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Uncertainty

Probability

Syntax and Semantics
Inference

Independence and Bayes' Rule
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So far, our agents believe that
(logical) statements are true or false (maybe unknown)
actions will always do what they think they do
Unfortunately, the real world is not like that

agents almost never have access to the whole truth about the
world

— agents must deal with uncertainty
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So far, our agents believe that
(logical) statements are true or false (maybe unknown)
actions will always do what they think they do
Unfortunately, the real world is not like that

agents almost never have access to the whole truth about the
world

— agents must deal with uncertainty

Example:

We have different actions for getting to the airport:
action 4, = leave for the airport r minutes before departure
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So far, our agents believe that
(logical) statements are true or false (maybe unknown)
actions will always do what they think they do
Unfortunately, the real world is not like that

agents almost never have access to the whole truth about the
world

— agents must deal with uncertainty

Example:
We have different actions for getting to the airport:
action 4, = leave for the airport r minutes before departure
Typical problems:

Will a given action 4, get me to the airport in time?
Which action is the best choice for getting me to the airport?
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We leave 90 minutes before departure

Risks involved in the plan |4¢, will get me to the airport
partial observability (road state, other drivers' plans, etc.)
noisy sensors (traffic reports may be wrong)
uncertainty in action outcomes (flat tire, accident, etc.)
immense complexity of modeling and predicting traffic
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We leave 90 minutes before departure

Risks involved in the plan |4¢, will get me to the airport
partial observability (road state, other drivers' plans, etc.)
noisy sensors (traffic reports may be wrong)
uncertainty in action outcomes (flat tire, accident, etc.)
immense complexity of modeling and predicting traffic

A logically correct plan:

Ay will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc.

iImpossible to model all things that can go wrong
— recall the qualification problem
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We leave 90 minutes before departure

Risks involved in the plan |4¢, will get me to the airport
partial observability (road state, other drivers' plans, etc.)
noisy sensors (traffic reports may be wrong)
uncertainty in action outcomes (flat tire, accident, etc.)
immense complexity of modeling and predicting traffic

A logically correct plan:

Ay will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc.

iImpossible to model all things that can go wrong
— recall the qualification problem

A more cautious plan:

A 440 Will get me to the airport

will (virtually) certainly succeed, but clearly suboptimal
e.g., we have to pay for a night in a hotel
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Probabilities are one way of handling uncertainty

e.g.|44, will get me to the airport with probability 0.5

The probability summarizes effects that are due to

Laziness
| don't want to list all things that must not go wrong
Theoretical Ignorance
Some things just can't be known
e.g.. We cannot completely model the weather
Practical Ignorance

Some things might not be known about the particular situation

e.g. Is there a traffic jam at A5?

Uncertainty 9 V2.0| © J. Firnkranz



TU Darmstadt EinfUhrung in die Kinstliche Intelligenz

Probabilities that are related to one's beliefs

a probability p attached to a statement means that | believe
that the statement will be true in p-100% of the cases

there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

it does not mean that it is true with p%

the traffic on the A5 is jammed with a degree of 10%
(meaning: there's a jam, but it could be worse...)
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Consider the probability that the sun will
still exist tomorrow
- Difficult to observe by an experiment

What is the chance that a patient has a
particular disease?

- Doctor wants to consider other patients who are
similar. But if you gather too much information to
compare patients, there are no similar patients left

Uncertainty



Capturing causal mechanisms
is arguably one of the most
important scientific question

Judea Pearl, UCLA
Turing Award 2012
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Probabilities that are related to one's beliefs

a probability p attached to a statement means that | believe
that the statement will be true in p-100% of the cases

there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

it does not mean that it is true with p%

the traffic on the A5 is jammed with a degree of 10%
(meaning: there's a jam, but it could be worse...)

— Probability theory is about degree of belief
other techniques (e.g., Fuzzy logic) deal with degree of truth
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Probabilities that are related to one's beliefs

a probability p attached to a statement means that | believe
that the statement will be true in p-100% of the cases

there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

it does not mean that it is true with p%

the traffic on the A5 is jammed with a degree of 10%
(meaning: there's a jam, but it could be worse...)

