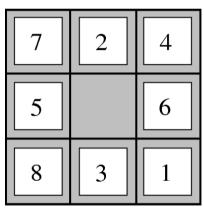
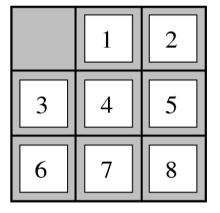

Outline

Best-first search


- Greedy best-first search
- A* search
- Heuristics
- Admissible Heuristics
- Graph Search
- Consistent Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems



Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Motivation

- Uninformed search algorithms are too inefficient
 - they expand far too many unpromising paths
- Example:
 - 8-puzzle

Start State

Goal State

- Average solution depth = 22
- Breadth-first search to depth 22 has to expand about 3.1 x 10¹⁰ nodes

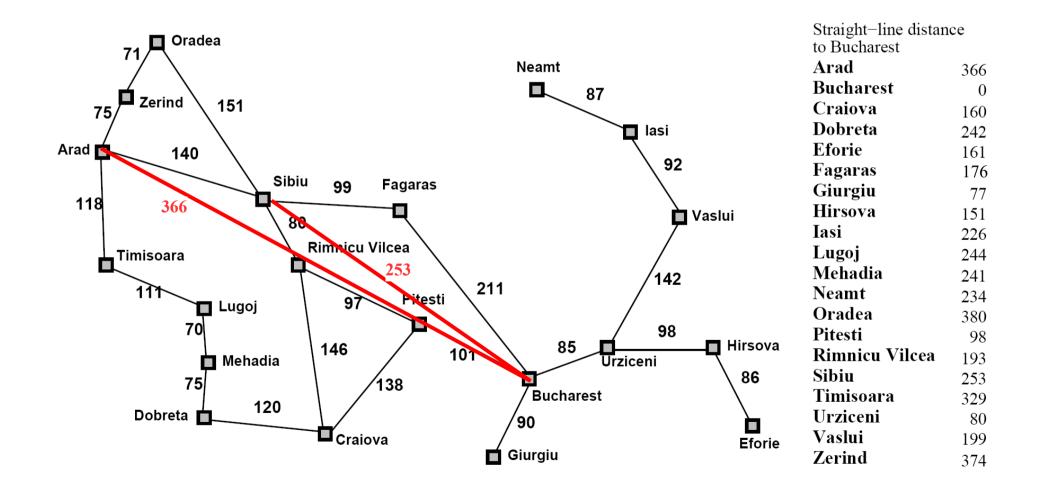
 \rightarrow try to be more clever with what nodes to expand

Best-First Search

Recall

- Search strategies are characterized by the order in which they expand the nodes of the search tree
- Uninformed tree-search algorithms sort the nodes by problemindependent methods (e.g., recency)
- Basic Idea of Best-First Search
 - use a heuristic evaluation function f(n) for each node
 - estimate of the "desirability" of the node's state
 - expand most desirable unexpanded node
- Implementation
 - use Tree Search algorithm
 - order the nodes in fringe in decreasing order of desirability
- Algorithms
 - Greedy best-first search
 - A* search

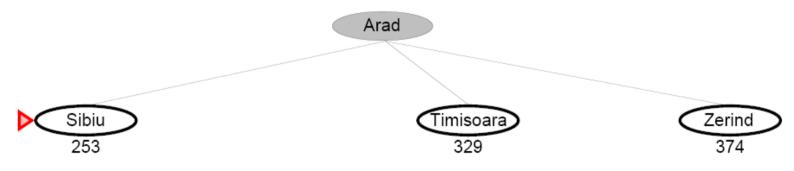
Heuristic

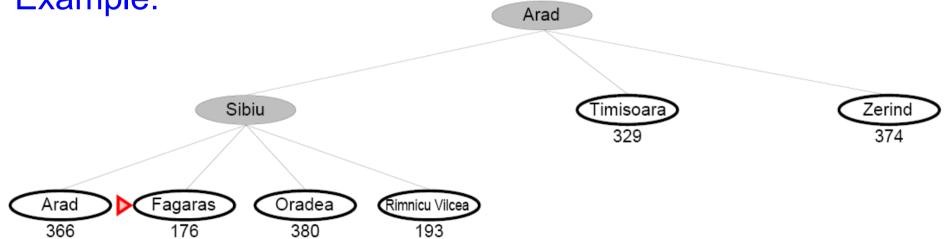

- Greek "heurisko" (εὑρίσκω) → "I find"
 - cf. also "Eureka!"
- informally denotes a "rule of thumb"
 - i.e., knowledge that may be helpful in solving a problem
 - note that heuristics may also go wrong!
- In tree-search algorithms, a heuristic denotes a function that estimates the remaining costs until the goal is reached
- Example:
 - straight-line distances may be a good approximation for the true distances on a map of Romania
 - and are easy to obtain (ruler on the map)
 - but cannot be obtained directly from the distances on the map

