Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Uncertain Actions

- So far, our agents believe that
 - (logical) statements are true or false (maybe unknown)
 - actions will always do what they think they do
- Unfortunately, the real world is not like that
 - agents almost never have access to the whole truth about the world
- \rightarrow agents must deal with uncertainty

Uncertain Actions

- So far, our agents believe that
 - (logical) statements are true or false (maybe unknown)
 - actions will always do what they think they do
- Unfortunately, the real world is not like that
 - agents almost never have access to the whole truth about the world
- \rightarrow agents must deal with uncertainty
- Example:
 - We have different actions for getting to the airport:
 - action A_t = leave for the airport t minutes before departure

Uncertain Actions

- So far, our agents believe that
 - (logical) statements are true or false (maybe unknown)
 - actions will always do what they think they do
- Unfortunately, the real world is not like that
 - agents almost never have access to the whole truth about the world
- \rightarrow agents must deal with uncertainty
- Example:
 - We have different actions for getting to the airport:
 - action A_t = leave for the airport t minutes before departure
 - Typical problems:
 - Will a given action A_t get me to the airport in time?
 - Which action is the best choice for getting me to the airport?

Many situations are uncertain. Agents have to deal with these uncertainties.

Problems with Uncertainty

We leave 90 minutes before departure

- Risks involved in the plan A_{90} will get me to the airport
 - partial observability (road state, other drivers' plans, etc.)
 - noisy sensors (traffic reports may be wrong)
 - uncertainty in action outcomes (flat tire, accident, etc.)
 - immense complexity of modeling and predicting traffic

Problems with Uncertainty

We leave 90 minutes before departure

- Risks involved in the plan A_{90} will get me to the airport
 - partial observability (road state, other drivers' plans, etc.)
 - noisy sensors (traffic reports may be wrong)
 - uncertainty in action outcomes (flat tire, accident, etc.)
 - immense complexity of modeling and predicting traffic
- A logically correct plan:

 A_{90} will get me to the airport as long as my car doesn't break down, I don't run out of gas, no accident, the bridge doesn't fall down, etc.

- impossible to model all things that can go wrong
 - $\blacksquare \rightarrow$ recall the qualification problem

Problems with Uncertainty

We leave 90 minutes before departure

- Risks involved in the plan A_{90} will get me to the airport
 - partial observability (road state, other drivers' plans, etc.)
 - noisy sensors (traffic reports may be wrong)
 - uncertainty in action outcomes (flat tire, accident, etc.)
 - immense complexity of modeling and predicting traffic
- A logically correct plan:

 A_{90} will get me to the airport as long as my car doesn't break down, I don't run out of gas, no accident, the bridge doesn't fall down, etc.

- impossible to model all things that can go wrong
 - \rightarrow recall the **qualification problem**
- A more cautious plan:

 A_{1440} will get me to the airport

- will (virtually) certainly succeed, but clearly suboptimal
 - e.g., we have to pay for a night in a hotel

Probabilities

- Probabilities are one way of handling uncertainty
 - e.g. A_{90} will get me to the airport with probability 0.5
- The probability summarizes effects that are due to
 - Laziness
 - I don't want to list all things that must not go wrong
 - Theoretical Ignorance
 - Some things just can't be known
 - e.g.: We cannot completely model the weather
 - Practical Ignorance
 - Some things might not be known about the particular situation
 - e.g. Is there a traffic jam at A5?

Probabilities and Beliefs

- Probabilities that are related to one's beliefs
 - a probability p attached to a statement means that I believe that the statement will be true in $p \cdot 100\%$ of the cases
 - there is traffic jam on the A5 in 10% of the cases (meaning: there might be jam, but usually there is none)
 - it does not mean that it is true with p%
 - the traffic on the A5 is jammed with a degree of 10% (meaning: there's a jam, but it could be worse...)

Consider the probability that the sun will still exist tomorrow

- Difficult to observe by an experiment

What is the chance that a patient has a particular disease?

 Doctor wants to consider other patients who are similar. But if you gather too much information to compare patients, there are no similar patients left

Capturing causal mechanisms is arguably one of the most important scientific question

Judea Pearl, UCLA Turing Award 2012

Probabilities and Beliefs

- Probabilities that are related to one's beliefs
 - a probability p attached to a statement means that I believe that the statement will be true in $p \cdot 100\%$ of the cases
 - there is traffic jam on the A5 in 10% of the cases (meaning: there might be jam, but usually there is none)
 - it does not mean that it is true with p%
 - the traffic on the A5 is jammed with a degree of 10% (meaning: there's a jam, but it could be worse...)
- \rightarrow Probability theory is about degree of belief
 - other techniques (e.g., Fuzzy logic) deal with degree of truth

