
Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz1

Outline
 Games of Chance

 Expectiminimax
 Monte-Carlo Evaluation

 Simulation Search
 Monte-Carlo search
 Bandits
 UCT search

 Games of Imperfect Information

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

Additional slides on MCTS in Go
by David Silver and DeepMind

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz2

Games of Chance
 Many games combine skill and chance

 i.e., they contain a random element like the roll of dice
 This brings us closer to real-life

 in real-life we often encounter unforeseen situations

 Examples
 Backgammon, Monopoly, ...

 Problem
 Player MAX cannot directly maximize his gain because he

does not know what MIN's legal actions will be
 MIN makes a roll of the dice after MAX has completed his ply

 and vice versa (MIN cannot minimize)
→ Minimax or Alpha-Beta no longer applicable

→ Standard game trees are extended with chance nodes

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz3

Game-Tree with Chance Nodes

Chance nodes for
the roll of two dice

associated probability
outcome of the dice roll

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz4

Optimal Strategy with Chance Nodes
 MAX wants to play the move that maximizes his chances of

winning
 Problem:

 the exact outcome of a MAX-node cannot be computed
because each MAX-node is followed by a chance node

 analogously for MIN-nodes
 Expected Minimax value

 compute the expected value of the outcome at each chance
node

E XPECTIMINIMAX (n)={
UTILITY(n) if n is a terminal state
max s∈SUCCESSORS (n) E XPECTIMINIMAX if n is a MAX node

min s∈SUCCESSORS (n) E XPECTIMINIMAX if n is a MIN node

∑
s∈SUCCESSORS (n)

P (s)⋅E XPECTIMINIMAX if n is a chance node

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz5

Example

coin tosses

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz6

Example

0.5⋅20.5⋅4=3 −1=0.5⋅00.5⋅−2

3

coin tosses

EXPECTIMINIMAX gives perfect play, like MINIMAX

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz7

Re-Scaling of Evaluation Functions
 Minimax:

 no problem, as long as values are ordered in the same way
(monotonic transformations)

MAX plays the same move in both cases

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz8

Re-Scaling of Evaluation Functions
 Expectiminimax:

 Monotonic transformations may change the result

 only positive linear transformations preserve behavior
→ EVAL should be proportional to the expected outcome!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz9

Nondeterministic Games in Practice
 Complexity

 In addition to the branching factor, the number of different
outcomes c adds at each chance node to the complexity

 Total complexity is O(bmcm)
→ deep look-ahead not feasible

 prob. of reaching a given node shrinks with increasing depth
 forming plans is not that important

→ deep look-ahead is also not that valuable
 Example:

 TD-Gammon uses only 2-ply look-ahead + very good EVAL

 Alpha-Beta Pruning is also possible (but less effective)
 at MIN and MAX nodes as usual
 at chance nodes, expected values can be bounded before all

nodes have been searched if the value range is bounded

c = 2 for coin flip
c = 6 for rolling one die
c = 21 for rolling two dice

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz10

Approximating Expected Values
 If exact probabilities for the outcomes at the chance nodes

are not known, values can be sampled
 we replace the computation of the expected value with the

average outcome over a (large) number of N random games
starting in the current node n

 the higher N, the better the approximation

Roll-outs
 Technique that has been used in Backgammon for

estimating the outcome of a position
 Play the position many times, each time with a different

(random) dice roll
 used to be done by hand, is now done by compute

∑
s∈SUCCESSORS (n)

P (s)⋅EXPECTIMINIMAX(s)≈ 1
N ∑

1..N

Utility (RandomGame (n))

Monte-Carlo
Sampling

Monte-Carlo
Sampling

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz11

Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation
function

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz12

Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

 alternatively, we can limit the breadth of the search tree
 sample some lines to the full depth

Picture taken from (Schaeffer 2000)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz13

Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the
number of wins in a series of complete games

 at each chance node select one of the options at random
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast
evaluation function)

 Examples:
 roll-out analysis in Backgammon

 play a large number of games from the same position
 each game has different dice rolls

 in Scrabble:
 different draws of the remaining tiles from the bag

 in card games (e.g., GIB in Bridge)
 different distributions of the opponents' cards

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz14

Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the
number of wins in a series of complete games

 at each chance node select one of the options at random
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast
evaluation function)

