
 Informed Search 1

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Outline
 Best-first search

 Greedy best-first search
 A* search
 Heuristics
 Admissible Heuristics
 Graph Search
 Consistent Heuristics

 Local search algorithms
 Hill-climbing search
 Beam search
 Simulated annealing search
 Genetic algorithms

 Constraint Satisfaction Problems Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

 Informed Search 2

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Motivation
 Uninformed search algorithms are too inefficient

 they expand far too many unpromising paths
 Example:

 8-puzzle

 Average solution depth = 22
 Breadth-first search to depth 22 has to expand about 3.1 x 1010

nodes

→ try to be more clever with what nodes to expand

 Informed Search 3

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Best-First Search
 Recall

 Search strategies are characterized by the order in which they
expand the nodes of the search tree

 Uninformed tree-search algorithms sort the nodes by problem-
independent methods (e.g., recency)

 Basic Idea of Best-First Search
 use a heuristic evaluation function f (n) for each node

 estimate of the "desirability" of the node's state
 expand most desirable unexpanded node

 Implementation
 use Tree Search algorithm
 order the nodes in fringe in decreasing order of desirability

 Algorithms
 Greedy best-first search
 A* search

 Informed Search 4

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Heuristic
 Greek "heurisko" (εὑρίσκω) → "I find"

 cf. also „Eureka!“

 informally denotes a „rule of thumb“
 i.e., knowledge that may be helpful in solving a problem
 note that heuristics may also go wrong!

 In tree-search algorithms, a heuristic denotes a function that
estimates the remaining costs until the goal is reached

 Example:
 straight-line distances may be a good approximation for the

true distances on a map of Romania
 and are easy to obtain (ruler on the map)

 but cannot be obtained directly from the distances on the map

 Informed Search 5

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Romania Example:
Straight-line Distances

176

 Informed Search 6

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Romania Example:
Straight-line Distances

176

366

253

 Informed Search 7

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Greedy Best-First Search
 Evaluation function f (n) = h(n) (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to
be closest to goal

 according to evaluation function
 Example:

 Informed Search 8

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Greedy Best-First Search
 Evaluation function f (n) = h(n) (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to
be closest to goal

 according to evaluation function
 Example:

 Informed Search 9

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Greedy Best-First Search
 Evaluation function f (n) = h(n) (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to
be closest to goal

 according to evaluation function
 Example:

 Informed Search 10

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Greedy Best-First Search
 Evaluation function f (n) = h(n) (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to
be closest to goal

 according to evaluation function
 Example:

 Informed Search 11

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Properties of
Greedy Best-First Search

 Completeness
 No – can get stuck in loops
 Example: We want to get from Iasi to Fagaras

 Iasi → Neamt → Iasi → Neamt → ...

Neamt is closer
to Fagaras than
Vaslui

Note:
These two are
different search
nodes referring

to the same state!

 Informed Search 12

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Properties of
Greedy Best-First Search

 Completeness
 No – can get stuck in loops
 can be fixed with careful checking for duplicate states
→ complete in finite state space with repeated-state checking

 Time Complexity
 O(bm), like depth-first search
 but a good heuristic can give dramatic improvement

 optimal case: best choice in each step → only d steps
 a good heuristic improves chances for encountering optimal case

 Space Complexity
 has to keep all nodes in memory → same as time complexity

 Optimality
 No
 Example:

 solution Arad → Sibiu → Fagaras → Bucharest is not optimal

 Informed Search 13

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search
 Best-known form of best-first search

 Basic idea:
 avoid expanding paths that are already expensive
→ evaluate complete path cost not only remaining costs

 Evaluation function:
 g(n) = cost so far to reach node n
 h(n) = estimated cost to get from n to goal
 f (n) = estimated cost of path to goal via n

f n=g nhn

 Informed Search 14

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Beispiel

g (n) h(n)

 Informed Search 15

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

 Informed Search 16

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

 Informed Search 17

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

 Informed Search 18

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

 Informed Search 19

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

Note that Pitesti will be expanded even
though Bucharest is already in the fringe!
This is good, because we may still find a

shorter way to Budapest.
Greedy Search would not do that.

 Informed Search 20

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* Search Example

 Informed Search 21

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Properties of A*

 Completeness
 Yes
 unless there are infinitely many nodes with

 Time Complexity
 it can be shown that the number of nodes grows exponentially

unless the error of the heuristic h(n) is bounded by the
logarithm of the value of the actual path cost h*(n), i.e.