Probabilities and Beliefs

- Probabilities that are related to one's beliefs
 - a probability p attached to a statement means that I believe that the statement will be true in $p \cdot 100\%$ of the cases
 - there is traffic jam on the A5 in 10% of the cases (meaning: there might be jam, but usually there is none)
 - it does not mean that it is true with p%
 - the traffic on the A5 is jammed with a degree of 10% (meaning: there's a jam, but it could be worse...)
- \rightarrow Probability theory is about degree of belief
 - other techniques (e.g., Fuzzy logic) deal with degree of truth

Probabilities of propositions change with new evidence:

- $P(A_{45} \text{ gets me there in time } | \text{ no reported accidents}) = 0.06$
 - in 6% of the days I get there in time if no accidents reported
- $P(A_{45} \text{ gets me there in time } | \text{ no reported accidents, 5 a.m.}) = 0.15$
 - chances are higher at 5 in the morning...

Making Decisions under Uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time } | \dots) = 0.04$
- $P(A_{90} \text{ gets me there on time } | \dots) = 0.70$
- $P(A_{120} \text{ gets me there on time } | \dots) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action should I choose?

Making Decisions under Uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time } | \dots) = 0.04$
- $P(A_{90} \text{ gets me there on time } | \dots) = 0.70$
- $P(A_{120} \text{ gets me there on time } | \dots) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action should I choose?

- The choice depends on my preferences
 - how bad is it to miss the flight?
 - how bad is it to wait for an hour at the airport?

Making Decisions under Uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time } | \dots) = 0.04$
- $P(A_{90} \text{ gets me there on time } | \dots) = 0.70$
- $P(A_{120} \text{ gets me there on time } | \dots) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$

Which action should I choose?

- The choice depends on my preferences
 - how bad is it to miss the flight?
 - how bad is it to wait for an hour at the airport?
- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Probability Basics

Begin with a set Ω —the sample space

e.g., 6 possible rolls of a die.

 $\omega \in \Omega$ is a sample point/possible world/atomic event

Probability Basics

```
Begin with a set \Omega—the sample space
```

```
e.g., 6 possible rolls of a die.
```

 $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

 $\begin{array}{l} 0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6. \end{array}$

Probability Basics

```
Begin with a set \Omega—the sample space
```

```
e.g., 6 possible rolls of a die.
```

 $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

 $\begin{array}{l} 0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6. \end{array}$

An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

Kolmogorov's Axioms of Probability

1. All probabilities are between 0 and 1

 $0 \le P(a) \le 1$

2. Necessarily true propositions have probability 1, necessarily false propositions have probability 0

P(false) = 0 P(true) = 1

3. The probability of a disjunction is

 $P(a \lor b) = P(a) + P(b) - P(a \land b)$

4. These axioms restrict the set of probabilistic beliefs that an agent can (reasonably) hold. similar to logical constraints like A and ¬A can't both be true

Violation of Axioms of Probability

"put its money where its probabilities are" Dutch Book Theorem, Bruno de Finetti (1931)

 an agent who bets according to probabilities that violate the axioms of probability can be forced to bet so as to lose money regardless of outcome!

Example:

• suppose Agent 1 believes the following P(a) = 0.4 P(b) = 0.3 $P(a \lor b) = 0.8$

axioms of probability are violated because $P(a \forall b) > P(a) + P(b)$

 Agent 2 can now select a set of events and bet on them according to these probabilities so that she cannot loose

Agent 1		Agent 2		Outcome for Agent 1			
proposition	belief	bet	stakes	$a \wedge b$	$a \wedge \neg b$	$\neg a \land b$	$\neg a \land \neg b$
а	0.4	а	4:6	-6	-6	4	4
b	0.3	b	3:7	-7	3	-7	3
$a \lor b$	0.8	$\neg(a \lor b)$	2:8	2	2	2	-8
				-11	-1	-1	-1

Random Variables

- A random variable is a function from atomic events to some range of values
- Example: Roulette
 - atomic events: numbers 0-36
 - random variables with outcomes true or false
 - rouge / noir, pair / impair, passe / manque
 - transversale, carre, cheval
 - douzaines premier/milieu/dernier
 - etc.
 - e.g. rouge(36) = true
- The probability function P over atomic events induces a probability distribution over all random variables X

$$P(X=x_i) = \sum_{\{\omega: X(\omega)=x_i\}} P(\omega)$$

P(Rouge=true)= P(1)+P(3)+...+P(34)+P(36)= $\frac{1}{37} + \frac{1}{37} + ... + \frac{1}{37} + \frac{1}{37} = \frac{18}{37}$

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B: event $a = \text{set of sample points where } A(\omega) = true$ event $\neg a = \text{set of sample points where } A(\omega) = false$ event $a \wedge b = \text{points where } A(\omega) = true$ and $B(\omega) = true$