— Probability theory is about degree of belief
other techniques (e.g., Fuzzy logic) deal with degree of truth
Probabilities of propositions change with new evidence:
P(A4s gets me there in time | no reported accidents) = 0.06

in 6% of the days | get there in time if no accidents reported
P(A4s gets me there in time | no reported accidents, 5 a.m.) = 0.15

chances are higher at 5 in the morning...
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Suppose | believe the following:

P(A2s gets me there on time | ...) =0.04
P(Ago gets me there on time | ...) =0.70
P(A120 gets me there on time | ...) =0.95
P(A1440 gets me there on time | ...) = 0.9999

Which action should | choose?
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Suppose | believe the fol

P(A2s gets me there on time
P(Ago gets me there on time

owing:
) =0.04
.)  =0.70

P(A120 gets me there on time | ...) =0.95
P(A1440 gets me there on time | ...) = 0.9999

Which action should | choose?

The choice depends on my preferences

how bad is it to miss the flight?
how bad is it to wait for an hour at the airport?

Uncertainty
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Suppose | believe the following:

P(A2s gets me there on time | ...) =0.04
P(Ago gets me there on time | ...) =0.70
P(A120 gets me there on time | ...) =0.95
P(A1440 gets me there on time | ...) = 0.9999

Which action should | choose?

The choice depends on my preferences

how bad is it to miss the flight?
how bad is it to wait for an hour at the airport?

Utility theory is used to represent and infer preferences

Decision theory = probability theory + utility theory
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Probability Basics

Begin with a set {’—the sample space
e.g., 6 possible rolls of a die.
= () is a sample point/possible world /atomic event
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Probability Basics

Begin with a set {’—the sample space
e.g., 6 possible rolls of a die.
= (1 is a sample point/possible world /atomic event

A probability space or probability model is a sample space
with an assignment [’(.) for every . < (! st

0< Plw) <1

2P(w) =1
&.&., Pll)=P(2)=P3)=P({4)= P(5)=P(6)=1/6.
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Probability Basics

Begin with a set {/—the sample space
e.g., 6 possible rolls of a die.
= (1 is a sample point/possible world /atomic event

A probability space or probability model is a sample space
with an assignment [’(.) for every . = (! s.t.

0< Plw) <1

Y Plw) =1
e.g., P(1)= P(2)= P(3)= P(4) = P(5)= P(6)=1/6.

An event .| is any subset of ()
[)< .’l’ — .\:|‘_-.‘_ A) 1){.(.')

Eg., P(dieroll < 4) = P(1)+ P(2) + P(3)=1/6+1/6+1/6 =1/2
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Uncertainty

All probabilities are between 0 and 1

0< Pa)<1

Necessarily true propositions have probability 1, necessarily
false propositions have probability 0

P (falsey=0 P (true)=1 P
The probability of a disjunction is - N
P (a\b)y=P )+ P(b)— P(a/\b) I

These axioms restrict the set of probabilistic beliefs that an

agent can (reasonably) hold.
similar to logical constraints like 4 and — 4 can't both be true

22 V2.0 | © J. Furnkranz
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Violation of Axioms of Probability

»put its money where its probabilities are*

Dutch Book Theorem, Bruno de Finetti (1931)

an agent who bets according to probabilities that violate the
axioms of probability can be forced to bet so as to lose money
regardless of outcome!

Example: axioms of probability
suppose Agent 1 believes the following ;E‘Z yg;a:‘;‘z;ef;lﬁ?

P(aF04 P03 PaVb=0.8

Agent 2 can now select a set of events and bet on them according
to these probabilities so that she cannot loose

Outcome for Agent 1

Uncertainty 23 V2.0 | © J. Firnkranz
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Random Variables

- A random variable is a function from atomic events to some
range of values

- Example: Roulette
. atomic events: numbers 0-36

- random variables with outcomes true or false

= rouge / noir, pair / impair, passe / manque
« transversale, carre, cheval

= douzaines premier/milieu/dernier
-« etc.

e.g. rouge(36) = true g
- The probability function P over atomic events induces a
probability distribution over all random variables X

P(X=X)=) oxwes P(®)
P(Rouge= true)= P(1)+P(3)+...+P(34)+P(36)= %+%+...+317+317: ;g
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Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables | and /7:
event 1 = set of sample points where () =1ru
event —a = set of sample points where A(.) = fals
event ¢ /\ b = points where A(w) =1true and D) = true
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Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables | and /7:
event 1 = set of sample points where () =1ru
event —a = set of sample points where A(.) = fals
event ¢ /\ b = points where A(w) =1true and D) = true

Often in Al applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
L., A=true R b= fu/.w', or a N\ —b.
Proposition = disjunction of atomic events in which it is true
eg.,laV b =(=anb)vian=b)Vvianb)
= PlaV ,;] = Pl=a Ab)+ Plan =b)+ Pla Ab)