 Properties:
 We need a fast algorithm for making the decisions at each

MAX and each MIN node
 the program plays both sides, of course

 Often works well even if the program is not that strong
→ fast is possible

 Easily parallelizable

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz15

Monte-Carlo Search
 Extreme case of Simulation search:

 play a large number of games where both players make their
moves randomly

 average the scores of these games
 make the move that has the highest average score

 Can also be used in deterministic games
 Has been used with some success in Go

 e.g., Bruegmann 1993

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz16

Monte-Carlo Sampling in Go

n

N

Slide by D. Silver

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz17

Sampling the best move

 Basic Setting
 The player P is faced with a

choice of moves m1, m2, and m3

 leading to positions P1, P2, and P3
 the move that leads to the best

position is preferred

P

P1 P2 P3

m1
m2

m3

Preference-based:

P2≻P1
P2≻P3

Utility-based:

u (P2)=u2

u (P3)=u3

u (P1)=u1

Learning to make this
choice may be:

classical approaches using
reinforcement learning

(e.g., TD-Gammon)
currrent work
in our group

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz18

Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

 (Robbins 1952)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz19

Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

Multi-armed bandit

 (Robbins 1952)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz20

Multi-Armed Bandit Problems

One-armed bandit:
 One action (pull the lever)
 Fixed long-term expected reward (or loss)

Multi-armed bandit
 k actions (moves) mi

 associated with different fixed but unknown long-term expected
rewards / utilities u

i

 (Robbins 1952)

u1=150$ u2=100$ u3=300$ u4=200$

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz21

Learning Problem

Task: Find a strategy (policy) to maximize your gain
 Find the arm (move) with the highest

long-term utility from observations of
immediate utilities

 with as little regret as possible
 and then keep playing it

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz22

Multi-Armed Bandits – Learning
Problem

Which arm should I play next (at time t)?

u1=? u2=? u3=? u4=?

Winning w i
(t)=50$

And which arm should I play next (at time t +1)?

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz23

Upper Confidence Bound (UCB)
Algorithm

Problem: Exploitation vs. Exploration
 Exploitation: Pull the best arm in order to maximize your

earnings
 Exploration: Try if other arms are more promising

UCB algorithm
 Always Play the Arm with the highest Upper-Confidence Bound

 (Auer et al. 2002)

UCB1=
∑t

w i
(t)

ni
+α√ log(N)

ni

Exploitation Term

Empirical estimate of r
i

from n
i
observed earnings w

i
(t)

Exploration Term

Inverse percentage
of trials of arm i

ni

∑t
wi

(t)

N=∑i
ni

total win for m
i

#games with m
i

total #games

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz24

Dueling Bandits

 One can also assume that feedback is not numeric but
preference-based

 The player pulls not one but two arms, and observes which one
of them is better (will yield the higher long-term reward

 Long-Term Goal remains the same
 Identify the machine which promises the highest average

reward
 Main difference is that the exact amount of winning cannot be

estimated from the qualitative feedback

 Applications in areas where qualitative judgement is
necessary

 search result A is better than search result B
 dish A tastes better than dish B
 move A is better than move B

 (Yue et al. 2012)
(Busa-Fekete et al. 2014)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz25

Dueling Bandits – Learning
Problem

Which two arms should I play next (at time t)?

u1=? u2=? u3=? u4=?

And which two arms should I play next (at time t +1)?

m1≻m3

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz26

Relative UCB (slightly simplified)

Maintain a UCB-value for each action pair

1st Action Selection
 If exists, select an action m

i
that dominates all others

 If not pick a random action m
i

2nd Action Selection
 choose the strongest opponent m

j
for the action m

i

 (Zoghi et al. 2014)

uij=
wij
nij

+ α √ log(N)
nij

(mi∣∀ j :uij≥
1
2)

j=argmaxkuki

nij=w ij+ w ji

w ij=∑t
wij

(t)

N=∑ij
nij

#wins of m
i
 over m

j

#games m
i
 vs. m

j

total #games

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz27

More realistic Games

Bandits are a very simple “game”
 only one game state
 fixed stochastic reward distribution independent of adversary

More realistic games require
 Game States: Most games have different states (positions)

described with features, and possibly different move sets
 utility will depend on the state and the features used for

describing it
 Delayed Reward: Feedback will not be available right after the

move played, but after a sequence of moves (often entire
game)