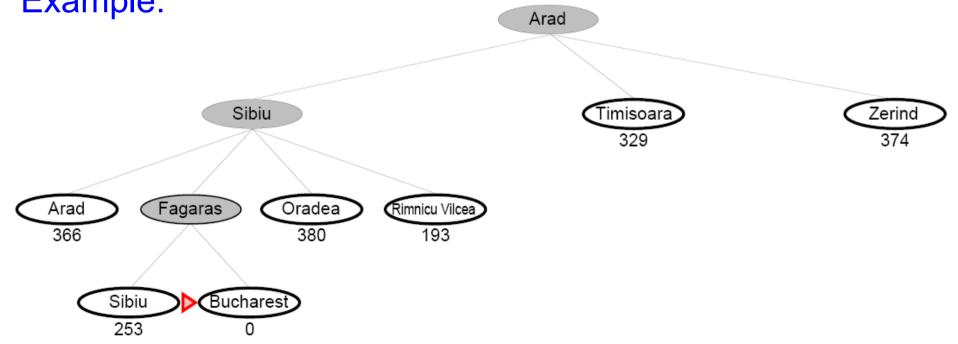
Romania Example: Straight-line Distances

0 ⁴ Rožňava 88 60 Archálovce Uzhgorod A Metgorje 55 Tschernovtsy 25 11 Kampol Krivoja 11 Kampol Krivoja	
Sator Satorijacijnevi za drukačnewo Bere Vinkačnewo Jasinja Alexandrov Chust Jasinja Rachov Putila Potenti Dorabel Satorijacije za drukačne v Vinkačne v V	S te
Bükk sitra Eger 58 Satu Satu Satu Bert Viseu- de Sus Bata Suceava	A
Tiszafűred Debrecen Tágnad Tág	С В
tool and too	D F
Starvas Béké sosabala	F
Grosháza Hödprezővásárhély Cris J. P. Peru Groza Abac 38 43 lemut 53 Odomei Status 20 Odomei Status 20 Odome	E
Szeged 2 Abrud Abrud 28 Blai Medias Rupea 70 Frgu Secures Panciu 38 Bead Plot Sabes Agnita S. Ghedrohed 18 Secures Panciu 38 Bead Bolgred	I: I
Senta Constanti	N N
Zrenjanim Dets. 17 Peneseni 1 Cimpulung Sinala 27 Caran- Cimpului 4 II Calimanesti 24 Pereseni 54 Pereseni 24 Pere	\mathbf{C}
Periez BAVYSACC Anima Mehadia Bar Pitebula (Bar Pitebula Control Vilce) Bar Pitebula (Bar Pitebula (Bar Pitebula (Bar Pitebula (Bar Pitebula (Bar Pitebula (P F
55 Požarevač ar Svintar Smedinovo Kučevo kladova 16 27 Filasi Kučevo kladova 16 27 Filasi	S T
Margenvier Lazarevet 2377 Zambica Nepolici Calate Margen 237 Zambica Nepolici Calate Margen 207 Nepolici	l v
Kregujevac Svetozarevo Zaječar - Kula Cačaki Belefu Cačaki Belefu Corabia Magurgle Zinciju Hitrandria Ruse Svetozarevo Sve	v Z
Siller Strister Stris	

