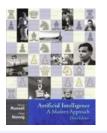
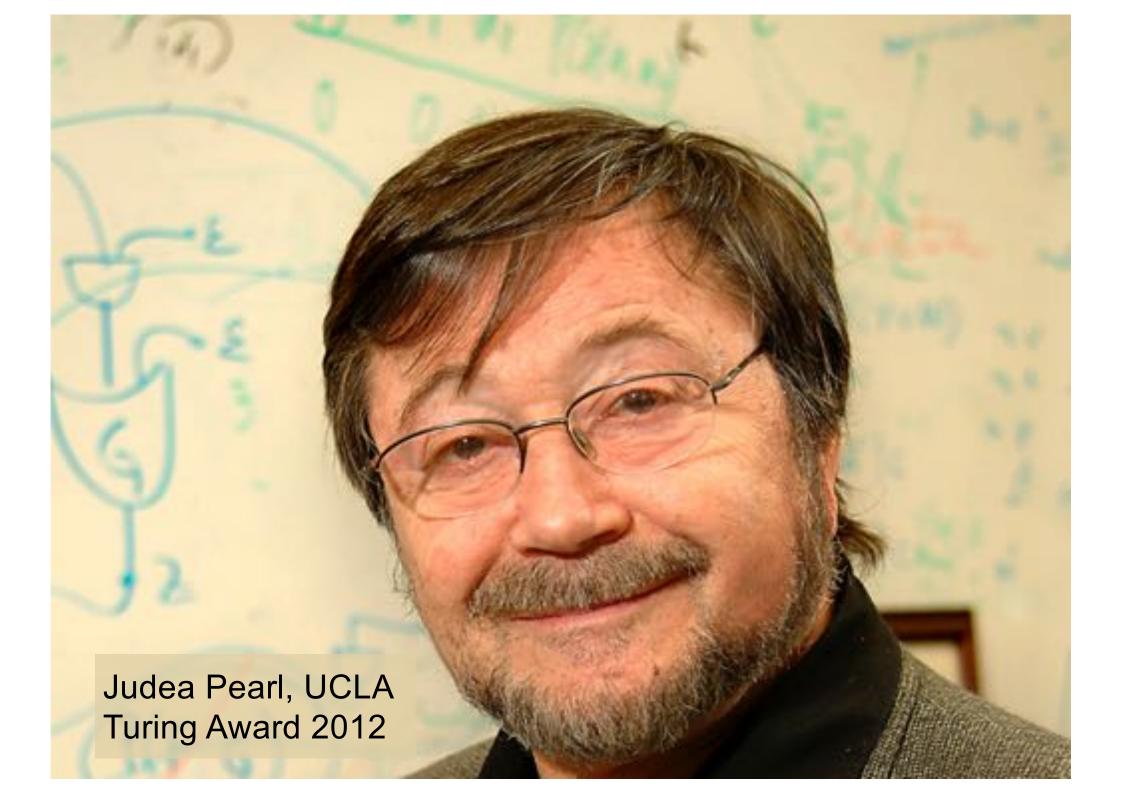
# **Bayesian Networks**

- Syntax
- Semantics
- Parametrized Distributions



Many slides based on Russell & Norvig's slides

Artificial Intelligence:
A Modern Approach

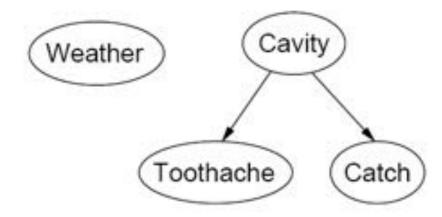


#### Bayesian Networks - Structure

 Are a simple, graphical notation for conditional independence assertions, hence for compact specifications of full joint distributions

A BN is a directed acyclic graph with the following components:

- Nodes: one node for each variable
- **Edges:** a directed edge from node  $N_i$  to node  $N_j$  indicates that variable  $X_i$  has a direct influence upon variable  $X_j$

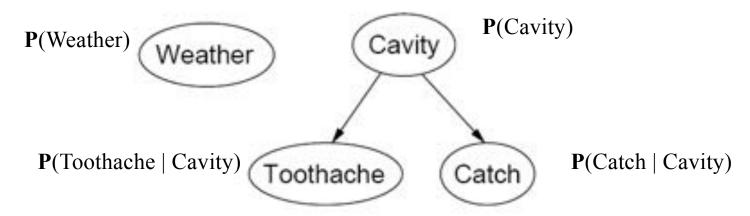


## Bayesian Networks - Probabilities

In addition to the structure, we need a **conditional probability distribution** for the random variable of each node given the random variables of its parents.

- i.e. we need  $P(X_i | Parents(X_i))$
- nodes/variables that are not connected are (conditionally) independent:

**Example:** Weather is independent of Cavity, Toothache is independent of Catch given Cavity



#### Running Example: Alarm

#### **Situation:**

- I'm at work
- John calls to say that in my house the alarm went off but Mary (my neighbor) did not call
- The alarm will usually be set off by burglars but sometimes it may also go off because of minor earthquakes

How do you model this?

#### Running Example: Alarm

#### **Situation:**

- I'm at work
- John calls to say that in my house the alarm went off but Mary (my neighbor) did not call
- The alarm will usually be set off by burglars but sometimes it may also go off because of minor earthquakes

