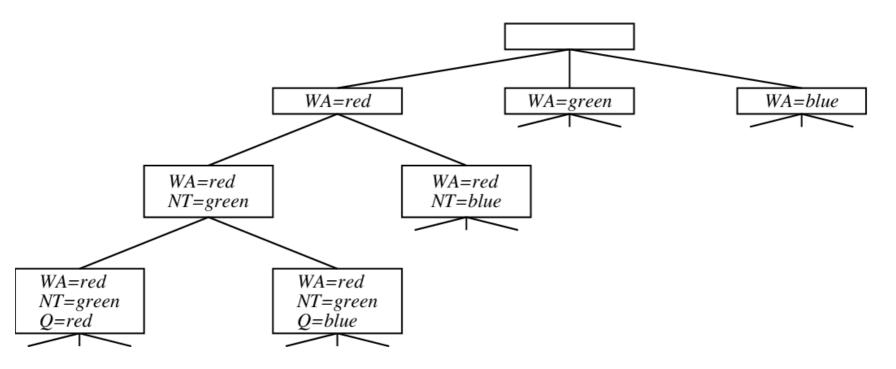
(we can choose one of the remaining n-1 variables and one of the *v* values for it)

- In general: branching factor at depth *l*: $(n-l+1)\cdot v$
- Hence
 - The search tree has $n!v^n$ leaves

Commutative Variable Assignments

- Variable assignments are commutative
 - [WA = red then NT = green] is the same as
 [NT = green then WA = red]
- Thus, at each node, we only need to make assignments for one of the variables

 \rightarrow Total complexity reduces to v^n



Informed Search - Constraint Satisfaction Problems

Backtracking Search

 Depth-first search with single variable assignments per level is also called backtracking search

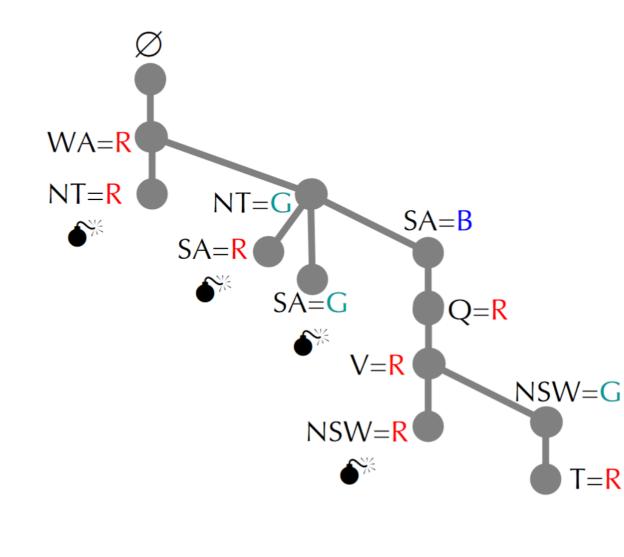
- Backtracking is the basic uninformed search algorithm for CSPs
 - add one constraint at a time without conflict
 - succeed if a legal assignment is found
 - Can solve n-queens problems for up to $n \simeq 25$
- Complexity:
 - Worst case is still exponentional
 - heuristics for selecting variables (→SELECTUNASSIGNEDVARIABLE) and for ordering values (→ORDERDOMAINVALUES) can improve practical performance

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

Backtracking Search



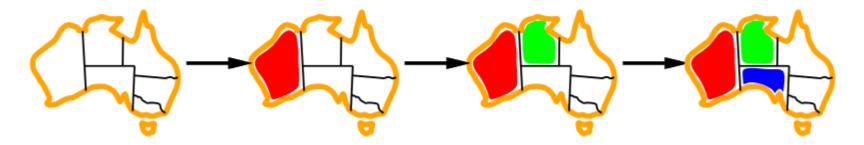
General-purpose methods can give huge gains in speed:

- 1) Which variable should be assigned next?
- 2) In what order should its values be tried?
- 3) Can we detect inevitable failure early?
- 4) Can we take advantage of problem structure?

