Outline

- Games of Chance
	- **Expectiminimax**
	- Monte-Carlo Evaluation
- **Simulation Search**
	- Monte-Carlo search
	- **Bandits**
	- UCT search
- **Games of Imperfect Information**

Many slides based on Russell & Norvig's slides [Artificial Intelligence:](http://aima.cs.berkeley.edu/) [A Modern Approach](http://aima.cs.berkeley.edu/)

Additional slides on MCTS in Go by David Silver and DeepMind

Games of Chance

- **Many games combine skill and chance**
	- i.e., they contain a random element like the roll of dice
- **This brings us closer to real-life**
	- **in real-life we often encounter unforeseen situations**
- Examples
	- Backgammon, Monopoly, ...
- **Problem**

- **Player MAX cannot directly maximize his gain because he** does not know what MIN's legal actions will be
	- MIN makes a roll of the dice *after* MAX has completed his ply
- and vice versa (MIN cannot minimize)

 \rightarrow Minimax or Alpha-Beta no longer applicable

 \rightarrow Standard game trees are extended with chance nodes

Game-Tree with Chance Nodes

Optimal Strategy with Chance Nodes

- MAX wants to play the move that maximizes his chances of winning
- **Problem:**
	- \blacksquare the exact outcome of a MAX-node cannot be computed because each MAX-node is followed by a chance node
	- **analogously for MIN-nodes**
- **Expected Minimax value**
	- compute the expected value of the outcome at each chance node

$$
EXPECTIMINIMAX(n) = \begin{pmatrix} UTILITY(n) & \text{if } n \text{ is a terminal state} \\ \max_{s \in SUCCESSORS(n)} EXPECTIMINIMAX & \text{if } n \text{ is a MAX node} \\ \min_{s \in SUCCESSORS(n)} E XPECTIMINIMAX & \text{if } n \text{ is a MIN node} \\ \sum_{s \in SUCCESSORS(n)} P(s) \cdot E XPECTIMINIMAX & \text{if } n \text{ is a chance node} \end{pmatrix}
$$

EXPECTIMINIMAX gives perfect play, like MINIMAX

Re-Scaling of Evaluation Functions

Minimax:

 no problem, as long as values are ordered in the same way (monotonic transformations)

MAX plays the same move in both cases

Re-Scaling of Evaluation Functions

Expectiminimax:

Monotonic transformations may change the result

 only positive *linear* transformations preserve behavior \rightarrow EVAL should be proportional to the expected outcome!

Nondeterministic Games in Practice

- **Complexity**
	- In addition to the branching factor, the number of different outcomes *c* adds at each chance node to the complexity
	- Total complexity is $O(b^m c^m)$

 \rightarrow deep look-ahead not feasible

 $c = 2$ for coin flip

- $c = 6$ for rolling one die
- $c = 21$ for rolling two dice
- **Perob.** of reaching a given node shrinks with increasing depth
	- **forming plans is not that important**

 \rightarrow deep look-ahead is also not that valuable

- **Example:**
	- TD-Gammon uses only 2-ply look-ahead + very good EVAL
- Alpha-Beta Pruning is also possible (but less effective)
	- at MIN and MAX nodes as usual
	- at chance nodes, expected values can be bounded before all nodes have been searched if the value range is bounded

Monte-Carlo

Sampling Sampling

Approximating Expected Values

- \Box If exact probabilities for the outcomes at the chance nodes are not known, values can be sampled
	- we replace the computation of the expected value with the average outcome over a (large) number of *N* random games starting in the current node *n*

 \sum $P(s)$ · E XPECTIMINIMAX (s) ≈ *s*∈*SUCCESSORS*(*n*) 1 $\frac{1}{N}\sum_{1..N}$ Utility (RandomGame (*n*))

the higher *N***, the better the approximation**

Roll-outs

- **Technique that has been used in Backgammon for** estimating the outcome of a position
- Play the position many times, each time with a different (random) dice roll
- used to be done by hand, is now done by compute

Simulation Search – Key Idea

- The complete tree is not searchable
	- $\overline{}$ thus minimax/alpha-beta limit the depth of the search tree
		- search all variations to a certain depth

Simulation Search – Key Idea

- The complete tree is not searchable
	- thus minimax/alpha-beta limit the depth of the search tree
		- search all variations to a certain depth
	- alternatively, we can limit the breadth of the search tree
		- sample some lines to the full depth

Simulation Search

- Algorithm Sketch:

- **Exercise 1** estimate the expected value of each move by counting the number of wins in a series of complete games
- at each chance node select one of the options at random (according to the probabilities)
- at MAX and MIN nodes make moves (e.g., guided by a fast evaluation function)

Examples:

- roll-out analysis in Backgammon
	- **play a large number of games from the same position**
	- **E** each game has different dice rolls
- in Scrabble:
	- different draws of the remaining tiles from the bag
- **in card games (e.g., GIB in Bridge)**
	- different distributions of the opponents' cards

Simulation Search

- Algorithm Sketch:

- estimate the expected value of each move by counting the number of wins in a series of complete games
- at each chance node select one of the options at random (according to the probabilities)
- at MAX and MIN nodes make moves (e.g., guided by a fast evaluation function)

• Properties:

- We need a fast algorithm for making the decisions at each MAX and each MIN node
	- the program plays both sides, of course
- Often works well even if the program is not that strong
	- \rightarrow fast is possible
- **Easily parallelizable**

Monte-Carlo Search

- **Extreme case of Simulation search:**
	- play a large number of games where both players make their moves randomly
	- average the scores of these games
	- **nake the move that has the highest average score**
- **Can also be used in deterministic games**
	- Has been used with some success in Go
		- e.g., Bruegmann 1993

Monte-Carlo Sampling in Go

Sampling the best move

Basic Setting

- The player **P** is faced with a choice of moves \mathbf{m}_1 , \mathbf{m}_2 , and \mathbf{m}_3
- I. leading to positions P_1 , P_2 , and P_3
- $\mathcal{L}_{\mathcal{A}}$ the move that leads to the best position is preferred

17 V1.0 | J. Fürnkranz

Multi-Armed Bandit Problems

(Robbins 1952)

One-armed bandit:

- One action (pull the lever)
- **Fixed long-term expected reward (or loss)**

Multi-Armed Bandit Problems

(Robbins 1952)

One-armed bandit:

- One action (pull the lever)
- **Fixed long-term expected reward (or loss)**

Multi-armed bandit

Multi-Armed Bandit Problems

(Robbins 1952)

One-armed bandit:

- One action (pull the lever)
- Fixed long-term expected reward (or loss)

Multi-armed bandit

- *k* actions (moves) **m**ⁱ
- associated with different fixed but unknown long-term expected rewards / utilities u*ⁱ*

Learning Problem

Task: **Find a strategy (policy) to maximize your gain**

- Find the arm (move) with the highest long-term utility from observations of immediate utilities
- with as little regret as possible
- and then keep playing it

Multi-Armed Bandits – Learning Problem

Which arm should I play next (at time *t*)?

And which arm should I play next (at time *t* +1)?

Upper Confidence Bound (UCB) Algorithm

(Auer et al. 2002)

Problem: **Exploitation vs. Exploration**

- *Exploitation:* Pull the best arm in order to maximize your earnings
- *Exploration:* Try if other arms are more promising

UCB algorithm

Always Play the Arm with the highest Upper-Confidence Bound

Dueling Bandits

 (Yue et al. 2012) (Busa-Fekete et al. 2014)

 One can also assume that **feedback** is not numeric but **preference-based**

- The player pulls not one but two arms, and observes which one of them is better (will yield the higher long-term reward
- **Long-Term Goal** remains the same
	- Identify the machine which promises the highest average reward
	- Main difference is that the exact amount of winning cannot be estimated from the qualitative feedback
- **Applications** in areas where qualitative judgement is necessary
	- search result A is better than search result B
	- dish A tastes better than dish B
	- move A is better than move B

Dueling Bandits – Learning Problem

Which two arms should I play next (at time *t*)?

And which two arms should I play next (at time *t* +1)?

Relative UCB (slightly simplified)

(Zoghi et al. 2014)

Maintain a UCB-value for each action pair

$$
u_{ij} = \frac{w_{ij}}{n_{ij}} + \alpha \sqrt{\frac{\log(N)}{n_{ij}}}
$$
\n
$$
w_{ij} = \sum_{t} w_{ij}^{(t)} \text{ Hwins of } \mathbf{m}_{i} \text{ over } \mathbf{m}_{j}
$$
\n
$$
n_{ij} = w_{ij} + w_{ji} \text{ Hgames } \mathbf{m}_{i} \text{ vs. } \mathbf{m}_{j}
$$
\n
$$
N = \sum_{ij} n_{ij} \text{ total Hgames}
$$