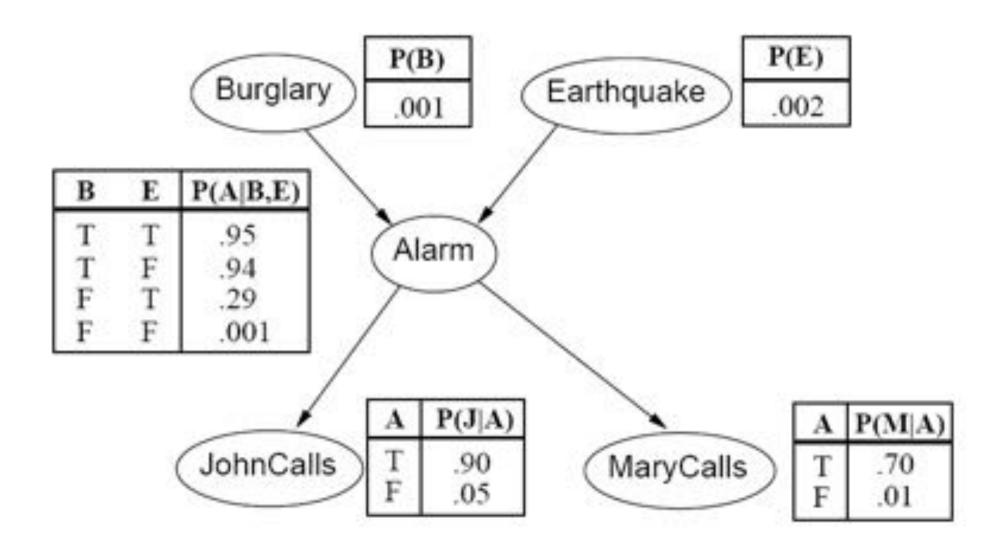
#### **Random Variables:**

Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

#### Network topology reflects causal knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

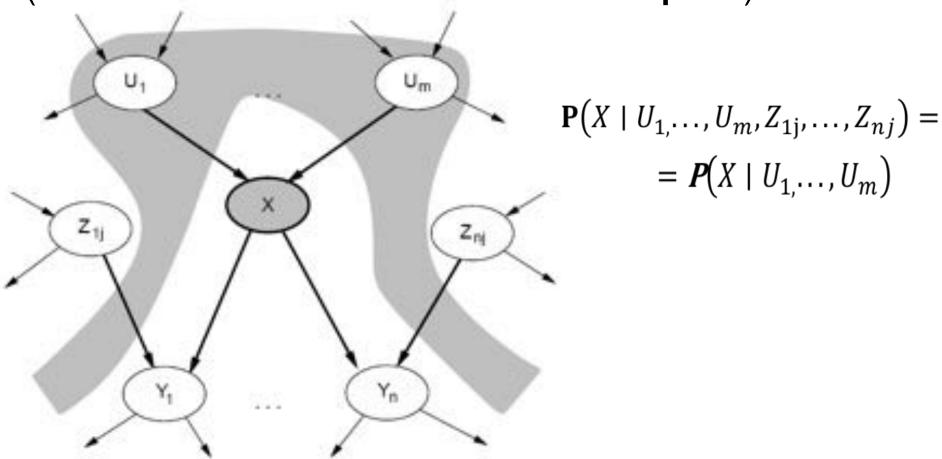
#### Alarm Example



#### Local Semantics of a BN

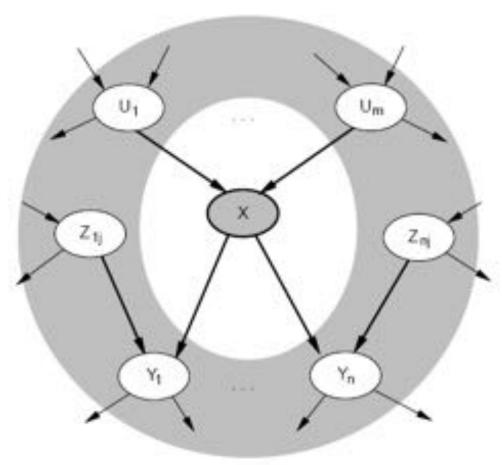
 Each node is is conditionally independent of its nondescendants given its parents

(sometime called the local Markov assumption)



#### Markov Blanket

Markov Blanket = parents + children + children's parents



Each node is conditionally independent of all other nodes given its Markov blanket

$$\mathbf{P}(X \mid U_{1,}..., U_{m}, Y_{1,}..., Y_{n}, Z_{1j}, ..., Z_{nj}) =$$

$$= \mathbf{P}(X \mid allvariables)$$

#### Global Semantics of a BN

 The conditional probability distributions define (factorizes) the joint probability distribution of the variables of the network

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i | \text{Parents}(X_i))$$

- Example:
  - What is the probability that the alarm goes off and both John and Mary call, but there is neither a burglary nor an earthquake?

$$P(j \land m \land a \land \neg b \land \neg e) =$$

$$= P(j \mid a)P(m \mid a)P(a \mid \neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \approx 0.00063$$

## (Representation) Theorem

#### Local Semantics ⇔ Global Semantics

#### Proof (<=):

order the variables so that parents always appear after children

$$P(J,M,A,E,B) =$$

 apply chain rule (now each variable is conditioned on its parents and other non-descendants)

$$= P(J | M, A, E, B)P(M | A, E, B)P(A | E, B)P(E | B)P(B)$$

use conditional independence

$$= P(J \mid A)P(M \mid A)P(A \mid E, B)P(E)P(B)$$

# Constructing Bayesian Networks ("=>")

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables  $X_1, \ldots, X_n$
- 2. For i=1 to nadd  $X_i$  to the network select parents from  $X_1, \ldots, X_{i-1}$  such that  $\mathbf{P}(X_i|Parents(X_i)) = \mathbf{P}(X_i|X_1, \ldots, X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1})$$
 (chain rule)  
=  $\prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i))$  (by construction)

Suppose we first select the ordering

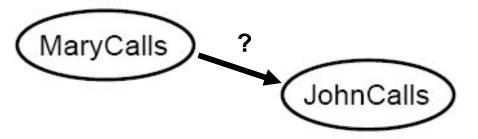


Suppose we first select the ordering



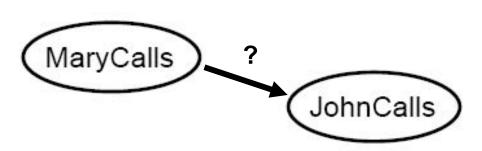


Suppose we first select the ordering



Suppose we first select the ordering

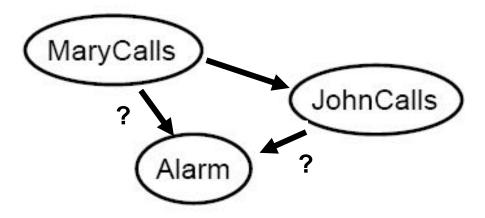
$$P(J \mid M) = P(J)$$
?