Graph taken from J. Hertzberg, Uni Osnabrück

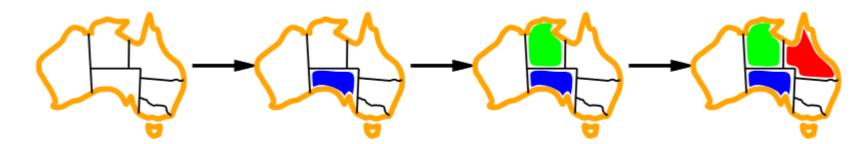
General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values



General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
 - **General-purpose heuristics**
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
 - Degree Heuristic
 - choose the variable with the most constraints on remaining variables



General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics

Least Constraining Value Heuristic

• Given a variable, choose the value that rules out the fewest values in the remaining variables

SelectUnassignedVariable

OrderDomainValues

General Heuristics for CSP

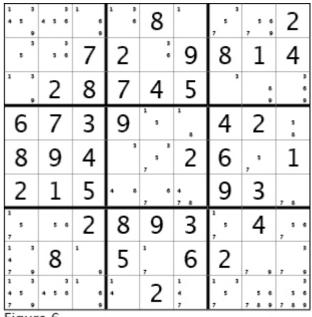
- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
 - **General-purpose heuristics**
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
 - Degree Heuristic
 - choose the variable that imposes the most constraints on the remaining values
 - Least Constraining Value Heuristic
 - Given a variable, choose the value that rules out the fewest values in the remaining variables
 - used in this order, these three can greatly speed up search
 - e.g., n-queens from 25 queens to 1000 queens

Constraint Propagation - Sudoku

- Problem
 - CSP with 81 variables
- Constraints
 - some values are assigned in the start (unary constraints)
 - 27 constraints on 9 values that must all be different

(9 rows, 9 columns, 9 squares)

- Constraint Propagation
 - People often write a list of possible values into empty fields
 - try to successively eliminate values
- Status
 - Automated constraint solvers can solve the hardest puzzles in no time



Node Consistency

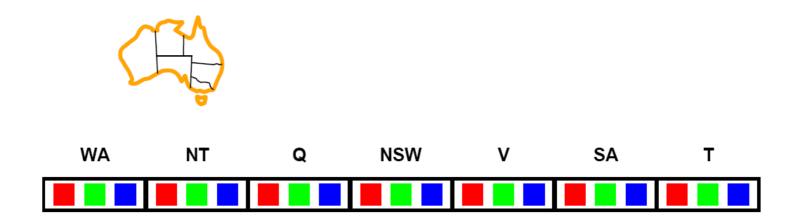
Node Consistency

- the possible values of a variable must conform to all unary constraints
- can be trivially enforced
- Example:
 - Sudoku: Some nodes are already filled out, i.e., constrained to a single value

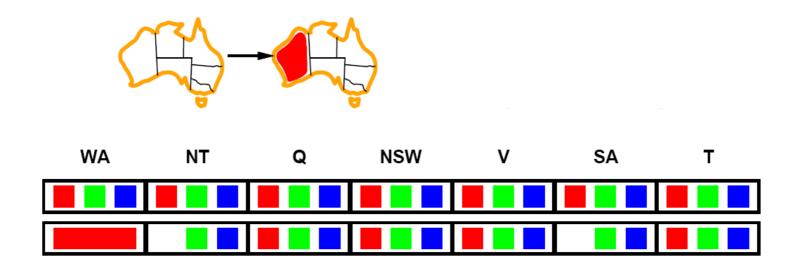
More General Idea: Local Consistency

- make each node in the constraint graph consistent with its neighbors
- by (iteratively) enforcing the constraints corresponding to the edges

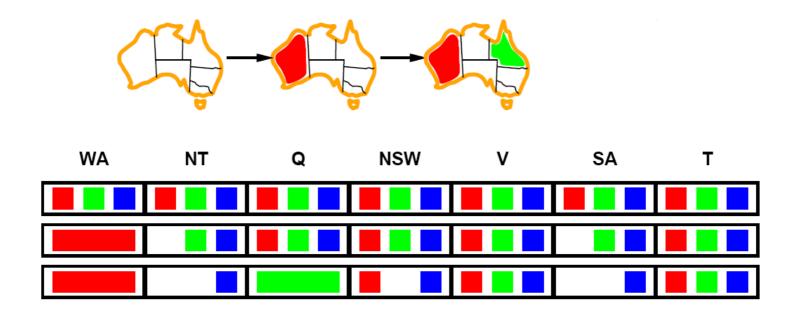
- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