Uncertainty 26 V2.0 | © J. Firnkranz



TU Darmstadt Einfuihrung in die Kiinstliche Intelligenz

Syntax for Propositions

Propositional or Boolean random variables
e.g., C'avity (do | have a cavity?)
(Cavily=1rue is a proposition, also written cauity

Discrete random variables (finite or infinite)
e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

e.g., 1'emp=210; also allow, e.g., Temp < 22.0,

Arbitrary Boolean combinations of basic propositions

Uncertainty 27 V2.0 | © J. Firnkranz
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(Joint) Probability Distribution

P denotes a
probability distribution
Prior or unconditional probabilities of propositions P denotes a probability
eg., P(Cavity=true)=10.1 a Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
—’®'ll', ather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather. Cavity) = a 4 x 2 matrix of values:

Note: If we know the joint

”.c c!f/(c ) — Nl(”l)f/ Haln c'l(!“l/o'/ SHHon prozablllty f'orbla Set Of
: . random variapies, we can
Recp ges S Bl ‘) ) C
Clavity = ,'_ e «.;._144 0.02 0016 0.02 answer all questions,
( .l{I'.'.f(/;_. _f:l/\f “‘-)‘-‘l “lk\ ()”‘ol ”“.\ because each event isa

union of sample points

Uncertainty 28 V2.0 | © J. Firnkranz



TU Darmstadt EinfUhrung in die Kinstliche Intelligenz

Marginalization (aka Summing Out)
For any set of variables Y and Z

P(Y)=) P(Y,z)

In particular, this means that given the joint probability
distribution, the probability distribution of any random
variable can be computed by summing out

the resulting distribution is then also called marginal
distribution and its probabilities the marginal probabilities

Uncertainty 30 V2.0 | © J. Furnkranz
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Marginalization (aka Summing Out)
For any set of variables Y and Z

P(Y)=) P(Y,z)

In particular, this means that given the joint probability
distribution, the probability distribution of any random
variable can be computed by summing out

the resulting distribution is then also called marginal
distribution and its probabilities the marginal probabilities

Conditioning
A variant of the above rule that uses conditional probabilities

P(Y)=) P(Y|z} P(z)

Uncertainty 31 V2.0 | © J. Furnkranz
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Marginalization

Start with the joint distribution:

toothache = toothache

= catchl catch| — catch

cavity | 108 .012 0721 .008

=cavity | .016] .064 144 | .576

For any proposition ¢, sum the atomic events where it is true;
P(d) =X . P (w)

Uncertainty 32 V2.0 | © J. Firnkranz
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Marginalization

Start with the joint distribution:

toothache = toothache

catch | = catchl catch| — catch

For any proposition «», sum the atomic events where it is true;
P(o) = X P(w)

— ¥
SR

- —

Pltoothache) = 0108 <0012 - 0016 +-0.064 = 0.2
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Inference by Enumeration

Start with the joint distribution:

For any proposition ¢, sum the atomic events where it is true:
P(¢) = LisimsP(w)

Pleavityvioothache) = 0.10840,0124+0.0724+0.0084+0.01640.064 = 0.28

Uncertainty 34 V2.0 | © J. Firnkranz
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Conditional Probabilities

Conditional or posterior probabilities

e.g., P(cavity [toothache)= 0.6
i.e., given that foothache is all T know
NOT “if toothache then 60% chance of caiif _l/"

P Cavity|Toothache ={(0.6,0.4),(0.1,0.9))

(Notation for conditional distributions:
P(Cavity Toothache) = 2-element vector of 2-element vectors) _1

If we know more, e.g., carily is also given, then we have
Pleavityltoothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

P (cavity ltoothache , sunny)= P (cavity ltoothache)= 0.6
This kind of inference, sanctioned by domain knowledge, is crucial

Uncertainty 35 V2.2 | © J. Firnkranz
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Definition of Conditional Probability

Definition of conditional probability:

Pla b

1’((1;”] = [)’ J if (0 = ()
(h)

Product rule gives an alternative formulation:
Pla A D) = Plalb)P(b) = P(bla)P(a)

A general version holds for whole distributions, e.g.,
P(Weather. Cavity) = P(Weather Cavity)P(Cavity)
(View as a 1 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X;,....: An) = P(X1,..., Xn-1) P(Xnl X100 0 Xp1)
=P(X...... Xncd) B X v o Ra2) PUAl At o s sl