Suppose we first select the ordering

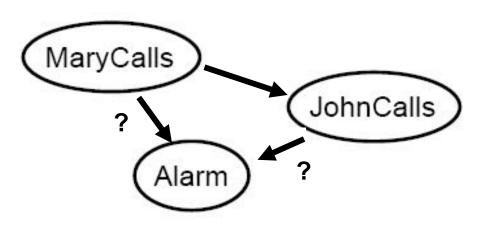


Suppose we first select the ordering



Suppose we first select the ordering

$$P(A \mid J, M) = P(A)$$
?



Suppose we first select the ordering

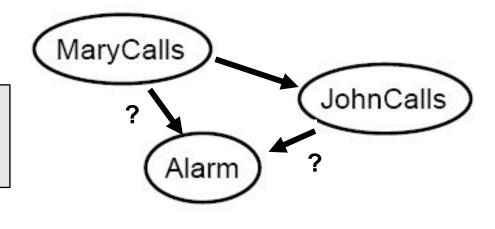
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(A \mid J, M) = P(A)$$
?

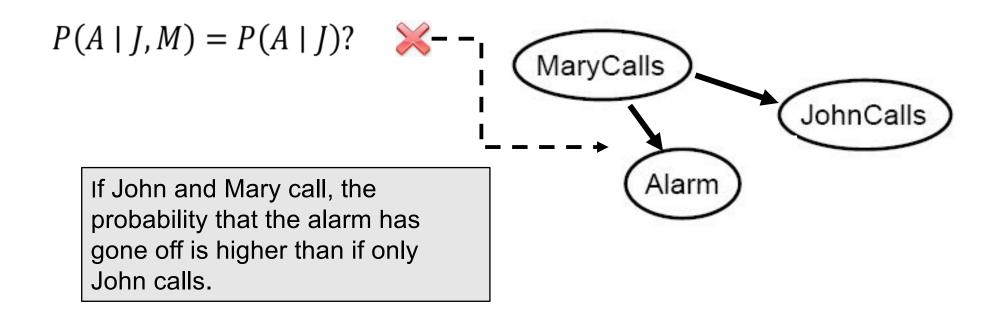


If Mary and John call, the probability that the alarm has gone off is larger than if they don't call.

Node A needs parents J or M



Suppose we first select the ordering



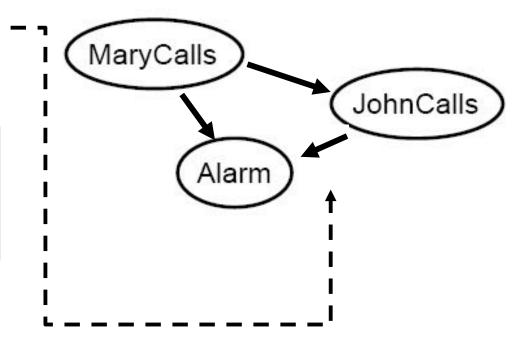
Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(A \mid J, M) = P(A \mid M)?$$

X

If John and Mary call, the probability that the alarm has gone off is higher than if only Mary calls.



Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

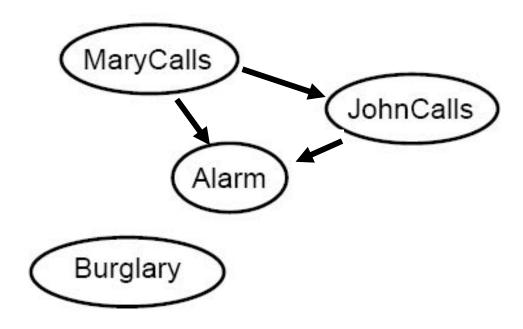
$$P(B \mid A, I, M) = P(B)$$
?



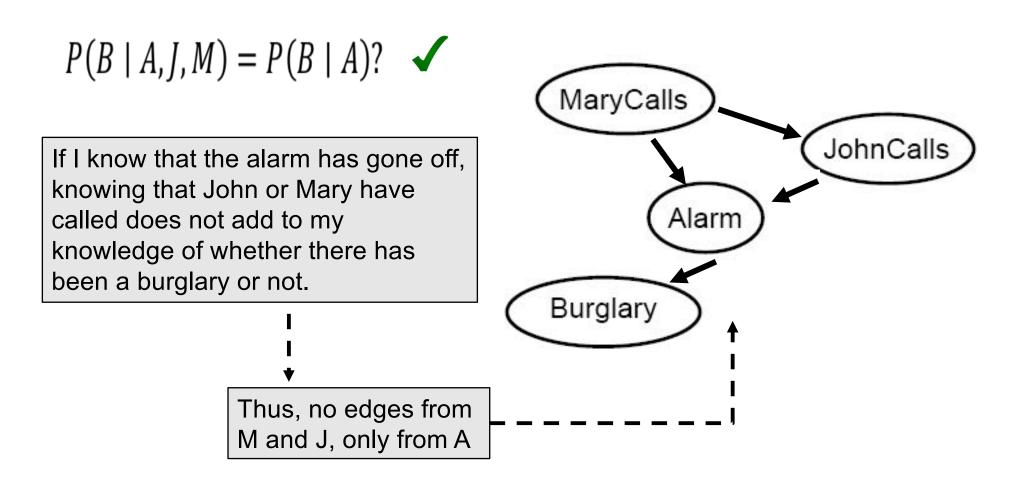
Knowing whether Mary or John called and whether the alarm went off influences my knowledge about whether there has been a burglary



Node B needs parents A, J or M



Suppose we first select the ordering



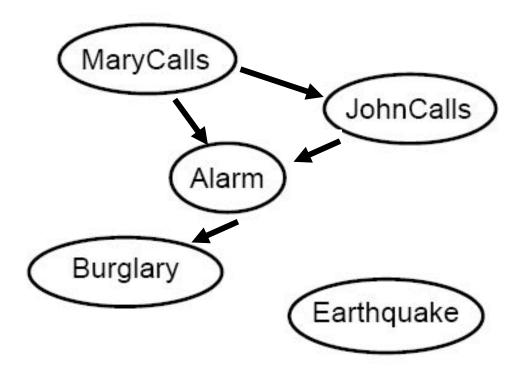
Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?