 Adversary: Obtained feedback is not only for the own quality
of play but also about the opponent’s play

 Search: Look-ahead is often more important than good utility
estimates

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz29

Monte-Carlo Tree Search
 Monte-Carlo Search can be integrated with conventional

game-tree search algorithms

Key ideas:
 incrementally build up a search tree
 evaluate the leaf nodes via roll-outs
 evalaute promising moves more often than bad moves

 but give bad moves also a chance

MCTS essentially uses two policies
 Tree Policy:

 How is the tree traversed in order to
find the best leaf to be expanded

 Rollout Policy (or Default Policy):
 How are the moves in the roll-out games selected

Policy: A strategy for
 selecting actions
 (→ Reinforcement
 Learning)

Policy: A strategy for
 selecting actions
 (→ Reinforcement
 Learning)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz30

Monte-Carlo Tree Search
 Monte-Carlo Search can be integrated with conventional

game-tree search algorithms

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy.
Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation, 4(3), 2008.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz31

Applying MCTS

Slide by D. Silver

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz32

Applying MCTS

Slide by D. Silver

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz33

Applying MCTS

Slide by D. Silver

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz34

Applying MCTS

Slide by D. Silver

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz35

Selective Search in MCTS

 Typically, the tree policy
is chosen in a way that
prefers good alternatives
over bad alternatives

 → the tree grows
deeper in regions of
good moves

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz36

UCT Search
(Kocsis & Szepesvari, 2006)

 UCT is the best-known formulation of MCTS
 it combines a UCB-based tree policy with random roll-outs

 Selection:
 Select the node
 Parameter C trades off between

 Exploitation: Try to play the best possible move
 maximize value(s)

 Exploration: Try new moves to learn something new
 s gets a high value when the number of visits in the node is low

 in relation to the number of visits in the parent node n
 Sometimes:

 only use UCT if the node has been visited at least T times
 frequently used value T = 30

smax=arg maxs∈Successorsn value sC⋅ ln #visitsn
 #visits s

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz37

UCT Search
(Kocsis & Szepesvari, 2006)

 Expansion
 add a randomly selected node to the game tree

 Simulation
 perform one iteration of a Monte-Carlo search starting from the

selected node
 Backpropagation

 adapt value(n) for each node n in the partial game tree
 the value is just the average result of all games that pass

through this node
 Move Choice

 make the move that has been visited most often (reliability)
 not necessarily the one with the highest value (high variance)

 UCT caused a breakthrough in Computer Go Research
 e.g., MoGo (Gelly, Wang, Munos, Teytaud, 2006)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz38

AlphaGo
 AlphaGo was the first Go Program to defeat a human

champion Go player

Slide by DeepMind

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz39

AlphaGo
 AlphaGo reached unprecedented playing strength in

computer (and human) Go

Slide by DeepMind

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz40

AlphaGo
 AlphaGo combines MCTS with deep learning and

reinforcement learning from self-play
→ these will be covered later…

 which produced a large jump in playing strength

Key components of MCTS in AlphaGo:
 use a (fast) learned roll-out policy instead of random

sampling
 use a depth-limit in MCTS where a learned evaluation

function is used instead of real game outcomes
 similar to conventional search techniques

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz41

Two types of learned networks
 Policy Networks Value Networks

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz42

AlphaGo –
The four key learning steps

 learn from expert games a fast but inaccurate roll-out policy
 for guiding the roll-outs in an MCTS algorithm

 learn from expert games an accurate expert policy to
be used a prior probability in newly expanded nodes at the
MCTS fringe

 refine the expert policy into a more accurate selection
policy using policy gradient search from self-play

 use self-play from the selection policy to train a utility
function for evaluating a given game position, which
(at the MCTS fringe nodes) will be averaged with the final
game evaluation using a trade-off parameter λ

pπ(a∣s)

pσ(a∣s)

pρ(a∣s)

vθ(s)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz43

AlphaGo –
The four key learning steps

Slide by DeepMind

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz44

AlphaZero
 AlphaGo Zero

 improved version that learned to play only from self-play
 beat AlphaGo 100-0 using much less training data

https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8

 AlphaZero furtherimprovement in Go, Chess, Shogi

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz45

Games of Imperfect Information
 The players do not have access to the entire world state

 e.g., card games, when opponent's initial cards are unknown
 We can calculate a probability for each possible deal

 seems just like one big dice roll at the beginning of the game
 Intuitive Idea:

 compute the minimax value of each action in each deal
 choose the action with the highest expected value over all

deals
 Main problem:

 too many possible deals to do this efficiently
→ take a sample of all possible deals

