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Outline
 Games of Chance

 Expectiminimax
 Monte-Carlo Evaluation

 Simulation Search
 Monte-Carlo search
 Bandits
 UCT search

 Games of Imperfect Information

Many slides based on 
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

Additional slides on MCTS in Go
by David Silver and DeepMind

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
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Games of Chance
 Many games combine skill and chance 

 i.e., they contain a random element like the roll of dice
 This brings us closer to real-life

 in real-life we often encounter unforeseen situations

 Examples
 Backgammon, Monopoly, ...

 Problem
 Player MAX cannot directly maximize his gain because he 

does not know what MIN's legal actions will be
 MIN makes a roll of the dice after MAX has completed his ply

 and vice versa (MIN cannot minimize)
→ Minimax or Alpha-Beta no longer applicable

→ Standard game trees are extended with chance nodes
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Game-Tree with Chance Nodes

Chance nodes for 
the roll of two dice

associated probability
outcome of the dice roll
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Optimal Strategy with Chance Nodes
 MAX wants to play the move that maximizes his chances of 

winning
 Problem:

 the exact outcome of a MAX-node cannot be computed 
because each MAX-node is followed by a chance node

 analogously for MIN-nodes
 Expected Minimax value

 compute the expected value of the outcome at each chance 
node

E XPECTIMINIMAX (n)={
UTILITY(n) if n  is a terminal state
max s∈SUCCESSORS (n) E XPECTIMINIMAX if n  is a MAX node

min s∈SUCCESSORS (n) E XPECTIMINIMAX if n  is a MIN node

∑
s∈SUCCESSORS (n)

P (s)⋅E XPECTIMINIMAX if n  is a chance node
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Example

coin tosses
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Example

0.5⋅20.5⋅4=3 −1=0.5⋅00.5⋅−2

3

coin tosses

EXPECTIMINIMAX gives perfect play, like MINIMAX
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Re-Scaling of Evaluation Functions
 Minimax:

 no problem, as long as values are ordered in the same way
(monotonic transformations)

MAX plays the same move in both cases
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Re-Scaling of Evaluation Functions
 Expectiminimax:

 Monotonic transformations may change the result

 only positive linear transformations preserve behavior
→ EVAL should be proportional to the expected outcome!
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Nondeterministic Games in Practice
 Complexity

 In addition to the branching factor, the number of different 
outcomes c adds at each chance node to the complexity

 Total complexity is O(bmcm)
→ deep look-ahead not feasible

 prob. of reaching a given node shrinks with increasing depth
 forming plans is not that important 

→ deep look-ahead is also not that valuable
 Example:

 TD-Gammon uses only 2-ply look-ahead + very good EVAL

 Alpha-Beta Pruning is also possible (but less effective)
 at MIN and MAX nodes as usual
 at chance nodes, expected values can be bounded before all 

nodes have been searched if the value range is bounded

c = 2    for coin flip
c = 6    for rolling one die
c = 21  for rolling two dice
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Approximating Expected Values
 If exact probabilities for the outcomes at the chance nodes 

are not known, values can be sampled
 we replace the computation of the expected value with the 

average outcome over a (large) number of N random games 
starting in the current node n

 the higher N, the better the approximation 

Roll-outs
 Technique that has been used in Backgammon for 

estimating the outcome of a position
 Play the position many times, each time with a different 

(random) dice roll
 used to be done by hand, is now done by compute

∑
s∈SUCCESSORS (n)

P (s)⋅EXPECTIMINIMAX(s)≈ 1
N ∑

1..N

Utility (RandomGame (n))

Monte-Carlo
Sampling

Monte-Carlo
Sampling
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Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation 
function



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz12

Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

 alternatively, we can limit the breadth of the search tree
 sample some lines to the full depth

Picture taken from (Schaeffer 2000)
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Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the 
number of wins in a series of complete games

 at each chance node select one of the options at random 
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast 
evaluation function)

 Examples:
 roll-out analysis in Backgammon

 play a large number of games from the same position
 each game has different dice rolls

 in Scrabble:
 different draws of the remaining tiles from the bag

 in card games (e.g., GIB in Bridge)
 different distributions of the opponents' cards
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Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the 
number of wins in a series of complete games

 at each chance node select one of the options at random 
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast 
evaluation function)