Knowing whether there has been an Alarm does not suffice to determine the probability of an earthquake, we have to know whether there has been a burglary as well.



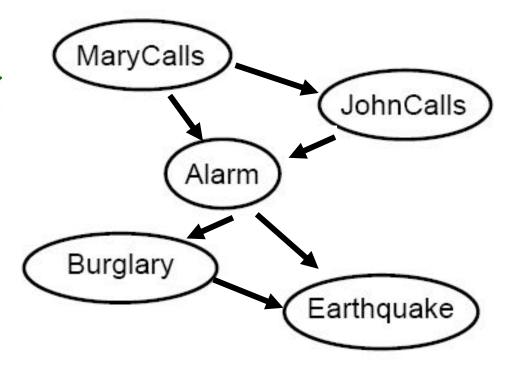
Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(E \mid B, A, J, M) = P(E \mid A)? \times$$

$$P(E \mid B, A, J, M) = P(E \mid A, B)? \checkmark$$

Knowing whether there has been an Alarm does not suffice to determine the probability of an earthquake, we have to know whether there has been a burglary as well.



#### **Example - Discussion**

- Deciding conditional independence is hard in non-causal direction
- for assessing whether X is conditionally independent of Z ask the question:

- Network is less compact
- more edges and more parameters to estimate

Worst possible ordering?

If I add variable Z in the condition, does it change the probabilities for X?

- causal models and conditional independence seem hardwired for humans!
- Assessing conditional probabilities is also hard in non-causal direction

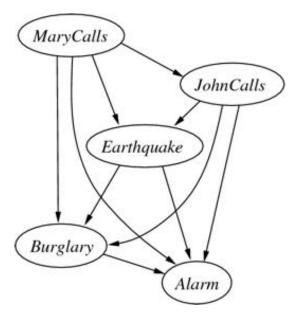
#### **Example - Discussion**

- Deciding conditional independence is hard in non-causal direction
- for assessing whether X is conditionally independent of Z ask the question:

If I add variable Z in the condition, does it change the probabilities for X?

- causal models and conditional independence seem hardwired for humans!
- Assessing conditional probabilities is also hard in non-causal direction

- Network is less compact
- more edges and more parameters to estimate
- Worst possible ordering
- MaryCalls, JohnCallsEarthquake, Burglary, Alarm
- fully connected network



#### Reasoning with Bayesian Networks

- Belief Functions (margin probabilities)
  - given the probability distribution, we can compute a margin probability at each node, which represents the belief into the truth of the proposition
  - → the margin probability is also called the belief function

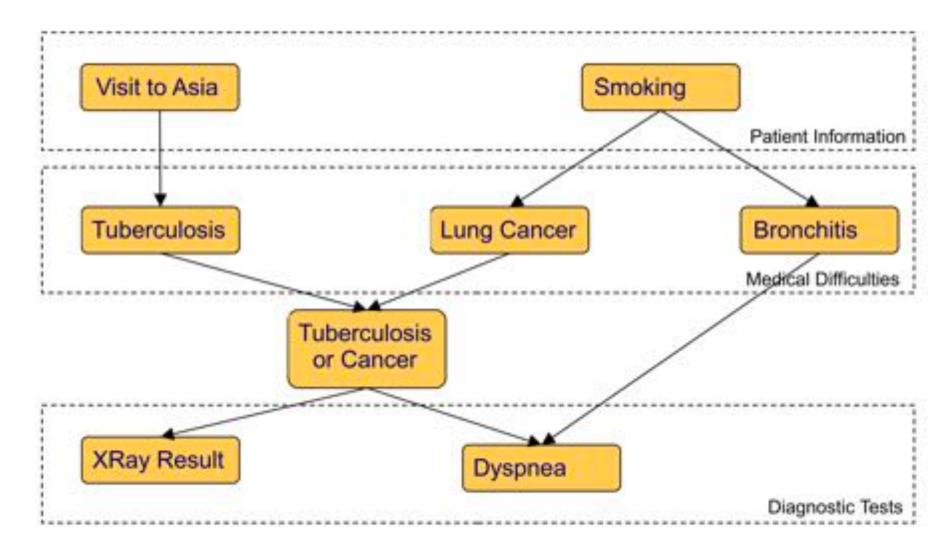
#### Reasoning with Bayesian Networks

- Belief Functions (margin probabilities)
  - given the probability distribution, we can compute a margin probability at each node, which represents the belief into the truth of the proposition
  - → the margin probability is also called the belief function
- New evidence can be incorporated into the network by changing the appropriate belief functions
  - this may not only happen in unconditional nodes!