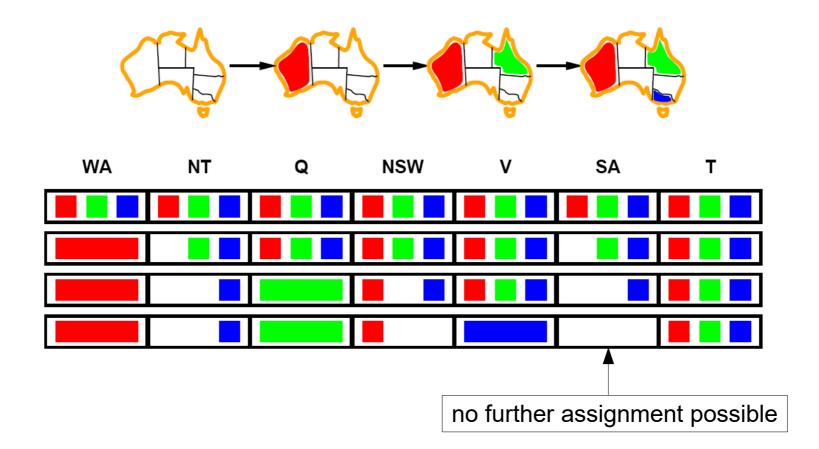
- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values

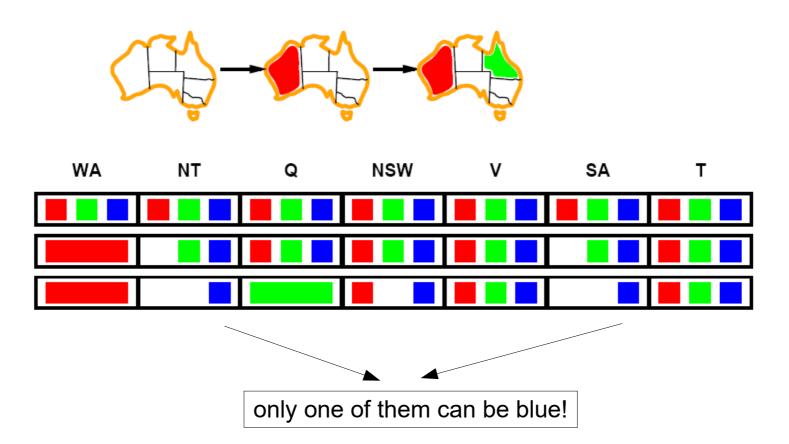


- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



Constraint Propagation

- Problem:
 - forward checking propagates information from assigned to unassigned variables
 - but doesn't look ahead to provide early detection for all failures



Arc Consistency

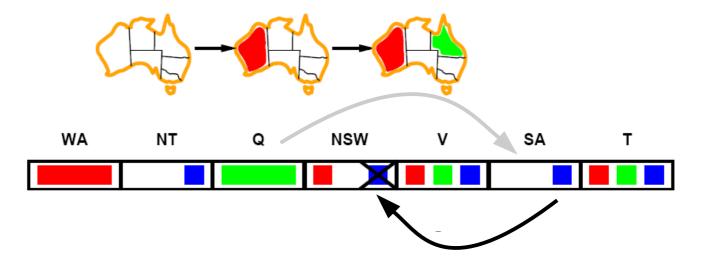
every domain must be consistent with the neighbors:

A variable X_i is arc-consistent with a variable X_i if

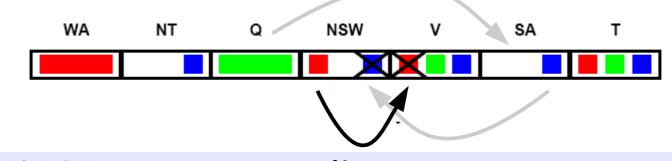
- for every value in its domain D_i
- there is some value in D_i
- that satisfies the constraint on the arc (X_i, X_j)
- can be generalized to n-ary constraints
 - each tuple involving the variable X_i has to be consistent

Maintaining Arc Consistency (MAC)

 After each new assignment of a value to a variable, possible values of the neighbors have to be updated:



 If one variable (NSW) looses a value (blue), we need to recheck its neighbors as well because they might have lost a possible value