 Properties:
 We need a fast algorithm for making the decisions at each 

MAX and each MIN node
 the program plays both sides, of course

 Often works well even if the program is not that strong
→ fast is possible

 Easily parallelizable
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Monte-Carlo Search
 Extreme case of Simulation search:

 play a large number of games where both players make their 
moves randomly

 average the scores of these games
 make the move that has the highest average score

 Can also be used in deterministic games
 Has been used with some success in Go

 e.g., Bruegmann 1993
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Monte-Carlo Sampling in Go

n

N

Slide by D. Silver
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Sampling the best move

 Basic Setting
 The player P is faced with a 

choice of moves m1, m2, and m3

 leading to positions P1, P2, and P3 
 the move that leads to the best

position is preferred

P

P1 P2 P3

m1
m2

m3

Preference-based: 

P2≻P1
P2≻P3

Utility-based:

u (P2)=u2

u (P3)=u3

u (P1)=u1

Learning to make this 
choice may be:

classical approaches using 
reinforcement learning

(e.g., TD-Gammon)
currrent work
in our group
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Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

     (Robbins 1952)
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Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

Multi-armed bandit

     (Robbins 1952)
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Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

Multi-armed bandit
 k actions (moves) mi

 associated with different fixed but unknown long-term expected 
rewards / utilities u

i

     (Robbins 1952)

u1=150$ u2=100$ u3=300$ u4=200$
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Learning Problem

Task: Find a strategy (policy) to maximize your gain
 Find the arm (move) with the highest 

long-term utility from observations of 
immediate utilities

 with as little regret as possible
 and then keep playing it
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Multi-Armed Bandits – Learning 
Problem

Which arm should I play next (at time t)?

u1=? u2=? u3=? u4=?

Winning w i
(t )=50$

And which arm should I play next (at time t +1)?
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Upper Confidence Bound (UCB) 
Algorithm

Problem: Exploitation vs. Exploration
 Exploitation: Pull the best arm in order to maximize your 

earnings
 Exploration: Try if other arms are more promising

UCB algorithm
 Always Play the Arm with the highest Upper-Confidence Bound

     (Auer et al. 2002)

UCB1=
∑t

w i
(t )

ni
+α√ log(N )

ni

Exploitation Term

Empirical estimate of r
i

from n
i 
observed earnings w

i
(t) 

Exploration Term

Inverse percentage
of trials of arm i

ni

∑t
wi

(t)

N=∑i
ni

total win for m
i

#games with m
i
 

total #games
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Dueling Bandits

 One can also assume that feedback is not numeric but 
preference-based

 The player pulls not one but two arms, and observes which one 
of them is better (will yield the higher long-term reward

 Long-Term Goal remains the same
 Identify the machine which promises the highest average 

reward
 Main difference is that the exact amount of winning cannot be 

estimated from the qualitative feedback

 Applications in areas where qualitative judgement is 
necessary

 search result A is better than search result B
 dish A tastes better than dish B
 move A is better than move B

     (Yue et al. 2012)
(Busa-Fekete et al. 2014)
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Dueling Bandits – Learning 
Problem

Which two arms should I play next (at time t)?

u1=? u2=? u3=? u4=?

And which two arms should I play next (at time t +1)?

m1≻m3



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

V1.0 |  J. Fürnkranz26

Relative UCB (slightly simplified)

Maintain a UCB-value for each action pair

1st Action Selection
 If exists, select an action m

i 
that dominates all others 

 If not pick a random action m
i

2nd Action Selection 
 choose the strongest opponent m

j 
for the action m

i

     (Zoghi et al. 2014)

uij=
wij
nij

+ α √ log(N )
nij

(mi∣∀ j :uij≥
1
2 )

j=argmaxkuki

nij=w ij+ w ji

w ij=∑t
wij

(t )

N=∑ij
nij

#wins of m
i
 over m

j

#games m
i
 vs. m

j

total #games
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More realistic Games

Bandits are a very simple “game”
 only one game state
 fixed stochastic reward distribution independent of adversary

More realistic games require
 Game States: Most games have different states (positions) 

described with features, and possibly different move sets
 utility will depend on the state and the features used for 

describing it
 Delayed Reward: Feedback will not be available right after the 

move played, but after a sequence of moves (often entire 
game)

 Adversary: Obtained feedback is not only for the own quality 
of play but also about the opponent’s play