<u>1st</u> Action Selection

- **If exists, select an action m_ithat dominates all others**
- **If not pick a random action m**

$$
(\mathbf{m}_i | \forall j : u_{ij} \ge \frac{1}{2})
$$

2nd Action Selection

F choose the strongest opponent **m**_i for the action **m**_i

$$
j = \arg \max_{k} u_{ki}
$$

More realistic Games

Bandits are a very simple "game"

- **only one game state**
- **fixed stochastic reward distribution independent of adversary**

More realistic games require

- **Game States:** Most games have different states (positions) described with features, and possibly different move sets
	- utility will depend on the state and the features used for describing it
- **Delayed Reward:** Feedback will not be available right after the move played, but after a **sequence of moves** (often entire game)
- **Adversary:** Obtained feedback is not only for the own quality of play but also about the opponent's play
- **Search:** Look-ahead is often more important than good utility estimates

Monte-Carlo Tree Search

■ Monte-Carlo Search can be integrated with conventional game-tree search algorithms

Key ideas:

- I. incrementally build up a search tree
- evaluate the leaf nodes via roll-outs
- **EXET** evalaute promising moves more often than bad moves
	- but give bad moves also a chance
- MCTS essentially uses two policies
- **Tree Policy:**
	- How is the tree traversed in order to find the best leaf to be expanded
- **Rollout Policy** (or **Default Policy**):
	- How are the moves in the roll-out games selected

Monte-Carlo Tree Search

 Monte-Carlo Search can be integrated with conventional game-tree search algorithms

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. *New Mathematics and Natural Computation*, 4(3), 2008.

Selective Search in MCTS

- **Typically, the tree policy** is chosen in a way that prefers good alternatives over bad alternatives
	- $\blacksquare \rightarrow$ the tree grows deeper in regions of good moves

 $\ln\# \mathrm{visits}\left(n\right)$

#visits*s*

UCT Search (Kocsis & Szepesvari, 2006)

- **UCT** is the best-known formulation of MCTS
	- **it combines a UCB-based tree policy with random roll-outs**
- Selection:
	- Select the node $s_{max} = \arg \max_{s \in \text{Successors}(n)} \text{value}(s) + C \cdot \sqrt{\frac{m}{\#}}$
	- Parameter *C* trades off between
		- **Exploitation**: Try to play the best possible move
			- maximize value(*s*)
		- **Exploration**: Try new moves to learn something new
			- *s* gets a high value when the number of visits in the node is low
				- $\textcolor{red}{\bullet}$ in relation to the number of visits in the parent node n
	- **Sometimes:**
		- only use UCT if the node has been visited at least *T* times
			- **Figuently used value** $T = 30$

UCT Search (Kocsis & Szepesvari, 2006)

- **Expansion**
	- add a randomly selected node to the game tree
- **Simulation**
	- perform one iteration of a Monte-Carlo search starting from the selected node
- **Backpropagation**
	- adapt value(*n*) for each node n in the partial game tree
	- the value is just the average result of all games that pass through this node
- **Move Choice**
	- make the move that has been visited most often (reliability)
	- not necessarily the one with the highest value (high variance)
- **UCT caused a breakthrough in Computer Go Research**
	- e.g., MoGo (Gelly, Wang, Munos, Teytaud, 2006)

AlphaGo

 AlphaGo was the first Go Program to defeat a human champion Go player

AlphaGo

 AlphaGo reached unprecedented playing strength in computer (and human) Go

AlphaGo

- AlphaGo combines MCTS with deep learning and reinforcement learning from self-play
	- \rightarrow these will be covered later...
	- which produced a large jump in playing strength

Key components of MCTS in AlphaGo:

- use a (fast) **learned roll-out policy** instead of random sampling
- use a depth-limit in MCTS where a **learned evaluation function** is used instead of real game outcomes
	- similar to conventional search techniques

Two types of learned networks

• Policy Networks • Value Networks

AlphaGo – The four key learning steps

- I. learn from expert games a fast but inaccurate roll-out policy for guiding the roll-outs in an MCTS algorithm *p*π (*a*∣*s*)
- **Pearn from expert games an accurate expert policy** $p_{\sigma}(a|s)$ **to** be used a prior probability in newly expanded nodes at the MCTS fringe
- refine the expert policy into a more accurate selection policy $p_{\rho}(a|s)$ using policy gradient search from self-play
- **use self-play from the selection policy to train a utility** function $v_{\theta}(s)$ for evaluating a given game position, which (at the MCTS fringe nodes) will be averaged with the final game evaluation using a trade-off parameter λ

AlphaGo – The four key learning steps

AlphaZero

AlphaGo Zero

 improved version that learned to play only from self-play

 beat AlphaGo 100-0 using much less training data https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8

AlphaZero furtherimprovement in Go, Chess, Shogi

Table 1: Tournament evaluation of *AlphaZero* in chess, shogi, and Go, as games won, drawn or lost from *AlphaZero*'s perspective, in 100 game matches against *Stockfish*, *Elmo*, and the previously published *AlphaGo Zero* after 3 days of training. Each program was given 1 minute of thinking time per move.