Arc Consistency Algorithm

function AC-3(*csp*) returns the CSP, possibly with reduced domains inputs: *csp*, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: *queue*, a queue of arcs, initially all the arcs in *csp* while *queue* is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in NEIGHBORS $[X_i]$ do add (X_k, X_i) to *queue* If X lose neigbors to be red

If *X* loses a value, neigbors of *X* need to be rechecked.

function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds $removed \leftarrow false$ for each x in DOMAIN $[X_i]$ do if no value y in DOMAIN $[X_j]$ allows (x, y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN $[X_i]$; $removed \leftarrow true$

return removed

• Run-time: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$) more efficient than forward checking

Path Consistency

- Arc Consistency is often sufficient to
 - solve the problem (all variable domains are reduced to size 1)
 - show that the problem cannot be solved (some domains empty)
- but may not be enough
 - there is always a consistent value in the neighboring region

→ Path consistency

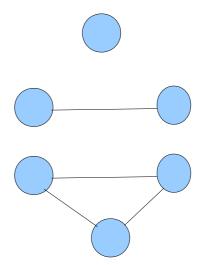
- tightens the binary constraints by considering triples of values

A pair of variables (X_i, X_j) is path-consistent with X_m if

- for every assignment that satisfies the constraint on the arc (X_i, X_j)
- there is an assignment that satisfies the constraints on the arcs (X_{i}, X_{m}) and (X_{j}, X_{m})
- Algorithm AC-3 can be adapted to this case (known as PC-2)

k-Consistency

- The concept can be generalized so that a set of k values need to be consistent
 - 1-consistency = node consistency
 - 2-consistency = arc consistency
 - 3-consistency = path consistency



- May lead to faster solution (O(n²d))
 - but checking for k-Consistency is exponentional in k in the worst case
- therefore arc consistency is most frequently used in practice

Sudoku

- simple puzzles can be solved with AC-3
 - the puzzle has 9 constraints on the rows, 9 on the columns and 9 on the square (27 in total)
 - each such constraint requires that 9 values are all different
 - these 9-valued AllDiff constraints can be converted into pairwise binary constraints
 - 9x8/2 = 36 pairwise constraints
 - therefore 27x36 = 972 arc constraints
- somewhat more with PC-2
 - there are 255,960 path constraints
- however, not all problems can be solved with constraint progapagation alone
 - to solve all puzzles we need a bit of search

Integrating Constraint Propagation and Backtracking Search

- Performance of Backtracking can be further sped up by integrating constraint propagation into the search
- Key idea:
 - each time a variable is assigned, a constraint propagation algorithm is run in order to reduce the number of choice points in the search
- Possible algorithms
 - Forward Checking
 - AC-3, but initial queue of constraints only contains constraints with the variable that has been changed

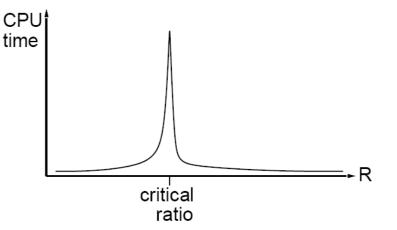
Local Search for CSP

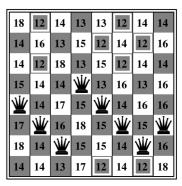
- Modifications for CSPs:
 - work with complete states
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Min-conflicts Heuristic:
 - randomly select a conflicted variable
 - choose the value that violates the fewest constraints
 - hill-climbing with h(n) = # of violated constraints

Performance:

- can solve randomly generated CSPs with a high probability
- except in a narrow range of

$R = \frac{\text{number of constraints}}{\text{number of variables}}$

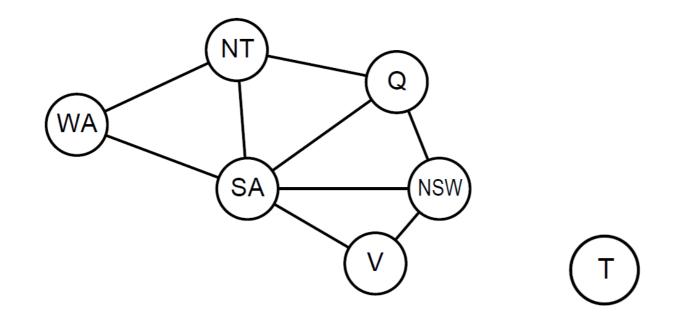




Min-conflicts is the heuristic that we studied for the 8-queens problems.