 Search: Look-ahead is often more important than good utility 
estimates
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Monte-Carlo Tree Search
 Monte-Carlo Search can be integrated with conventional 

game-tree search algorithms

Key ideas:
 incrementally build up a search tree
 evaluate the leaf nodes via roll-outs
 evalaute promising moves more often than bad moves

 but give bad moves also a chance

MCTS essentially uses two policies
 Tree Policy:

 How is the tree traversed in order to 
find the best leaf to be expanded

 Rollout Policy (or Default Policy):
 How are the moves in the roll-out games selected

Policy: A strategy for
   selecting actions 
   (→ Reinforcement   
         Learning)

Policy: A strategy for
   selecting actions 
   (→ Reinforcement   
         Learning)
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Monte-Carlo Tree Search
 Monte-Carlo Search can be integrated with conventional 

game-tree search algorithms

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy. 
Progressive strategies for Monte-Carlo Tree Search.  New Mathematics and Natural Computation, 4(3), 2008.
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Applying MCTS

Slide by D. Silver
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Applying MCTS

Slide by D. Silver
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Applying MCTS

Slide by D. Silver
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Applying MCTS

Slide by D. Silver
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Selective Search in MCTS

 Typically, the tree policy 
is chosen in a way that 
prefers good alternatives 
over bad alternatives

 → the tree grows 
deeper in regions of 
good moves
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UCT Search
(Kocsis & Szepesvari, 2006)

 UCT is the best-known formulation of MCTS
 it combines a UCB-based tree policy with random roll-outs

 Selection: 
 Select the node  
 Parameter C trades off between

 Exploitation: Try to play the best possible move
 maximize value(s)

 Exploration: Try new moves to learn something new
 s gets a high value when the number of visits in the node is low

 in relation to the number of visits in the parent node n
 Sometimes:

 only use UCT if the node has been visited at least T times
 frequently used value T = 30

smax=arg maxs∈Successorsn value sC⋅ ln #visitsn
  #visits s
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UCT Search
(Kocsis & Szepesvari, 2006)

 Expansion
 add a randomly selected node to the game tree

 Simulation
 perform one iteration of a Monte-Carlo search starting from the 

selected node
 Backpropagation

 adapt value(n) for each node n in the partial game tree
 the value is just the average result of all games that pass 

through this node
 Move Choice

 make the move that has been visited most often (reliability)
 not necessarily the one with the highest value (high variance)

 UCT caused a breakthrough in Computer Go Research
 e.g., MoGo (Gelly, Wang, Munos, Teytaud, 2006)
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AlphaGo
 AlphaGo was the first Go Program to defeat a human 

champion Go player

Slide by DeepMind
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AlphaGo
 AlphaGo reached unprecedented playing strength in 

computer (and human) Go

Slide by DeepMind
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AlphaGo
 AlphaGo combines MCTS with deep learning and 

reinforcement learning from self-play
→ these will be covered later…

 which produced a large jump in playing strength

Key components of MCTS in AlphaGo:
 use a (fast) learned roll-out policy instead of random 

sampling
 use a depth-limit in MCTS where a learned evaluation 

function is used instead of real game outcomes
 similar to conventional search techniques
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Two types of learned networks
 Policy Networks  Value Networks



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

V1.0  |  J. Fürnkranz42

AlphaGo – 
The four key learning steps

 learn from expert games a fast but inaccurate roll-out policy 
          for guiding the roll-outs in an MCTS algorithm

 learn from expert games an accurate expert policy            to 
be used a prior probability in newly expanded nodes at the 
MCTS fringe

 refine the expert policy into a more accurate selection 
policy           using policy gradient search from self-play

 use self-play from the selection policy to train a utility 
function         for evaluating a given game position, which 
(at the MCTS fringe nodes) will be averaged with the final 
game evaluation using a trade-off parameter λ

pπ(a∣s)

pσ(a∣s)

pρ(a∣s)

vθ(s)
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AlphaGo – 
The four key learning steps

Slide by DeepMind
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AlphaZero
 AlphaGo Zero

 improved version that learned to play only from self-play
 beat AlphaGo 100-0 using much less training data

https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8

 AlphaZero furtherimprovement in Go, Chess, Shogi
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Games of Imperfect Information
 The players do not have access to the entire world state

 e.g., card games, when opponent's initial cards are unknown
 We can calculate a probability for each possible deal

 seems just like one big dice roll at the beginning of the game
 Intuitive Idea:

 compute the minimax value of each action in each deal
 choose the action with the highest expected value over all 

deals
 Main problem:

 too many possible deals to do this efficiently
→ take a sample of all possible deals