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

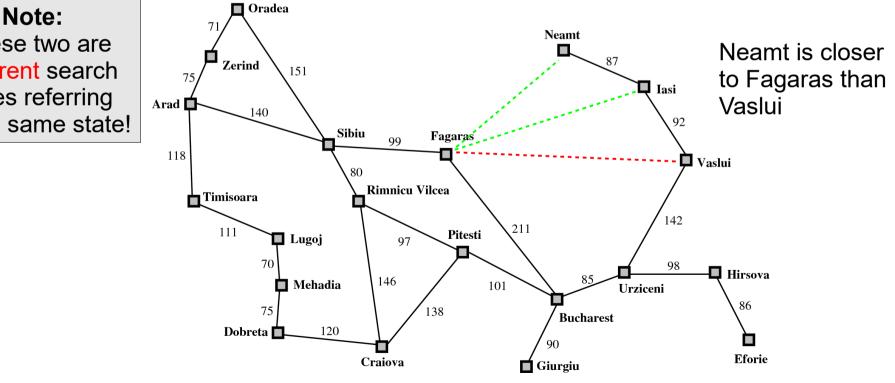

Romania Example: Straight-line Distances


- Evaluation function f(n) = h(n) (heuristic)
 - estimates the cost from node n to goal
 - e.g., $h_{SLD}(n)$ = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
 - according to evaluation function
- Example:


- Evaluation function f(n) = h(n) (heuristic)
 - estimates the cost from node n to goal
 - e.g., $h_{SLD}(n)$ = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
 - according to evaluation function
- Example:

- Evaluation function f(n) = h(n) (heuristic)
 - estimates the cost from node n to goal
 - e.g., $h_{SLD}(n)$ = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
 - according to evaluation function
- Example:

- Evaluation function f(n) = h(n) (heuristic)
 - estimates the cost from node n to goal
 - e.g., $h_{SLD}(n)$ = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
 - according to evaluation function
- Example:



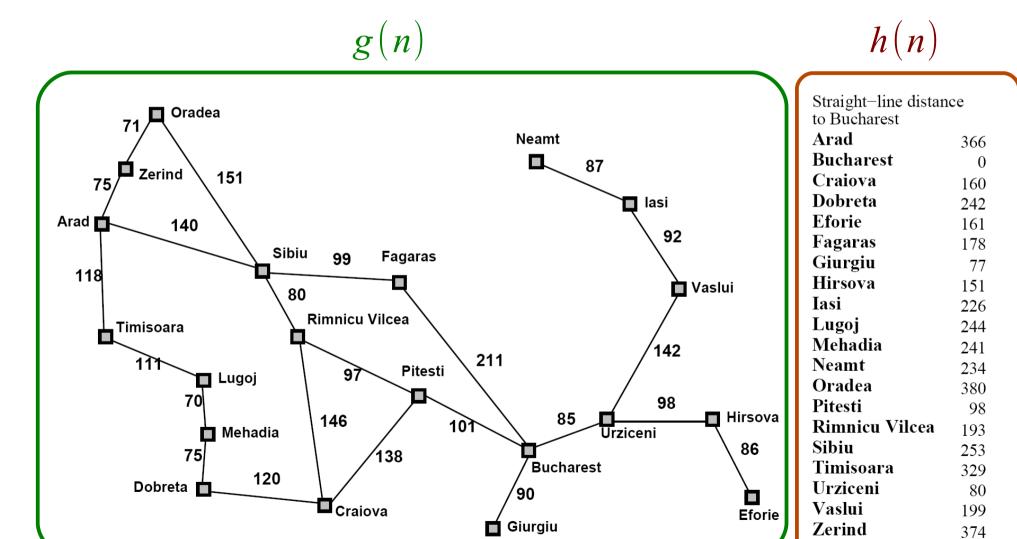
Properties of Greedy Best-First Search

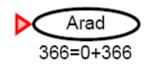
Completeness

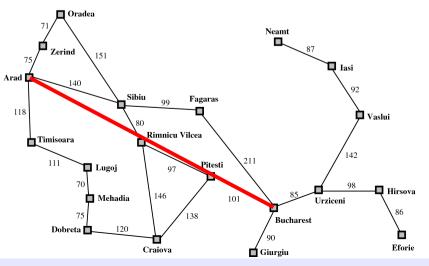
- No can get stuck in loops
- Example: We want to get from lasi to Fagaras
 - Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow ...

These two are different search nodes referring to the same state!