 Space Complexity
 keeps all nodes in memory
 typically the main problem with A*

 Optimality
 ???
→ following pages

f n ≤ f G 

∣h n−h*
n∣≤ O log h*

n

 Informed Search 22

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Admissible Heuristics

A heuristic is admissible if it never overestimates the
cost to reach the goal

 Formally:
 if h*(n) are the true cost from n to goal

 Example:
 Straight-Line Distances hSLD are an admissible heuristics for

actual road distances h*

 Note:
 must also hold, so that h(goal) = 0

h n≤h*
n

h n≥0

 Informed Search 23

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

 If h(n) is admissible, A* using TREE-SEARCH is optimal. If h(n) is admissible, A* using TREE-SEARCH is optimal.

Theorem

Suppose some
suboptimal goal G2

has been generated
and is in the fringe.

Let n be an unexpanded
node in the fringe such
that n is on a shortest
path to an optimal goal G
with path cost .

Proof:

g G 2C*

because G2 suboptimal
f n≤ C*

f G2=g G2

because hG2=0
(holds for all goal nodes)

f n=g nhn

C*
=g (n)+h*

(n)

hn≤h*n
because h admissible G2 will never be expanded,

and G will be returned

 f G2

C*
=g (G)

 Informed Search 24

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

A* and Graph Search
 So far we only had tree search where each node in the

search tree represents one possible path to the associated
domain state

 e.g., one can go directly from Arad to Sibiu or via Oradea
 Problem:

 In some cases the path that is detected later may be the better
path

 so that a previously found solution starting from Sibiu has to
re-investigated with the new, cheaper path

 Two solutions
 Add ability to detect repeated states

 → graph search
 general solution that also works for BFS, DFS, ...

 Or ensure that the cheaper path is always taken first
 → consistent heuristics
 specific solution for A*

 Informed Search 25

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Repeated States

 Failure to detect repeated states can turn a linear problem
into an exponential one!

Ribbon Example
 two connections from each state to the next
 d states but state space is 2d

 Informed Search 26

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Repeated States

 Failure to detect repeated states can turn a linear problem
into an exponential one!

(more realistic) Grid Example

 each square on grid has
4 neighboring states in

 thus, game tree w/o repetitions
has 4d nodes

 but only about 2d 2 different
states are reachable in d steps

 Informed Search 27

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Graph Search

 remembers the states that have been visited in a list closed
 Note: the fringe list is often also called the open list

 Example:
 Dijkstra's algorithm is the graph-search variant of uniform cost search

 Informed Search 28

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Consistent Heuristics
 Graph-Search discards new paths to repeated state even

though the new path may be cheaper
→ Previous proof breaks down

 2 Solutions
1.Add extra bookkeeping to remove the more expensive path
2.Ensure that optimal path to any repeated state is always

followed first

 Requirement for Solution 2:

A heuristic is consistent if for every node n
and every successor n' generated by any
action a it holds that

h n≤cn , a , n ' h n ' 

 Informed Search 29

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Lemma 1

 Note:
 not every admissible heuristic is consistent
 but most of them are

 it is hard to find non-consistent admissible heuristics

 Every consistent heuristic is admissible. Every consistent heuristic is admissible.

Proof Sketch by induction

h n≤cn , a ,G h G =h*
n

Base Case: for all nodes n, in which an action a leads to goal G

By induction on the path length from goal, this argument
can be extended to all nodes, so that eventually

∀n : h n≤h*
n

 Informed Search 30

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Lemma 2

If h(n) is consistent, then the values of
f (n) along any path are non-decreasing.

If h(n) is consistent, then the values of
f (n) along any path are non-decreasing.

Proof:
f n  = g nh n ≤ g ncn , a , n ' hn '  =

g nc n , a , n ' h n'  = g n' h n'  = f n' 

 Informed Search 31

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Theorem

If h(n) is consistent, A* is optimal.If h(n) is consistent, A* is optimal.

A* expands nodes in order of increasing f value
Proof:

Contour labelled fi

contains all nodes
with f n f i

Contours expand gradually
Cannot expand fi+1 until fi is finished.

Eventually
 A* expands all nodes with
 A* expands some nodes with
 A* expands no nodes with

Eventually
 A* expands all nodes with
 A* expands some nodes with
 A* expands no nodes with

f n  C*

f n = C*

f n   C*

How would
such contours

look like for
uniform-cost

search?