Games of Imperfect Information

- The players do not have access to the entire world state
	- e.g., card games, when opponent's initial cards are unknown
- We can calculate a probability for each possible deal
	- [seems just like one big dice roll at the beginning of the game](https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8)
- **Intuitive Idea:**
	- compute the minimax value of each action in each deal
	- choose the action with the highest expected value over all deals
- **Main problem:**
	- **too many possible deals to do this efficiently**
	- \rightarrow take a sample of all possible deals
- **Example:**
	- GIB (a very good Bridge program) generates 100 deals consistent with bidding information (this also restricts!)
	- **Peropele 1 Section 10 Ferror 10**

Imperfect Information - Example

Scenario a) MIN has 4♥

 \rightarrow both players will make two tricks

Imperfect Information - Example

Scenario c) MIN has either 4♥ or 4♦

but MAX does not know which!

 \rightarrow MAX does not know which card to drop and has a 50% chance of losing the game!

- **Lesson:**
	- The intuition that the value of an action is the average of its value in all actual states is *wrong*!
	- the value of an action also depends on the agents' belief state
		- if I know that it is more probable that he has $4\blacktriangledown$, the expected value should be adjusted accordingly
	- may lead to information-gathering or information-disclosing actions (e.g., signalling bids or unpredictable (random) play)

Belief States in Minimax Search

- Minimax always assumes that the opponent plays its best response (it is said to be *conservative)*
- **This may be a bad idea:**

- MAX will play move B
- $\mathcal{L}_{\mathcal{A}}$ If there is a small chance that MIN does not play according to MAX's evaluation
	- because the evaluation is wrong or MIN makes a mistake then A would be the better choice!

Opponent Modeling

Somewhat off-topic, but see also: http://www.youtube.com/watch?v=3nxjjztQKtY

WORLD RPS SOCIET

ÄÊ

- For simple games we know optimal solutions
	- Complete search through Minimax tree
	- Game-Theory: Nash-Equilibrium
- Optimal solutions are not Maximal!
	- **Example: Roshambo (Rock/Paper/Scissors)**
		- Optimal Solution: Pick a random move
		- clearly suboptimal against a player that always plays rock!
	- \rightarrow Roshambo Computer Tournament (1999, 2000)
- Opponent Modeling
	- **try to predict the opponent's next move**
	- **try to predict what move the opponent predicts that your next** move will be,
- **For some games, opponent modeling is part of the game**
	- e.g., bluffing and calling a bluff in Poker

Perspective on Games: Pro

"Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap its wings"

Drew McDermott

Perspective on Games: Con

"Chess is the Drosophila of artificial intelligence. However, computer chess has developed much as genetics might have if the geneticists had concentrated their efforts starting in 1910 on breeding racing Drosophila. We would have some science, but mainly we would have very fast fruit flies."

John McCarthy

Additional Reading

- **Jonathan Schaeffer. The Games Computers (and People) Play,** *Advances in Computers 50* , Marvin Zelkowitz (ed.) Academic Press, pp. 189-266, 2000. http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps
	- excellent survey paper
- **Jonathan Schaeffer and Jaap van den Herik (eds.)** *Chips Challenging Champions: Games, Computers and Artificial Intelligence*, North-Holland 2002.
	- very good collection of papers
- Jonathan Schaeffer: *One Jump Ahead: Challenging Human Supremacy in Checkers*, Springer 1998, revised 2009.
	- non-technical first-hand account on the Chinook project

- Feng-Hsiung Hsu: *Behind Deep Blue: Building the Computer That Defeated the World Chess Champion*, Princeton 2002
	- non-technical first-hand account on Deep Blue

Additional Reading AlphaGo

- **Mastering Chess and Shogi by Self-Play with a General Reinforcement** Learning Algorithm. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M., A. Guez, M. Lan[ctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K.](http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps) Simonyan, D. Hassabis. arXiv 2017
- Mastering the Game of Go without Human Knowledge. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel & D. Hassabis. *Nature* 2017.
- Mastering the Game of Go with Deep Neural Networks and Tree Search. D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. *Nature* 2016.