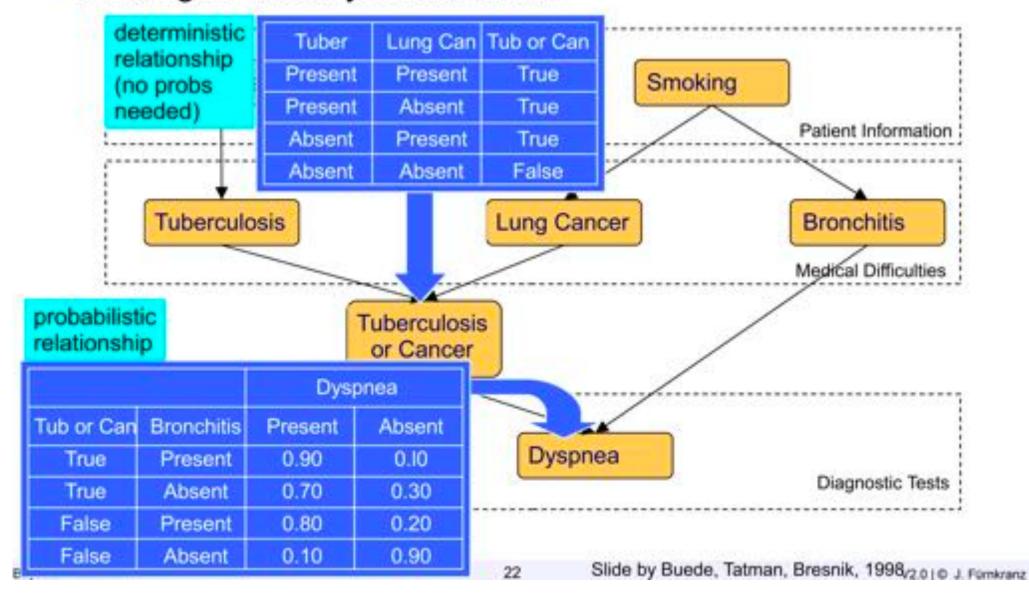
#### Reasoning with Bayesian Networks

- Belief Functions (margin probabilities)
  - given the probability distribution, we can compute a margin probability at each node, which represents the belief into the truth of the proposition
  - → the margin probability is also called the belief function
- New evidence can be incorporated into the network by changing the appropriate belief functions
  - this may not only happen in unconditional nodes!
- changes in the belief functions are then propagated through the network
  - propagation happens in forward (along the causal links) and backward direction (against them)
  - e.g., determining a symptom of a disease does not cause the disease, but changes the probability with which we believe that the patient has the disease

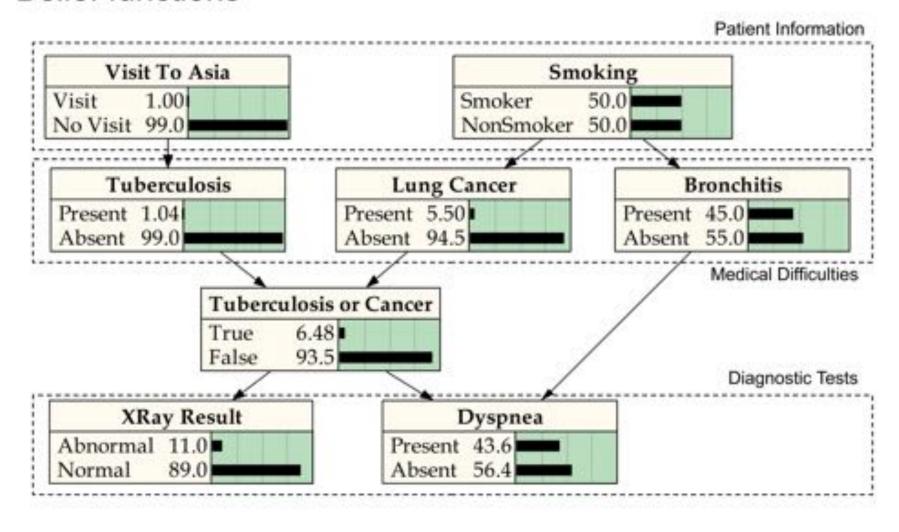
Structure of the network



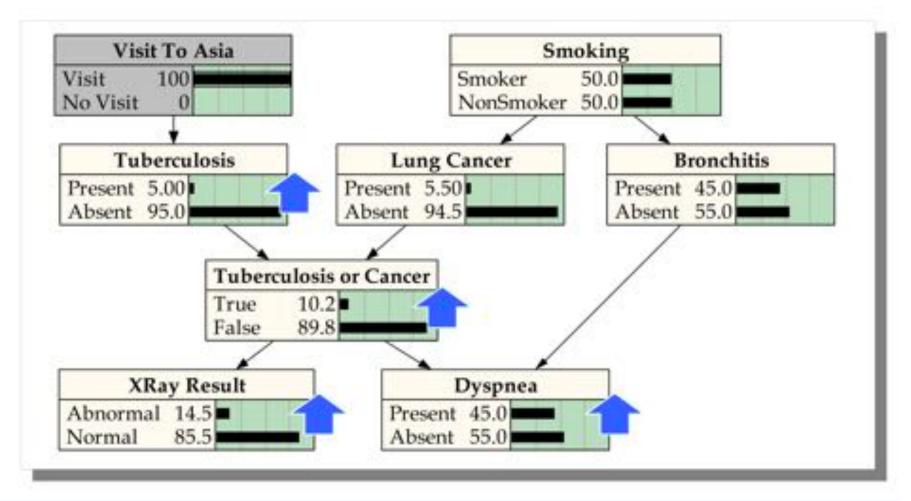
#### Adding Probability Distributions



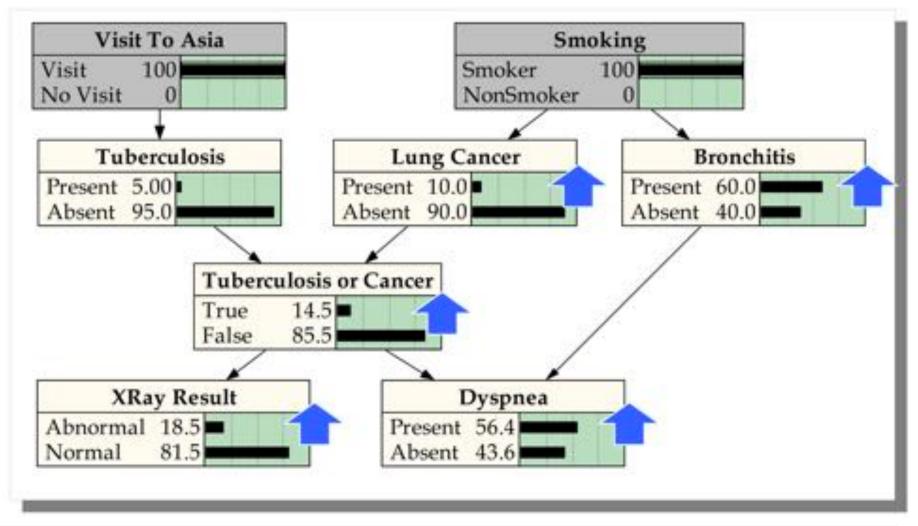
#### Belief functions



 Interviewing the patient results in change of probability for variable for "visit to Asia"