Problem Structure

Decomposing the problem into independent subproblems



- The problem of coloring Tasmania is independent of the problem of coloring the mainland of Australia

The Power of Problem Decomposition

- Search space for a constraint satisfaction with *n* variables, each of which can have *d* values = O(*dⁿ*)
- Decomposing the problem into subproblems with c variables each:
 - Each problem has complexity = $O(d^{c})$
 - There are n/c such problems

 \rightarrow Total complexity = O($n/c \cdot d^c$)

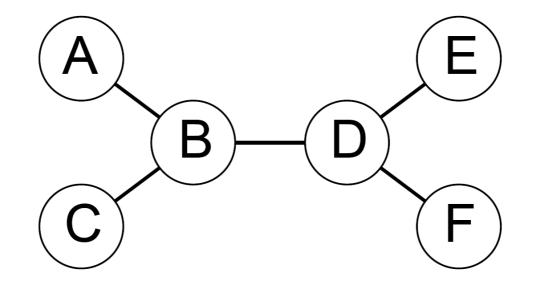
- Thus the total complexity can be reduced from exponential in *n* to linear in *n*! (assuming that *c* is a constant parameter)
- Example:

E.g.,
$$n = 80$$
, $d = 2$, $c = 20$
 $2^{80} = 4$ billion years at 10 million nodes/sec
 $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

Unconditional Independence is powerful but rare!

Tree-Structured CSP

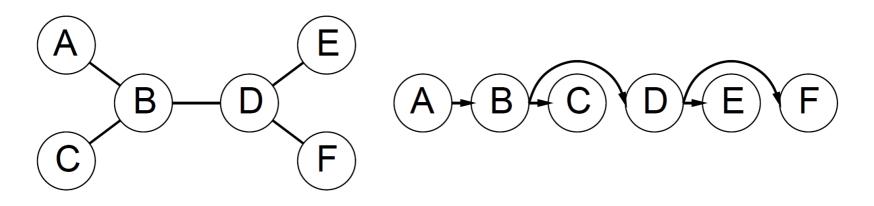
 A CSP is tree-structured if in the constraint graph any two variables are connected by a single path



Theorem: Any tree-structured CSP can be solved in linear time in the number of variables (more precisely: $O(n \cdot d^2)$)

Linear Algorithm for Tree-Structured CSPs

1) Choose a variable as a root, order nodes so that a parent always comes before its children (each child can have only one parent)



2) For j = n downto 2

- Make the arc (X_i, X_j) arc-consistent, calling REMOVE-INCONSISTENT-VALUE (X_i, X_j)

3) For i = 1 to n

- Assign to X_i any value that is consistent with its parent.

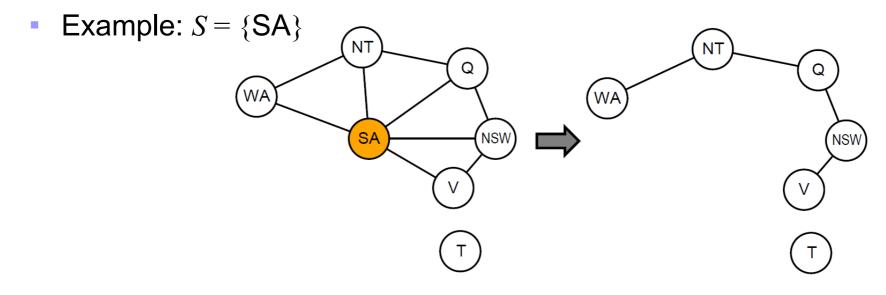
Nearly Tree-structured Problems

- Tree-structured problems are also rare.
- Most maps are clearly not tree-structured...
 - Exception: Sulawesi

- Removing nodes so that the remaining nodes form a tree (cutset conditioning)
- Collapsing nodes together (decompose the graph into a set of independent tree-shaped subproblems)

Cutset Conditioning

1) Choose a subset *S* of the variables such that the constraint graph becomes a tree after removal of *S* (= the cycle cutset)



2) Choose a (consistent) assignment of variables for S

- 3) Remove from the remaining variables all values that are inconsistent with the variables of *S*
- 4) Solve the CSP problem for the remaining variables
- 5) If no solution \rightarrow choose a different assignment for variables in 2)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work
 - to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time