=1 PEX] Xy s Xi—1)
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Inference by Enumeration

Start with the joint distribution:

- toothache = roothache
e[ cuh
o | 108 012
—cavity || .016| .064 | .144| 576

Can also compute conditional probabilities:

P(=cavity N toothache)
I’{fuuf/uu'fn jl
0.016 4 0.064
0,108 4+ 0,012 4+ 0.016 = 0,064

I,l “G'HI‘!’(/ funf}u.'('}u | ==

Uncertainty 37
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Normalization

Start with the joint distribution:

toothache = roothache

= cavity IMI@. 144 | 576

Denominator can be viewed as a normalization constant «

P(Cavitytoothache) = a P(Cavity, toothache)

- tPuj( ‘avity, toothache, catelh) < PlCavity, toothache, —cateh I:
a [(0.108,0.016) + (0.012, 0.064)]
= o (0.12,0.08) = (0.6,0.4)

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Uncertainty 38 V2.0| © J. Firnkranz
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Inference by Enumeration (Ctd.)

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values ¢ for the evidence variables E

Let the hidden variablesbe H = X - Y - E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=¢) = aP(Y.E=¢e) = aX,P(Y.E=e.H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity ()(d/") where  is the largest arity
2) Space complexity ()((") to store the joint distribution
3) How to find the numbers for ()((") entries???

Uncertainty 39 V2.0| © J. Firnkranz
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Independence

A and 7 are independent iff
P(AIB)=P(A) or P(BA)=P() o P(A.B)=P(AP(D)

Uncertainty 40 V2.0 | © J. Firnkranz
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Independence

A and 7 are independent iff

P(AB)=P(A) or P(BA=P(D) o P(A B)=P(AP(D)

——
- —_—

<o Cavity -““\ Cavity 2x2x2 = 8
2x2x2x4 = 32 decomposes into  100thache Catch sgﬁlsggle
possible, Toothache Catch : -
values \ Weather / 4 possible
_ == Weather values

P(Toothache, Cateh, Cavity, Weather)
= P(Toothache, Cateh, Cavity)P(Weather)

32 entries reduced to 12; for 1 independent biased coins, 2" — »n

Uncertainty 41 V2.0 | © J. Firnkranz
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Independence

A and 7 are independent iff
P(AIB)=P(A) or P(B|A)=P(D3) oo P(A B)=P(AP(D)

T g Cavity 2x2x2 = 8
2x2x2x4 = 32 ,/ Sy \ decomposes into  Toothache Catch  possible
possible : Toothache Catch : " values
values \ Weather / e 4 possible
- - eather values

P(Toothache. Catch, ( 'fll'i/;J. Weather)
= P(Toothache, Catch, Cavity)P(Weather)

32 entries reduced to 12; for 1 independent biased coins, 2" — »n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional Independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend

on whether | have a toothache:
(1) Plcatchitoothache, cavity) = Pleatch|cavity)

The same independence holds if | haven't got a cavity:
(2) Plcatch|toothache, ~cavity) = Plcalch|-cavity)

Uncertainty 43 V2.0 | © J. Firnkranz
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Conditional Independence

P(T oothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:
(l) Pleatehitoothache, cavity) = Pleateh|cavity)

The same independence holds if | haven't got a cavity:
(2) P(cateh|toothache, ~cavity) = P(calch|-cavity)

('atch is conditionally independent of [ oot hache given Clavily:
P(Catch|Toothache, Cavity) = P(Cateh|Cavity)

Equivalent statements:
P T oothache|Cateh, Cavity) = Pl{Toothache|Cavity)
P(Toothache, Catch Cavity) = P(T oothache Cavity)P(Cateh|Clavity)

Analogous to:
P(A|B)=P(A) or P(B|A)=P(B) or P(A B)=P(A)P(B)

Uncertainty 44 V2.0 | © J. Firnkranz
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Conditional Independence (Ctd.)

Write out full joint distribution using chain rule:
P(Toothache, Cateh. Cavity)
= P(Toothache|Catch, Cavity)P(Cateh. Cavity)
= P(T oothache Cateh, Cavity)P(Cateh Cavity)P(Cavity)
= P(Toothache| Cavity)P(Cuatch | Cavity)P(Cavity)

le., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in 1 to linear in .

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.