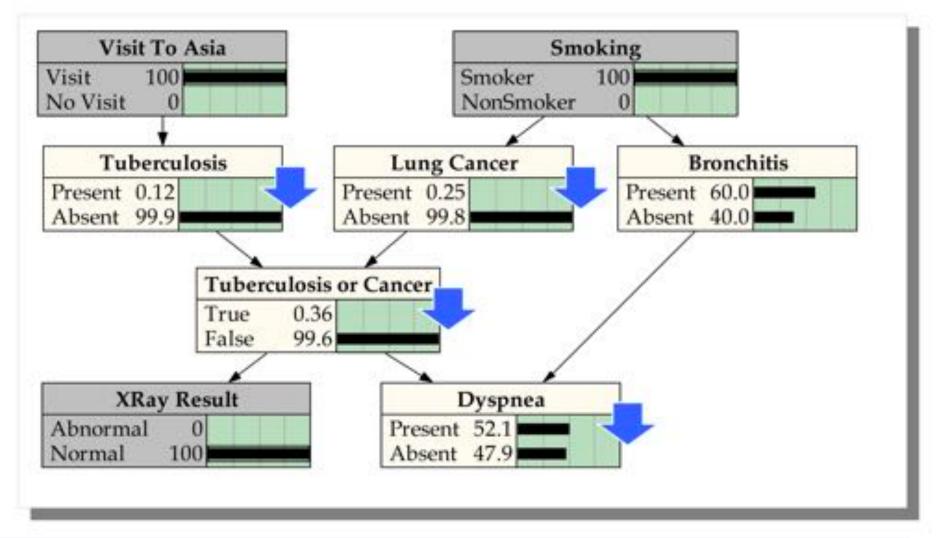


Patient is also a smoker...



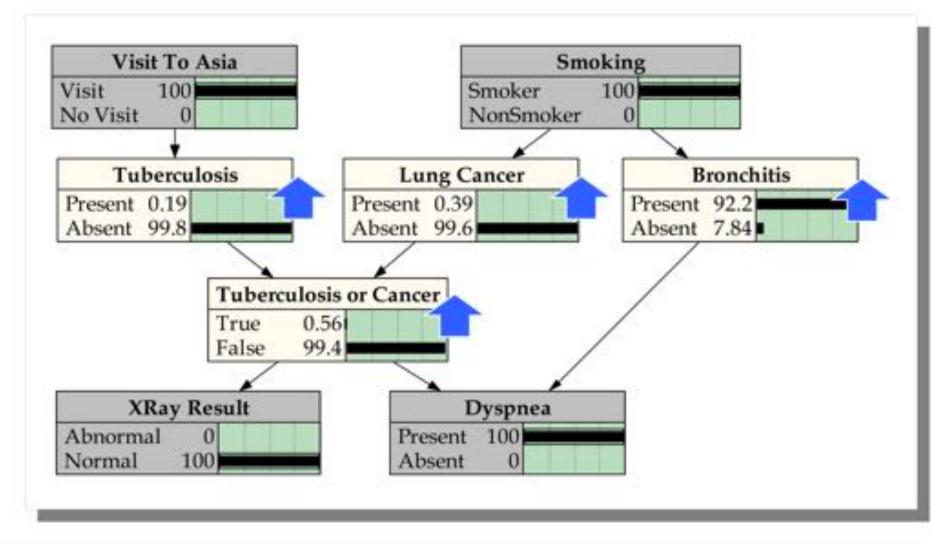
#### Example: Medical Diagnosis

but fortunately the X-ray is normal...



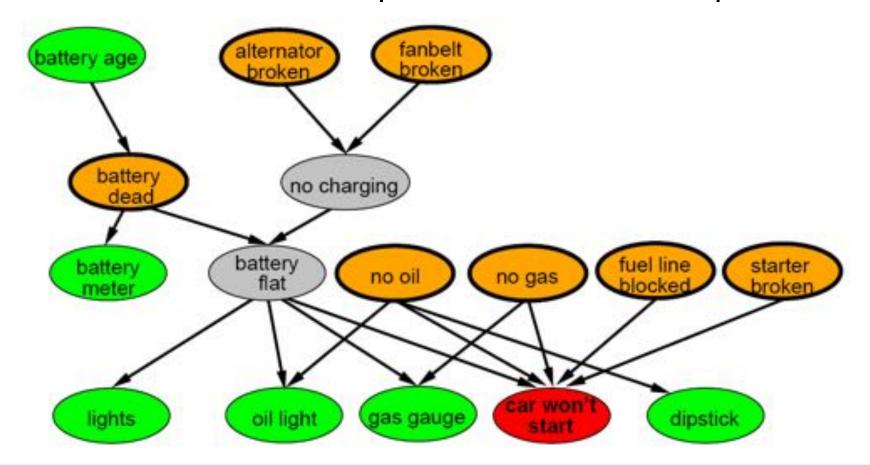
#### Example: Medical Diagnosis

but then again patient has difficulty in breathing.