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B: event $a = \text{set of sample points where } A(\omega) = true$ event $\neg a = \text{set of sample points where } A(\omega) = false$ event $a \wedge b = \text{points where } A(\omega) = true$ and $B(\omega) = true$

Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$. Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Syntax for Propositions

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?) Cavity = true is a proposition, also written cavity Discrete random variables (finite or infinite) e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

(Joint) Probability Distribution

P denotes a probability distribution

 Prior or unconditional probabilities of propositions
 P denotes a probability

 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72

 correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: P(Weather) = (0.72, 0.1, 0.08, 0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $P(Weather, Cavity) = a \ 4 \times 2$ matrix of values:

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Note: If we know the joint probability for a set of random variables, we can answer all questions, because each event is a union of sample points

Marginalization (Summing Out)

Marginalization (aka Summing Out)

For any set of variables Y and Z

$$\mathbf{P}(\mathbf{Y}) = \sum_{z} \mathbf{P}(\mathbf{Y}, z)$$

- In particular, this means that given the joint probability distribution, the probability distribution of any random variable can be computed by summing out
 - the resulting distribution is then also called marginal distribution and its probabilities the marginal probabilities

Marginalization (Summing Out)

Marginalization (aka Summing Out)

For any set of variables Y and Z

$$\mathbf{P}(\mathbf{Y}) = \sum_{z} \mathbf{P}(\mathbf{Y}, z)$$

- In particular, this means that given the joint probability distribution, the probability distribution of any random variable can be computed by summing out
 - the resulting distribution is then also called marginal distribution and its probabilities the marginal probabilities

Conditioning

A variant of the above rule that uses conditional probabilities

$$\mathbf{P}(\mathbf{Y}) = \sum_{z} \mathbf{P}(\mathbf{Y}|z) \cdot P(z)$$

Marginalization

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)$

Marginalization

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by Enumeration

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Conditional Probabilities

	P(Cavity, Toothack	e) toothache	\neg toothache
Conditional or posterior probabilities	cavity	0.12	0.08
e.g. $P(cavity toothache) = 0.6$	cavity	0.08	0.72
i.e., given that toothache is all I NOT "if toothache then 60% chan	know ce of cavity"		Î
(Notation for conditional distributions:	P Cavity Toothack	$e = \langle \langle 0.6, 0.4 \rangle$	<pre> (0.1,0.9)</pre>
$\mathbf{P}(Cavity Toothache) = 2$ -element	vector of 2-eleme	nt vectors)	
If we know more, e.g., $cavity$ is also give P(cavity toothache, cavity) = 1	en, then we have		
Note: the less specific belief remains	valid after more	evidence a	rrives,
but is not always useful			
New evidence may be irrelevant, allowing	g simplification, e.	g.,	
P(cavity toothache, sunny) = P(ca)	vity toothache)=	0.6	
This kind of inference, sanctioned by dor	main knowledge, i	s crucial	

Definition of Conditional Probability

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)} \text{ if } P(b) \neq 0$$

Product rule gives an alternative formulation: $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

A general version holds for whole distributions, e.g.,

P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)(View as a 4 × 2 set of equations, not matrix mult.)

Inference by Enumeration

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$\begin{split} P(\neg cavity | toothache) &= \frac{P(\neg cavity \wedge toothache)}{P(toothache)} \\ &= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4 \end{split}$$

Normalization

Start with the joint distribution:

	toot	hache	¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant $\boldsymbol{\alpha}$

$$\begin{split} \mathbf{P}(Cavity|toothache) &= \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \alpha \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch) \right] \\ &= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right] \\ &= \alpha \left\langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle \end{split}$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by Enumeration (Ctd.)

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Independence

A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A, B) = \mathbf{P}(A)\mathbf{P}(B)$

Independence

$\mathbf{P}(Toothache, Catch, Cavity, Weather) = \mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Independence

 $\mathbf{P}(Toothache, Catch, Cavity, Weather) \\ = \mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional Independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Conditional Independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$

Equivalent statements:

 $\mathbf{P}(Toothache|Catch, Cavity) = \mathbf{P}(Toothache|Cavity)$

 $\mathbf{P}(Toothache, Catch|Cavity) = \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)$

Analogous to:

 $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A, B) = \mathbf{P}(A)\mathbf{P}(B)$

Conditional Independence (Ctd.)

Write out full joint distribution using chain rule:

- P(Toothache, Catch, Cavity)
- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes Rule

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

 \Rightarrow Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

 $\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$

Bayes Rule

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

 \Rightarrow Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

 $P(Cause | Effect) = \frac{P(Effect | Cause)P(Cause)}{P(Effect)}$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

 $P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)}$

Tattoo: Gregory von Nessi

Note: posterior probability of meningitis still very small!