 Example:
 GIB (a very good Bridge program) generates 100 deals 

consistent with bidding information (this also restricts!)
 picks the move that wins the most tricks on average

https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8
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Imperfect Information - Example

Scenario a) MIN has 4♥

→ both players will make two tricks

Scenario b) MIN has 4♦

→ both players will make two tricks

MAX can play
optimally if MAX

knows MIN's cards
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Imperfect Information - Example

Scenario c) MIN has either 4♥ or 4♦ 
 but MAX does not know which!

→ MAX does not know which card to drop 
and has a 50% chance of losing the game!

 Lesson:
 The intuition that the value of an action is the average of its value in 

all actual states is wrong!
 the value of an action also depends on the agents' belief state 

 if I know that it is more probable that he has 4♥, the expected value 
should be adjusted accordingly

 may lead to information-gathering or information-disclosing actions 
(e.g., signalling bids or unpredictable (random) play)
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BA

Belief States in Minimax Search
 Minimax always assumes that the opponent plays its best 

response (it is said to be conservative)

 This may be a bad idea:

 MAX will play move B
 If there is a small chance that MIN does not play according to 

MAX's evaluation
 because the evaluation is wrong or MIN makes a mistake

    then A would be the better choice!
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Opponent Modeling

 For simple games we know optimal solutions
 Complete search through Minimax tree
 Game-Theory: Nash-Equilibrium

 Optimal solutions are not Maximal!
 Example: Roshambo (Rock/Paper/Scissors)

 Optimal Solution: Pick a random move
 clearly suboptimal against a player that always plays rock!

→ Roshambo Computer Tournament (1999, 2000)
 Opponent Modeling

 try to predict the opponent's next move
 try to predict what move the opponent predicts that your next 

move will be, ....
 For some games, opponent modeling is part of the game 

 e.g., bluffing and calling a bluff in Poker

Somewhat off-topic, but see also:
http://www.youtube.com/watch?v=3nxjjztQKtY
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Perspective on Games: Pro

“Saying Deep Blue doesn’t really think 
about chess is like saying an airplane 
doesn't really fly because it doesn't flap 
its wings”

Drew McDermott

© Jonathan Schaeffer

http://www.youtube.com/watch?v=3nxjjztQKtY
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Perspective on Games: Con

“Chess is the Drosophila of artificial intelligence. 
However, computer chess has developed much 
as genetics might have if the geneticists had 
concentrated their efforts starting in 1910 on 
breeding racing Drosophila. We would have 
some science, but mainly we would have very 
fast fruit flies.”

John McCarthy

© Jonathan Schaeffer
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Additional Reading
 Jonathan Schaeffer. The Games Computers (and People) Play, 

Advances in Computers 50 , Marvin Zelkowitz (ed.) Academic Press, 
pp. 189-266, 2000. 

 excellent survey paper

 Jonathan Schaeffer and Jaap van den Herik (eds.) 
Chips Challenging Champions: Games, Computers and 
Artificial Intelligence, North-Holland 2002.

 very good collection of papers

 Jonathan Schaeffer: One Jump Ahead:
Challenging Human Supremacy in Checkers, 
Springer 1998, revised 2009.

 non-technical first-hand account on the 
Chinook project

 Feng-Hsiung Hsu: Behind Deep Blue: Building the Computer 
That Defeated the World Chess Champion, Princeton 2002

 non-technical first-hand account on Deep Blue

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps
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Additional Reading AlphaGo
 Mastering Chess and Shogi by Self-Play with a General Reinforcement 

Learning Algorithm. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, 
M., A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. 
Simonyan, D. Hassabis. arXiv 2017

 Mastering the Game of Go without Human Knowledge. D. Silver, J. 
Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. 
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, 
G. van den Driessche, T. Graepel & D. Hassabis. Nature 2017.

 Mastering the Game of Go with Deep Neural Networks 
and Tree Search. D. Silver, A. Huang, C. Maddison, 
A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, 
I. Antonoglou, V. Panneershelvam, M. Lanctot, 
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, 
T. Graepel, D. Hassabis. Nature 2016.

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps
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