Uncertainty 45 V2.0 | © J. Firnkranz



TU Darmstadt

Bayes Rule

Product rule Pla A b)) = Plalh)Plh) = Plbia)Pla)

Piba)Pla )
I)’: ,)::

= Bayes' rule /’(uh) =

or in distribution form

s S ANRY) PEoh S
P(Y|X) = TP O oP(X|Y)P(Y)

Uncertainty 46
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Bayes Rule

Product rule Pla A b)) = Pla b)Ph) = Plbha)Pla)

Pibla)Pla)
P(h)

= Bayes' rule /’(u h) =

or in distribution form

oo N RNCIREY ) PSR, i
P(Y|X) = B - oP(X|Y)P(Y)

Useful for assessing diagnostic probability from causal probability:

l)':(.lll{.w ['."f.ffl'f' e [ I ffotf ( (LISt |[ (HH\('
P(Ef fect)

E.z., let \/ be meningitis, S be stiff neck:

Tattoo: Gregory von Nessi ' Foto: Carl Zimmer

Plsli\Pilm) 0.8 x 0.0001
Plimis) = = = {JLUNIS
P(s) 0.]

Note: posterior probability of meningitis still very small!
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Uncertainty

event Aids = a person has Aids or not
event Positive = a person has a positive test result

Assume the test has the following characteristics:

P positivelaids = 0.99 The test makes 1% mistakes
P negativelaids = 0.01 for people that have aids

P positivel-aids = 0.005 The test makes 0,5% mistakes
P negativel—aids = 0.995 for people that don't have aids

Looks like a pretty reliable test?

Modified from slides by David Kriegman, 2001 48 V2.0 | © J. Firnkranz
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event Aids = a person has Aids or not
event Positive = a person has a positive test result

Assume the test has the following characteristics:

P positivelaids = 0.99 The test makes 1% mistakes
P negativelaids = 0.01 for people that have aids

P positivel-aids = 0.005 The test makes 0,5% mistakes
P negativel—aids = 0.995 for people that don't have aids

Now suppose you are in a low-risk group (low a priori probability
of having Aids, say P(aids) = 0.0001) and have a positive test
result. Should you panic?

P(playP(a)_ P(pla)P(a) _ 0.99-0.0001
P(p) P(pla)yP(a)*+P(p Fa)yP(—a) 0.99-0.0001+0.005-0.9999

P(alp)= =0.0194
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Uncovered a number of biases that seem to characterize
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significant challenge to economic models that assume
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. L4 I A . TN
Judgment under Uncertainty: Heuristics and Biases. Cambridge
University Press 1982




TU Darmstadt Einfuihrung in die Kiinstliche Intelligenz

Bayes Rule and Independence

The model is naive
because it assumes that

e : all effects are independent
P avity toot hache A cateh) given the cause P

= o Pttoothache 2ocatel Clavity /PLC ety | (which is often not true)
= a Pltoothache Cavity)Pleateh | Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fect,.. ... Effect,) = P(Cause)lL,P(Ef fect;|Cause)

canity ) )/c;;\
Toothache Cach' @ . o e Effect,

Total number of parameters is linear in »

Uncertainty 51 V2.0 | © J. Firnkranz
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Example: Wumpus World

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it

$SSS 2 B
4 | Sdenns ~ Brosze =

3

2 |Sdénen < Blogze = Shooting uses up the only arrow
Grabbing picks up gold if in same square
1 ﬁ) v | (T | e Releasing drops the gold in same square
START Actuators Left turn, Right turn,
1 2 3 F Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Uncertainty 52 V2.0 | © J. Firnkranz
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Current knowledge of the agent about the world

T4 p 33 'y

33 133 i3

the agent has visited the squares [1,1], [1,2], [2,1]. They are OK
it found a Breeze in [1,2] and one in [2,1].
therefore, no safe explorative step is possible
all yellow squares might contain a pit
— Which of the yellow squares is the safest?

Uncertainty 53 V2.0 | © J. Furnkranz
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Example: Wumpus World

Specifying the Probability Mode
D,; =true iff [i. j] contains a pit el
B;; =true iff [i, j] is breezy T
Include only B, ;. 31 5. By in the probability model ox Pl

The full joint distribution is P(/% 1..... 4. By 4. By 2. Ba))

Apply product rule: |P( By . By 0. By 1 1. .. ., Py OP(FPya, ..., Pyy)

(Do it this way to get P(E f fect|Clause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

for 1 pits.
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Example: Wumpus World
Observations and Queries

14 24 34 44
D,; =true iff [i, j] contains a pit el L
B;; =true iff [i, j] is breezy T R
Include only BB . 5. B> in the probability model Jox [
B
Ok OK

We know the following facts:
b=—=byy Abya Aby,

known = —=pyy A =pra A =pa
Query i1s P/ Lnown, b <=— What is the probability distribution for a pit on [1,3]?
Define [ nknown = I,;s other than /', ; and A nown
For inference by enumeration, we have

P( P alknown. b) = o 2 vninoen PPy 2. tunthnown. known, b

* There are 12 unknown squares
* The summation contains 212 = 4096 terms
In general the summation grows expoentially with the number of squares!