Example: AIDS-Test

- event *Aids* = a person has Aids or not
- event *Positive* = a person has a positive test result
- Assume the test has the following characteristics:
 - *P* positive |aids = 0.99
 - *P* negative |aids = 0.01

The test makes 1% mistakes for people that have aids

- *P* positive $\neg aids = 0.005$
- *P* negative $|\neg aids = 0.995$

The test makes 0,5% mistakes for people that don't have aids

Looks like a pretty reliable test?

Example: AIDS-Test

- event *Aids* = a person has Aids or not
- event *Positive* = a person has a positive test result
- Assume the test has the following characteristics:
 - *P* positive |aids = 0.99
 - *P* negative |aids = 0.01

The test makes 1% mistakes for people that have aids

- *P* positive \neg aids = 0.005
- *P* negative $|\neg aids = 0.995$

The test makes 0,5% mistakes for people that don't have aids

Now suppose you are in a low-risk group (low a priori probability of having Aids, say P(aids) = 0.0001) and have a positive test result. Should you panic?

$$P(a \mid p) = \frac{P(p \mid a) \cdot P(a)}{P(p)} = \frac{P(p \mid a) \cdot P(a)}{P(p \mid a) \cdot P(a) + P(p \mid \neg a) \cdot P(\neg a)} = \frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001 + 0.005 \cdot 0.9999} = 0.0194$$

Daniel Kahneman Nobel Prize Economics 2002

Uncovered a number of biases that seem to characterize human reasoning and decision-making, providing a significant challenge to economic models that assume people simply apply statistical decision theory

Judgment under Uncertainty: Heuristics and Biases. Cambridge University Press 1982

Bayes Rule and Independence

The model is naïve because it assumes that all effects are independent given the cause (which is often not true)

 $= \alpha \mathbf{P}(toothache \wedge catch | Cavity) \mathbf{P}(Cavity)$

 $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cavity|toothache \land catch)$

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i \mathbf{P}(Effect_i | Cause)$

Total number of parameters is linear in n

Example: Wumpus World

Performance measure

gold +1000, death -1000

-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Actuators Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Example: Wumpus World

Current knowledge of the agent about the world

- the agent has visited the squares [1,1], [1,2], [2,1]. They are **OK**
- it found a **B**reeze in [1,2] and one in [2,1].
- therefore, no safe explorative step is possible
 - all yellow squares might contain a pit
- \rightarrow Which of the yellow squares is the safest?

Example: Wumpus World Specifying the Probability Model

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$

 $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$ Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $\mathbf{P}(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) \mathbf{P}(P_{1,1}, \dots, P_{4,4})$

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Example: Wumpus World Observations and Queries

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$

 $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$ Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

We know the following facts:

$$\begin{split} b &= \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\ known &= \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1} \end{split}$$

Query is $P(P_{1,3}|known, b) \longleftarrow$ What is the probability distribution for a pit on [1,3]?

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|known, b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$

- There are 12 unknown squares
- The summation contains 212 = 4096 terms

In general the summation grows expoentially with the number of squares!

Uncertainty

V2.0 | © J. Fürnkranz

Example: Wumpus World Using Conditional Independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

The square [4,4] will not have an influence on whether the agent has noticed a breeze on [1,2] or not.

In fact, none of the squares in the *Other* region may have influenced the observations in [1,1], [1,2] and [2,1].

Define $Unknown = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Known, Unknown) = \mathbf{P}(b|P_{1,3}, Known, Fringe)$

Manipulate query into a form where we can use this!

OTHER

FRING

QUERY

KNOWN

Example: Wumpus World Computation _____

The query $\mathbf{P}(P_{1,3}|known,b)$ is now transformed in a way so that we can use the equation from the previous slide

Inference by enumration

 $\mathbf{P}(P_{1,3}|known, b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$ = $\alpha \sum_{unknown} \mathbf{P}(b|P_{1,3}, known, unknown) \mathbf{P}(P_{1,3}, known, unknown)$ product rule

$$= \alpha \sum_{fringe other} \sum \mathbf{P}(b|known, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, known, fringe, other) \quad \text{conditioning}$$

- = $\alpha \sum_{fringe other} \sum \mathbf{P}(b|known, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, known, fringe, other)$
- = $\alpha \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}, known, fringe, other)$ pushing sums inwards
- = $\alpha \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(known) P(fringe) P(other)$ independence
- = $\alpha P(known) \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe) \sum_{other} P(other)$
- $= \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe)$

reordering, pushing sums inwards, simplifying

independence

Example: Wumpus World Computation

We go through all possibilities (filled circle denotes a pit).

is 1 if the breeze observations *b* are consistent with the fringe, 0 otherwise

$$\mathbf{P}(P_{1,3}|known, b) = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe)$$

 $\begin{array}{lll} \mathbf{P}(P_{1,3}|known,b) \ = \ \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right> \\ & \approx \ \left< 0.31, 0.69 \right> \end{array}$

 $\mathbf{P}(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$

(by analogous computation)

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools