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Uncertain Actions

n So far, our agents believe that
n (logical) statements are true or false (maybe unknown)
n actions will always do what they think they do

n Unfortunately, the real world is not like that
n agents almost never have access to the whole truth about the 

world
→ agents must deal with uncertainty
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Uncertain Actions

n So far, our agents believe that
n (logical) statements are true or false (maybe unknown)
n actions will always do what they think they do

n Unfortunately, the real world is not like that
n agents almost never have access to the whole truth about the 

world

→ agents must deal with uncertainty

n Example:
n We have different actions for getting to the airport:

n action At = leave for the airport t minutes before departure
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Uncertain Actions

n So far, our agents believe that
n (logical) statements are true or false (maybe unknown)
n actions will always do what they think they do

n Unfortunately, the real world is not like that
n agents almost never have access to the whole truth about the 

world

→ agents must deal with uncertainty

n Example:
n We have different actions for getting to the airport:

n action At = leave for the airport t minutes before departure
n Typical problems:

n Will a given action At get me to the airport in time?
n Which action is the best choice for getting me to the airport?
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Many situations are uncertain. 
Agents have to deal with these uncertainties.
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Problems with Uncertainty

n Risks involved in the plan  A90 will get me to the airport
n partial observability (road state, other drivers' plans, etc.)
n noisy sensors (traffic reports may be wrong)
n uncertainty in action outcomes (flat tire, accident, etc.)
n immense complexity of modeling and predicting traffic

We leave 90 minutes before departure
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Problems with Uncertainty
n Risks involved in the plan  A90 will get me to the airport

n partial observability (road state, other drivers' plans, etc.)
n noisy sensors (traffic reports may be wrong)
n uncertainty in action outcomes (flat tire, accident, etc.)
n immense complexity of modeling and predicting traffic

n A logically correct plan:

A90 will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc.

n impossible to model all things that can go wrong 
n → recall the qualification problem

We leave 90 minutes before departure
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Problems with Uncertainty
n Risks involved in the plan  A90 will get me to the airport

n partial observability (road state, other drivers' plans, etc.)
n noisy sensors (traffic reports may be wrong)
n uncertainty in action outcomes (flat tire, accident, etc.)
n immense complexity of modeling and predicting traffic

n A logically correct plan:

A90 will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc.

n impossible to model all things that can go wrong 
n → recall the qualification problem

n A more cautious plan:
A1440 will get me to the airport
n will (virtually) certainly succeed, but clearly suboptimal 

n e.g., we have to pay for a night in a hotel

We leave 90 minutes before departure
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Probabilities
n Probabilities are one way of handling uncertainty

n e.g. A90 will get me to the airport with probability 0.5

n The probability summarizes effects that are due to
n Laziness

n I don't want to list all things that must not go wrong

n Theoretical Ignorance
n Some things just can't be known

n e.g.: We cannot completely model the weather

n Practical Ignorance
n Some things might not be known about the particular situation

n e.g. Is there a traffic jam at A5?
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Probabilities and Beliefs
n Probabilities that are related to one's beliefs

n a probability p attached to a statement means that I believe 
that the statement will be true in p·100% of the cases

n there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

n it does not mean that it is true with p%
n the traffic on the A5 is jammed with a degree of 10%

(meaning: there's a jam, but it could be worse...)

→ Probability theory is about degree of belief
n other techniques (e.g., Fuzzy logic) deal with degree of truth
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Consider the probability that the sun will 
still exist tomorrow
- Difficult to observe by an experiment

What is the chance that a patient has a 
particular disease?
- Doctor wants to consider other patients who are

similar. But if you gather too much information to
compare patients, there are no similar patients left
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Capturing causal mechanisms 
is arguably one of the most 
important scientific question 

Judea Pearl, UCLA
Turing Award 2012
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that the statement will be true in p·100% of the cases

n there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

n it does not mean that it is true with p%
n the traffic on the A5 is jammed with a degree of 10%

(meaning: there's a jam, but it could be worse...)
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Probabilities and Beliefs
n Probabilities that are related to one's beliefs

n a probability p attached to a statement means that I believe 
that the statement will be true in p·100% of the cases

n there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

n it does not mean that it is true with p%
n the traffic on the A5 is jammed with a degree of 10%

(meaning: there's a jam, but it could be worse...)

→ Probability theory is about degree of belief
n other techniques (e.g., Fuzzy logic) deal with degree of truth

n Probabilities of propositions change with new evidence:
n P(A45 gets me there in time | no reported accidents) = 0.06

n in 6% of the days I get there in time if no accidents reported
n P(A45 gets me there in time | no reported accidents, 5 a.m.) = 0.15

n chances are higher at 5 in the morning...
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Making Decisions under Uncertainty

n Suppose I believe the following:

n P(A25 gets me there on time | …) = 0.04 
n P(A90 gets me there on time | …) = 0.70 
n P(A120 gets me there on time | …) = 0.95 
n P(A1440 gets me there on time | …) = 0.9999 

Which action should I choose?
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Making Decisions under Uncertainty

n Suppose I believe the following:

n P(A25 gets me there on time | …) = 0.04 
n P(A90 gets me there on time | …) = 0.70 
n P(A120 gets me there on time | …) = 0.95 
n P(A1440 gets me there on time | …) = 0.9999 

Which action should I choose?

n The choice depends on my preferences
n how bad is it to miss the flight?
n how bad is it to wait for an hour at the airport? 
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Making Decisions under Uncertainty

n Suppose I believe the following:

n P(A25 gets me there on time | …) = 0.04 
n P(A90 gets me there on time | …) = 0.70 
n P(A120 gets me there on time | …) = 0.95 
n P(A1440 gets me there on time | …) = 0.9999 

Which action should I choose?

n The choice depends on my preferences
n how bad is it to miss the flight?
n how bad is it to wait for an hour at the airport? 

n Utility theory is used to represent and infer preferences
n Decision theory = probability theory + utility theory
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Probability Basics
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Probability Basics
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Probability Basics
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Kolmogorov's Axioms of Probability
1. All probabilities are between 0 and 1

2. Necessarily true propositions have probability 1, necessarily 
false propositions have probability 0

3. The probability of a disjunction is

4. These axioms restrict the set of probabilistic beliefs that an 
agent can (reasonably) hold.                                              
similar to logical constraints like A and ¬ A can't both be true

0≤ P a ≤ 1

P false = 0 P true = 1

P a�b = P a P b − P a�b

(   )

(          ) (        )

(         ) (          )(   ) + (   )
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Violation of Axioms of Probability
Dutch Book Theorem, Bruno de Finetti (1931)
n an agent who bets according to probabilities that violate the 

axioms of probability can be forced to bet so as to lose money 
regardless of outcome!

Example:
n suppose Agent 1 believes the following

n Agent 2 can now select a set of events and bet on them according 
to these probabilities so that she cannot loose 

P a = 0.4 P b = 0.3 P a�b = 0.8

Agent 1 Agent 2 Outcome for Agent 1

proposition belief bet stakes a ∧ b a ∧ ¬b ¬ a ∧ b ¬ a ∧ ¬b

a 0.4 a 4:6 -6 -6 4 4

b 0.3 b 3:7 -7 3 -7 3

a ∨ b 0.8 ¬(a ∨ b) 2:8 2 2 2 -8

-11 -1 -1 -1

P a�b P a P b

axioms of probability 
are violated because

(    ) (    ) (          )
(       ) > (  ) + (   )

„put its money where its probabilities are“
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Random Variables
n A random variable is a function from atomic events to some 

range of values
n Example: Roulette

n atomic events: numbers 0-36 
n random variables with outcomes true or false

n rouge / noir, pair / impair, passe / manque
n transversale, carre, cheval
n douzaines premier/milieu/dernier
n etc.

e.g. rouge(36) = true
n The probability function P over atomic events induces a 

probability distribution over all random variables X

P (Rouge= true)= P (1)+P(3)+...+P (34)+P (36)= 137+
1
37+...+

1
37+

1
37=

18
37
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Propositions
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Propositions
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Syntax for Propositions
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(Joint) Probability Distribution

Note: If we know the joint 
probability for a set of 
random variables, we can 
answer all questions, 
because each event is a 
union of sample points

P denotes a probability

P denotes a 
probability distribution
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Marginalization (Summing Out)
Marginalization (aka Summing Out)
n For any set of variables Y and Z

n In particular, this means that given the joint probability 
distribution, the probability distribution of any random 
variable can be computed by summing out

n the resulting distribution is then also called marginal 
distribution and its probabilities the marginal probabilities

Conditioning
n A variant of the above rule that uses conditional probabilities
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Marginalization (Summing Out)
Marginalization (aka Summing Out)
n For any set of variables Y and Z

n In particular, this means that given the joint probability 
distribution, the probability distribution of any random 
variable can be computed by summing out

n the resulting distribution is then also called marginal 
distribution and its probabilities the marginal probabilities

Conditioning
n A variant of the above rule that uses conditional probabilities
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Marginalization
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Marginalization
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Inference by Enumeration
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Conditional Probabilities
P(Cavity,Toothache) toothache ¬ toothache

cavity 0.12 0.08

¬ cavity 0.08 0.72

P Cavity�Toothache = 〈〈0.6,0.4〉 , 〈0.1,0.9〉〉

P (cavity�toothache , sunny)= P (cavity�toothache)= 0.6

P (cavity�toothache)= 0.6  

60%
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Definition of Conditional Probability
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Inference by Enumeration
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Normalization
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Inference by Enumeration (Ctd.)
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Independence

2x2x2x4 = 32 
possible 

values

2x2x2 = 8 
possible 
values

4 possible
values
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Independence

2x2x2x4 = 32 
possible 

values

2x2x2 = 8 
possible 
values

4 possible
values
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Conditional Independence

Analogous to:
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Conditional Independence

Analogous to:
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Conditional Independence (Ctd.)
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Bayes Rule

Tattoo: Gregory von Nessi                        Foto: Carl Zimmer
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Bayes Rule

Tattoo: Gregory von Nessi                        Foto: Carl Zimmer
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Example: AIDS-Test

n event Aids = a person has Aids or not
n event Positive = a person has a positive test result

n Assume the test has the following characteristics:

n Looks like a pretty reliable test?

P positive�aids = 0.99

P positive�¬aids = 0.005
P negative�¬aids = 0.995

P negative�aids = 0.01
The test makes 1% mistakes 
for people that have aids

The test makes 0,5% mistakes 
for people that don't have aids

Modified from slides by David Kriegman, 2001
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Example: AIDS-Test

n event Aids = a person has Aids or not

n event Positive = a person has a positive test result

n Assume the test has the following characteristics:

n Now suppose you are in a low-risk group (low a priori probability 
of having Aids, say P(aids) = 0.0001) and have a positive test 
result. Should you panic?

P positive�aids = 0.99

P positive�¬aids = 0.005
P negative�¬aids = 0.995

P negative�aids = 0.01
The test makes 1% mistakes 
for people that have aids

The test makes 0,5% mistakes 
for people that don't have aids

Modified from slides by David Kriegman, 2001

P(a�p)= P ( p�a)�P (a)P( p) = P ( p�a)�P (a)
P ( p�a)�P (a)+P ( p�¬a)�P(¬a)=

0.99�0.0001
0.99�0.0001+0.005�0.9999= 0.0194
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Daniel Kahneman
Nobel Prize Economics 2002

Amos Tversky

Judgment under Uncertainty: Heuristics and Biases. Cambridge 
University Press 1982

Uncovered a number of biases that seem to characterize
human reasoning and decision-making, providing a 
significant challenge to economic models that assume
people simply apply statistical decision theory
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Bayes Rule and Independence
The model is naïve 
because it assumes that 
all effects are independent 
given the cause 
(which is often not true)
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Example: Wumpus World
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Example: Wumpus World

Current knowledge of the agent about the world

n the agent has visited the squares [1,1], [1,2], [2,1]. They are OK
n it found a Breeze in [1,2] and one in [2,1]. 

n therefore, no safe explorative step is possible

n all yellow squares might contain a pit

→ Which of the yellow squares is the safest?
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Example: Wumpus World
Specifying the Probability Model
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Example: Wumpus World
Observations and Queries

What is the probability distribution for a pit on [1,3]?

• There are 12 unknown squares
• The summation contains 212 = 4096 terms
In general the summation grows expoentially with the number of squares!
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Example: Wumpus World
Using Conditional Independence

The square [4,4] will not have an
influence on whether the agent has
noticed a breeze on [1,2] or not.

In fact, none of the squares in the
Other region may have influenced
the observations in [1,1], [1,2] and [2,1].



Uncertainty

TU Darmstadt                         Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz57

Example: Wumpus World
Computation

The query P(P1,3|known,b) is now transformed 
in a way so that we can use the equation from 
the previous slide

Inference by enumration

product rule

conditional
independence

pushing sums inwards

independence

reordering, pushing sums 
inwards, simplifying

conditioning
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Example: Wumpus World
Computation

(by analogous computation)

is 1 if the breeze observations b
are consistent with the fringe,

0 otherwise
We go through all possibilities (filled circle denotes a pit). 

Pit in 1,3 No pit in 1,3
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Summary
n Probability is a rigorous formalism for uncertain 

knowledge

n Joint probability distribution specifies probability of 
every atomic event

n Queries can be answered by summing over atomic 
events

n For nontrivial domains, we must find a way to reduce 
the joint size

n Independence and conditional independence provide 
the tools