 Informed Search 32

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

 Some solutions to A* space problems
(maintaining completeness and optimality)

 Iterative-deepening A* (IDA*)
 like iterative deepening
 cutoff information is the f-cost (g + h) instead of depth

 Recursive best-first search (RBFS)
 recursive algorithm that attempts to mimic

standard best-first search with linear space.
 keeps track of the f-value of the best alternative

path available from any ancestor of current node
 heuristic evaluations are updated with results of successors

 (Simple) Memory-bounded A* ((S)MA*)
 drop the worst leaf node when memory is full
 its value will be updated to its parent
 May need to be re-searched later

Memory-Bounded Heuristic Search

 Informed Search 33

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Admissible Heuristics: 8-Puzzle

 hMIS(n) = number of misplaced tiles
 admissible because each misplaced tile must be moved at

least once
 hMAN(n) = total Manhattan distance

 i.e., no. of squares from desired location of each tile
 admissible because this is the minimum distance of each tile to

its target square
 Example:

hMIS start =8

hMAN start =18

h*
 start =26

 Informed Search 34

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Effective Branching Factor
 Evaluation Measure for a search algorithm:

 assume we searched N nodes and found solution in depth d
 the effective branching factor b* is the branching factor of a

uniform tree of depth d with N+1 nodes, i.e.

 Measure is fairly constant for different instances of
sufficiently hard problems

 Can thus provide a good guide to the heuristic’s overall
usefulness.

 A good value of b* is 1

1N = 1b*
b*


2
...b*


d

 Informed Search 35

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Efficiency of A* Search
 Comparison of number of nodes searched by A* and

Iterative Deepening Search (IDS)
 average of 100 different 8-puzzles with different solutions
 Note: heuristic is always better than h2=hMAN h1=hMIS

 Informed Search 36

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Dominance

 If h1 and h2 are admissible, h2 dominates h1 if
 If h1 and h2 are admissible, h2 dominates h1 if ∀n : h2n≥h1 n

 if h2 dominates h1 it will perform better because it will always be

closer to the optimal heuristic h*

 Example:
 hMAN dominates hMIS because if a tile is misplaced, its

Manhattan distance is ≥ 1

Theorem: (Combining admissible heuristics)

 If h1 and h2 are two admissible heuristics than

 is also admissible and dominates h1 and h2

h n=max h1n , h2n

 Informed Search 37

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Relaxed Problems
 A problem with fewer restrictions on the actions is called a

relaxed problem
 The cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem

 Examples:
 If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then hMIS gives the shortest solution
 If the rules are relaxed so that a tile can move to any adjacent

square, then hMAN gives the shortest solution

 Thus, looking for relaxed problems is a good strategy for
inventing admissible heuristics.

 Informed Search 38

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Pattern Databases
 Admissible heuristics can also be derived from the solution

cost of a subproblem of a given problem.
 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution (length) for every
possible subproblem instance

 constructed once for all by searching backwards from the goal
and recording every possible pattern

 Example:
 store exact solution costs for solving 4 tiles of the 8-puzzle
 sample pattern:

 Informed Search 39

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Learning of Heuristics
 Another way to find a heuristic is through learning from

experience
 Experience:

 states encountered when solving lots of 8-puzzles
 states are encoded using features, so that similarities between

states can be recognized
 Features:

 for the 8-puzzle, features could, e.g. be
 the number of misplaced tiles
 number of pairs of adjacent tiles that are also adjacent in goal
 ...

 An inductive learning algorithm can then be used to predict
costs for other states that arise during search.

 No guarantee that the learned function is admissible!

 Informed Search 40

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Learning of Heuristics
 Another way to find a heuristic is through learning from

experience
 Experience:

 states encountered when solving lots of 8-puzzles
 states are encoded using features, so that similarities between

states can be recognized
 Features:

 for the 8-puzzle, features could, e.g. be
 the number of misplaced tiles
 number of pairs of adjacent tiles that are also adjacent in goal
 ...

 An inductive learning algorithm can then be used to predict
costs for other states that arise during search.

 No guarantee that the learned function is admissible!

 Informed Search 41

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.5 © J. Fürnkranz

Summary
 Heuristic functions estimate the costs of shortest paths
 Good heuristics can dramatically reduce search costs
 Greedy best-first search expands node with lowest estimated

remaining cost
 incomplete and not always optimal

 A* search minimizes the path costs so far plus the estimated
remaining cost

 complete and optimal, also optimally efficient:
 no other search algorithm can be more efficient, because they all

have search the nodes with
 otherwise it could miss a solution

 Admissible search heuristics can be derived from exact
solutions of reduced problems

 problems with less constraints
 subproblems of the original problem

f nC*

	Outline
	Folie 2
	Best-first search
	Folie 4
	Romania with step costs in km
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Greedy best-first search
	Properties of greedy best-first search
	Folie 12
	A* search
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Properties of A*
	Folie 22
	Folie 23
	Folie 24
	Repeated states
	Folie 26
	Graph search
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Dominance
	Relaxed problems
	Folie 38
	Folie 39
	Folie 40
	Folie 41