Uncertainty V2.0| © J. Firnkranz



TU Darmstadt Einfuihrung in die Kiinstliche Intelligenz

Example: Wumpus World
Using Conditional Independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

’J.--JEJ--_.EL---ILQ.--‘

\ |

1
The square [4,4] will not have an " H
influence on whether the agent has A OhER :
noticed a breeze on [1,2] or not. '°"€‘"E D :

- »

In fact, none of the squares in the =~ ?E":tq\ !‘
Other region may have influenced N ™ :
the observations in [1,1], [1,2] and [2,1]. [ O\ R :
H “CA\ FRNGE 2y ¢

L OKNOWN NN \ !

\

| o i \\ :
I\ \ r\\ 'T \\_'I

----r--— - - -

Define U'nknown = Fringe U Other
P(b Py a, Known, Unknown) = PPy 5. Known, Fringe)

Manipulate query into a form where we can use this!
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Example: Wumpus World
Computation

’,.__.u.a--_.xaa.-_-.u.-.--‘

\\ ':

‘_’c_\_“ !

. : ot.eﬂv\‘\ A PN :

The query P(P, 3lknown,b) is now transformed A :

in a way so that we can use the equation from > oo : N f
. . " ~

the previous slide PONA 2 :

I \‘\c‘ 2 d

\ WD 1

Inference by enumration E o Tl ‘:T\ ¢

Vb -

P(Pslknown.b)=a S PP 3 unknown, known.b) Nl r St ~-!

Hun k”“nl "

=a Y P(blP 3 known, unknown)P( P, 3. known, unknown) product rule

UHA rousn

=a ¥ ¥ Plblknoun. P, 4. fringe. other)P( P, 3. known, fringe. other) conditioning

f1 inqge aother

= X )_: }_: P(li,,.'”(”l'lf_ 1-,1“;. fl'ljl([l :’PI Pl.;j. I‘,”““.”‘ fr,'”q( ’ U,,N '.-} . Condltlonal
fringe other ' ' ‘ : independence

= a Y Plblknown. Py fringe) ¥ P(P, 3. known, fringe. other) pushing sums inwards
fringe othes

= a Y P(blknown, P, 3. fringe) ¥ P(Pa3)P(known)P( fringe) Plother) independence
frange other

= a Plhknoun)P(Py3) ¥ Plblknown, P, 4. fringe)P( fringe) ¥ Plother)

Jringe other
= o' P(Py3) ¥ P(blknown, P,s. fringe)P(fringe) reordering, pushing sums
fringe '

inwards, simplifying
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We go through all possibilities (filled circle denotes a‘pit)/

Computation

Einfuihrung in die Kiinstliche Intelligenz

Example: Wumpus World

is 1 if the breeze observations b
are consistent with the fringe,
O otherwise

P(P, |known,b)=a' P<P1,3)Z inge F (bl known, P 5, fringe) P ( fringe)

3

3

B ]

1 - - res - rog - - A\~ -
| ] ] ] »
- | @ - | @ z -~ |® - |®
LA & ] ' P ] | A P | 1 LA P 1] LA & L]
] ] . ] L ]
02x02=004 02x08=0,16 08x02=0.186 02x02=004 02x08=016
Pitin 1,3 No pitin 1,3

P( P slknown. b)

Pl: P__);_) knoun.b )

Uncertainty

&

-~

~~

a’ (0.2(0.04 +0.16 + 0.16). 0.8(0.04 + 0.16))
0.31, 0.69)

(0.86, 0. 14)

58

(by analogous computation)
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Uncertainty

EinfUhrung in die Kinstliche Intelligenz

Probability is a rigorous formalism for uncertain
knowledge

Joint probability distribution specifies probability of
every atomic event

Queries can be answered by summing over atomic
events

For nontrivial domains, we must find a way to reduce
the joint size

Independence and conditional independence provide
the tools
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