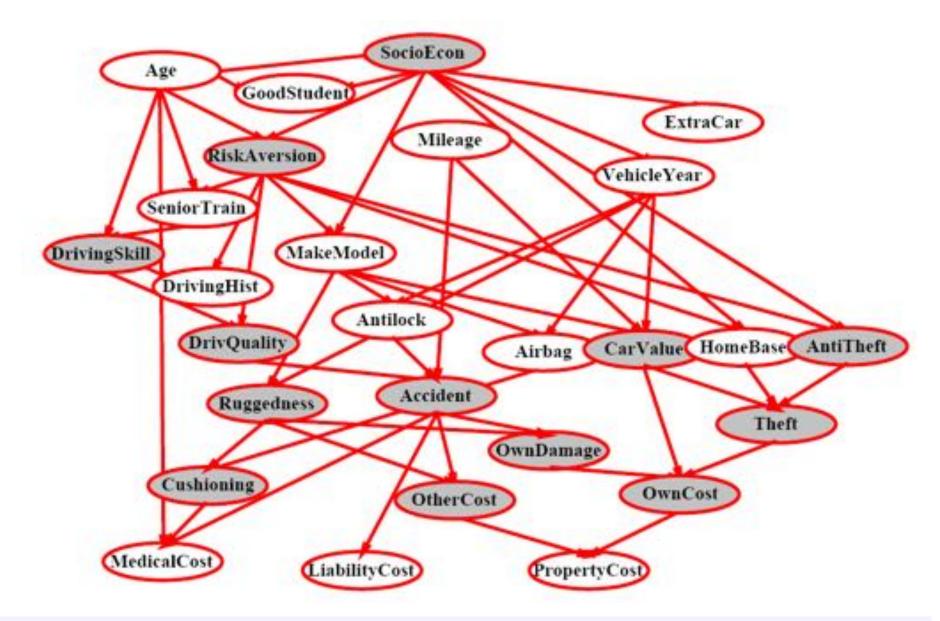


# More Complex Example: Car Diagnosis

- Initial evidence: Car does not start
- Test variables
   Variables for possible failures
- Hidden variables: ensure spare structure, reduce parameters

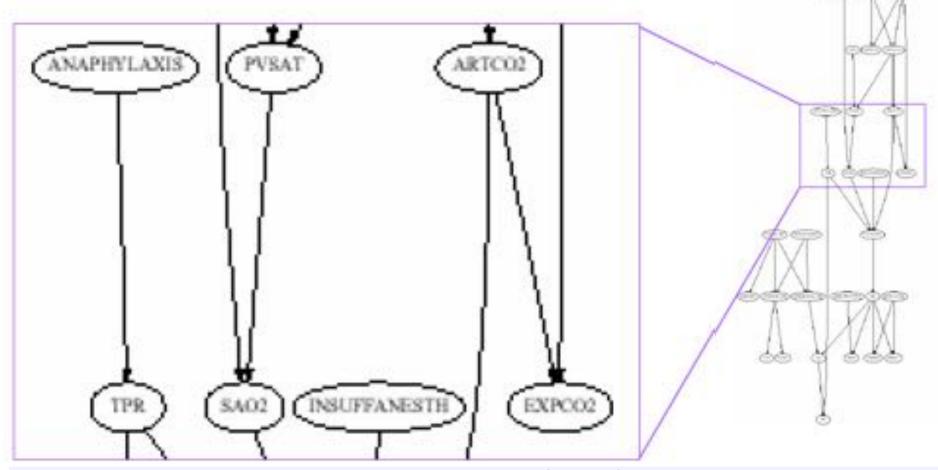


## More Complex: Car Insurance



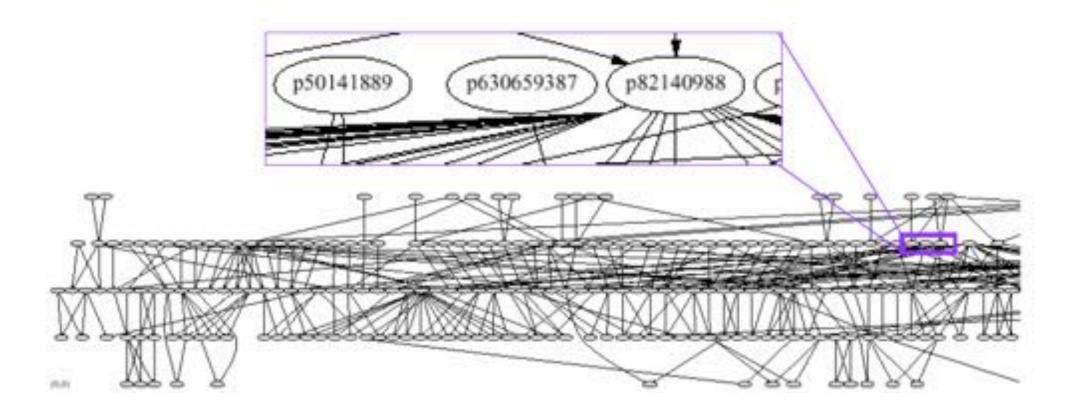
## Example: Alarm Network

Monitoring system for patients in intensive care



### Example: Pigs Network

- Determines pedigree of breeding pigs
- used to diagnose PSE disease
- half of the network structure shown here

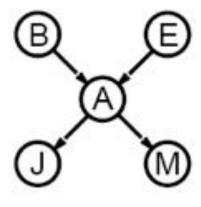


#### Compactness of a BN

A CPT for Boolean  $X_i$  with k Boolean parents has  $2^k$  rows for the combinations of parent values

Each row requires one number p for  $X_i = true$ (the number for  $X_i = false$  is just 1 - p)

If each variable has no more than k parents, the complete network requires  $O(n \cdot 2^k)$  numbers



I.e., grows linearly with n, vs.  $O(2^n)$  for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs.  $2^5-1=31$ )

#### **Compact Conditional Distributions**

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

X = f(Parents(X)) for some function f

E.g., Boolean functions

 $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$ 

E.g., numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t}$$
 = inflow + precipitation - outflow - evaporation

# Compact Conditional Distributions Independent Causes

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents  $U_1 \dots U_k$  include all causes (can add leak node)
- 2) Independent failure probability  $q_i$  for each cause alone

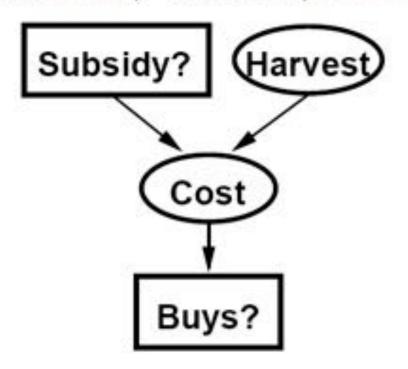
$$\Rightarrow P(X|U_1...U_j, \neg U_{j+1}... \neg U_k) = 1 - \prod_{i=1}^{j} q_i$$

| Cold | Flu | Malaria | P(Fever) | $P(\neg Fever)$                     |
|------|-----|---------|----------|-------------------------------------|
| F    | F   | F       | 0.0      | 1.0                                 |
| F    | F   | Т       | 0.9      | 0.1                                 |
| F    | Т   | F       | 0.8      | 0.2                                 |
| F    | Т   | T       | 0.98     | $0.02 = 0.2 \times 0.1$             |
| Т    | F   | F       | 0.4      | 0.6                                 |
| T    | E   | T       | 0.94     | $0.06 = 0.6 \times 0.1$             |
| Т    | T   | F       | 0.88     | $0.12 = 0.6 \times 0.2$             |
| Т    | Т   | Т       | 0.988    | $0.012 = 0.6 \times 0.2 \times 0.1$ |

Number of parameters linear in number of parents

#### **Hybrid Networks**

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)



Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

- 1) Continuous variable, discrete+continuous parents (e.g., Cost)
- Discrete variable, continuous parents (e.g., Buys?)