 Example:
 GIB (a very good Bridge program) generates 100 deals

consistent with bidding information (this also restricts!)
 picks the move that wins the most tricks on average

https://www.youtube.com/watch?time_continue=36&v=tXlM99xPQC8

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz46

Imperfect Information - Example

Scenario a) MIN has 4♥

→ both players will make two tricks

Scenario b) MIN has 4♦

→ both players will make two tricks

MAX can play
optimally if MAX

knows MIN's cards

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz47

Imperfect Information - Example

Scenario c) MIN has either 4♥ or 4♦
 but MAX does not know which!

→ MAX does not know which card to drop
and has a 50% chance of losing the game!

 Lesson:
 The intuition that the value of an action is the average of its value in

all actual states is wrong!
 the value of an action also depends on the agents' belief state

 if I know that it is more probable that he has 4♥, the expected value
should be adjusted accordingly

 may lead to information-gathering or information-disclosing actions
(e.g., signalling bids or unpredictable (random) play)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz48

BA

Belief States in Minimax Search
 Minimax always assumes that the opponent plays its best

response (it is said to be conservative)

 This may be a bad idea:

 MAX will play move B
 If there is a small chance that MIN does not play according to

MAX's evaluation
 because the evaluation is wrong or MIN makes a mistake

 then A would be the better choice!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz49

Opponent Modeling

 For simple games we know optimal solutions
 Complete search through Minimax tree
 Game-Theory: Nash-Equilibrium

 Optimal solutions are not Maximal!
 Example: Roshambo (Rock/Paper/Scissors)

 Optimal Solution: Pick a random move
 clearly suboptimal against a player that always plays rock!

→ Roshambo Computer Tournament (1999, 2000)
 Opponent Modeling

 try to predict the opponent's next move
 try to predict what move the opponent predicts that your next

move will be,
 For some games, opponent modeling is part of the game

 e.g., bluffing and calling a bluff in Poker

Somewhat off-topic, but see also:
http://www.youtube.com/watch?v=3nxjjztQKtY

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz50

Perspective on Games: Pro

“Saying Deep Blue doesn’t really think
about chess is like saying an airplane
doesn't really fly because it doesn't flap
its wings”

Drew McDermott

© Jonathan Schaeffer

http://www.youtube.com/watch?v=3nxjjztQKtY

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz51

Perspective on Games: Con

“Chess is the Drosophila of artificial intelligence.
However, computer chess has developed much
as genetics might have if the geneticists had
concentrated their efforts starting in 1910 on
breeding racing Drosophila. We would have
some science, but mainly we would have very
fast fruit flies.”

John McCarthy

© Jonathan Schaeffer

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz52

Additional Reading
 Jonathan Schaeffer. The Games Computers (and People) Play,

Advances in Computers 50 , Marvin Zelkowitz (ed.) Academic Press,
pp. 189-266, 2000.

 excellent survey paper

 Jonathan Schaeffer and Jaap van den Herik (eds.)
Chips Challenging Champions: Games, Computers and
Artificial Intelligence, North-Holland 2002.

 very good collection of papers

 Jonathan Schaeffer: One Jump Ahead:
Challenging Human Supremacy in Checkers,
Springer 1998, revised 2009.

 non-technical first-hand account on the
Chinook project

 Feng-Hsiung Hsu: Behind Deep Blue: Building the Computer
That Defeated the World Chess Champion, Princeton 2002

 non-technical first-hand account on Deep Blue

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz53

Additional Reading AlphaGo
 Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M., A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K.
Simonyan, D. Hassabis. arXiv 2017

 Mastering the Game of Go without Human Knowledge. D. Silver, J.
Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel & D. Hassabis. Nature 2017.

 Mastering the Game of Go with Deep Neural Networks
and Tree Search. D. Silver, A. Huang, C. Maddison,
A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, D. Hassabis. Nature 2016.

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Gegner Modellieren
	Perspective on Games: Pro
	Perspective on Games: Con
	Folie 52
	Folie 53