#### Continuous Conditional Distributions

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

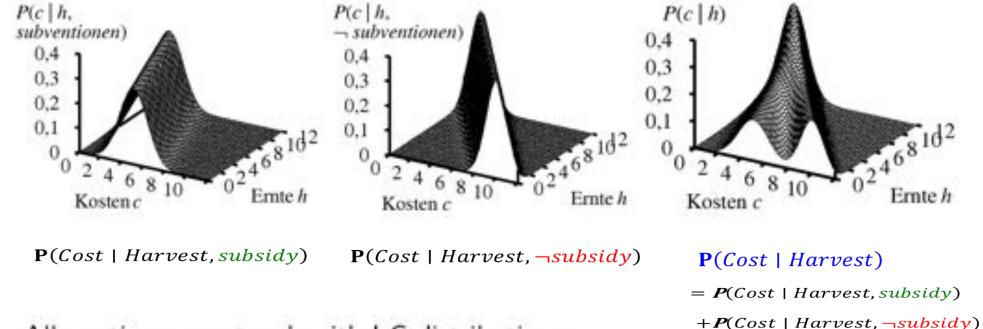
Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c|Harvest = h, Subsidy? = true)$$
  
=  $N(a_th + b_t, \sigma_t)(c)$   
=  $\frac{1}{\sigma_t\sqrt{2\pi}}exp\left(-\frac{1}{2}\left(\frac{c - (a_th + b_t)}{\sigma_t}\right)^2\right)$ 

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

#### Continuous Conditional Distributions



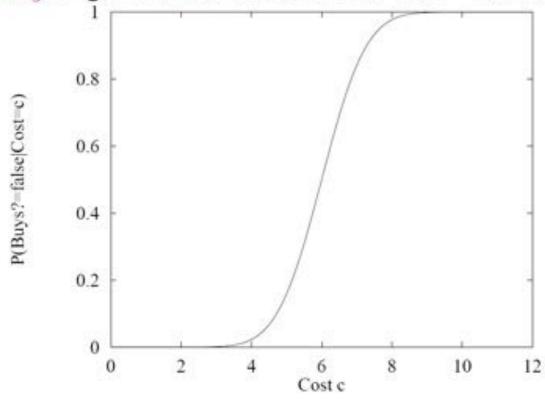
All-continuous network with LG distributions

⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

## Discrete Variables with Continuous Parents

Probability of Buys? given Cost should be a "soft" threshold:



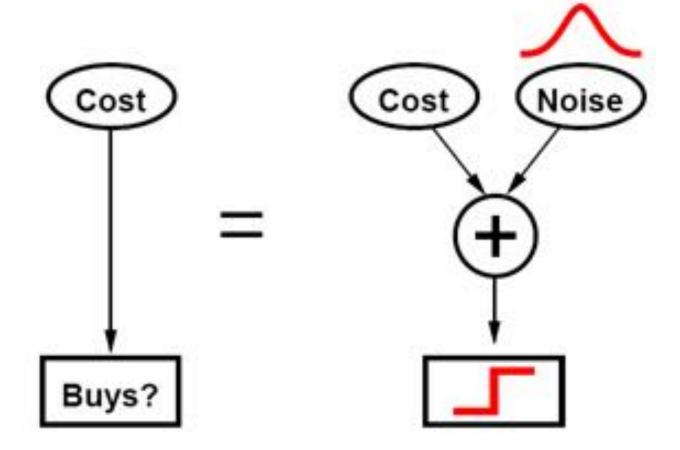
#### Probit distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} N(0, 1)(x) dx$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$$

#### Why Probit?

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

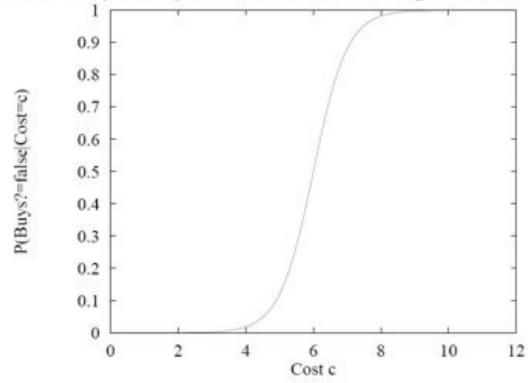


## Discrete Variables with Continuous Parents

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:



#### Real-World Applications of BN

- Industrial
- Processor Fault Diagnosis by Intel
- Auxiliary Turbine Diagnosis GEMS by GE
- Diagnosis of space shuttle propulsion systems VISTA by NASA/Rockwell
- Situation assessment for nuclear power plant NRC
- Military
- Automatic Target Recognition MITRE
- Autonomous control of unmanned underwater vehicle -Lockheed Martin
- Assessment of Intent

#### Real-World Applications of BN

- Medical Diagnosis (also at TUDA)
- Internal Medicine
- Pathology diagnosis Intellipath by Chapman & Hall
- Breast Cancer Manager with Intellipath
- NLP, CV, Cognitive Science, Plant Phenotpying (also at TUDA)
- Commercial
- Financial Market Analysis
- Information Retrieval
- Software troubleshooting and advice Windows 95 & Office 97
- Pregnancy and Child Care Microsoft
- Software debugging American Airlines' SABRE online reservation system