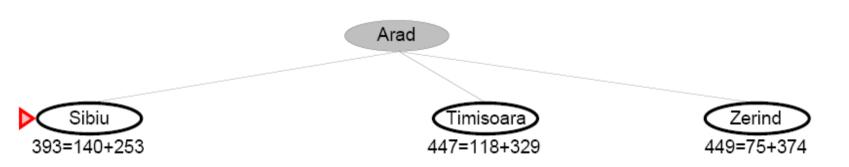
Properties of Greedy Best-First Search

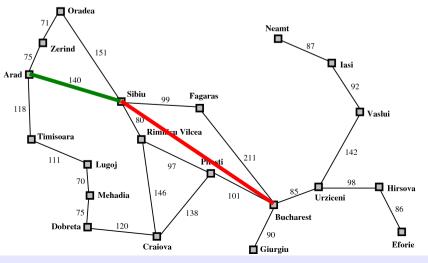

Completeness

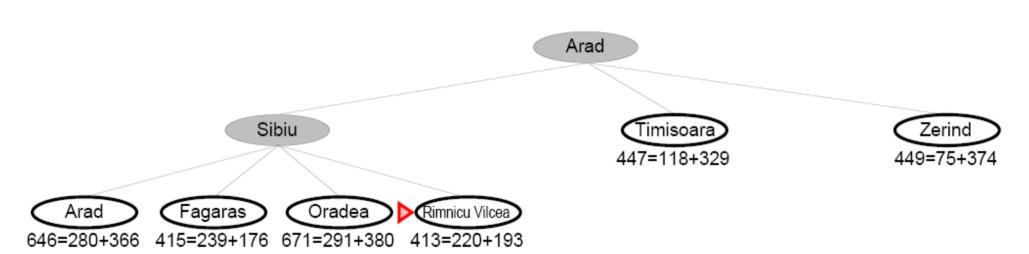

- No can get stuck in loops
- can be fixed with careful checking for duplicate states
- \rightarrow complete in finite state space with repeated-state checking
- Time Complexity
 - $O(b^m)$, like depth-first search
 - but a good heuristic can give dramatic improvement
 - optimal case: best choice in each step \rightarrow only d steps
 - a good heuristic improves chances for encountering optimal case
- Space Complexity
 - has to keep all nodes in memory \rightarrow same as time complexity
- Optimality
 - No
 - Example:
 - solution Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest is not optimal

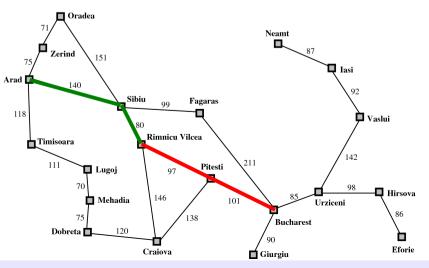

A* Search

- Best-known form of best-first search
- Basic idea:
 - avoid expanding paths that are already expensive
 - \rightarrow evaluate complete path cost not only remaining costs
- Evaluation function: f(n)=g(n)+h(n)
 - g(n) = cost so far to reach node n
 - h(n) = estimated cost to get from n to goal
 - f(n) = estimated cost of path to goal via n

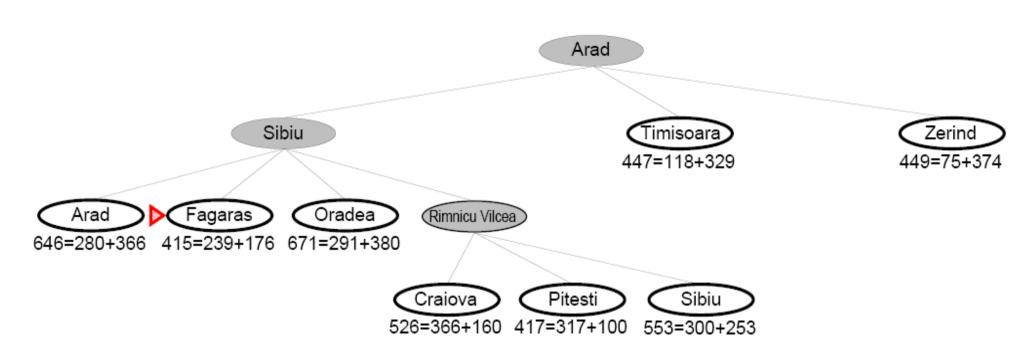

Beispiel

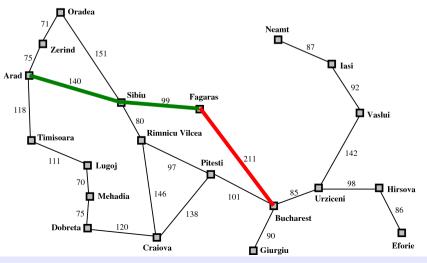


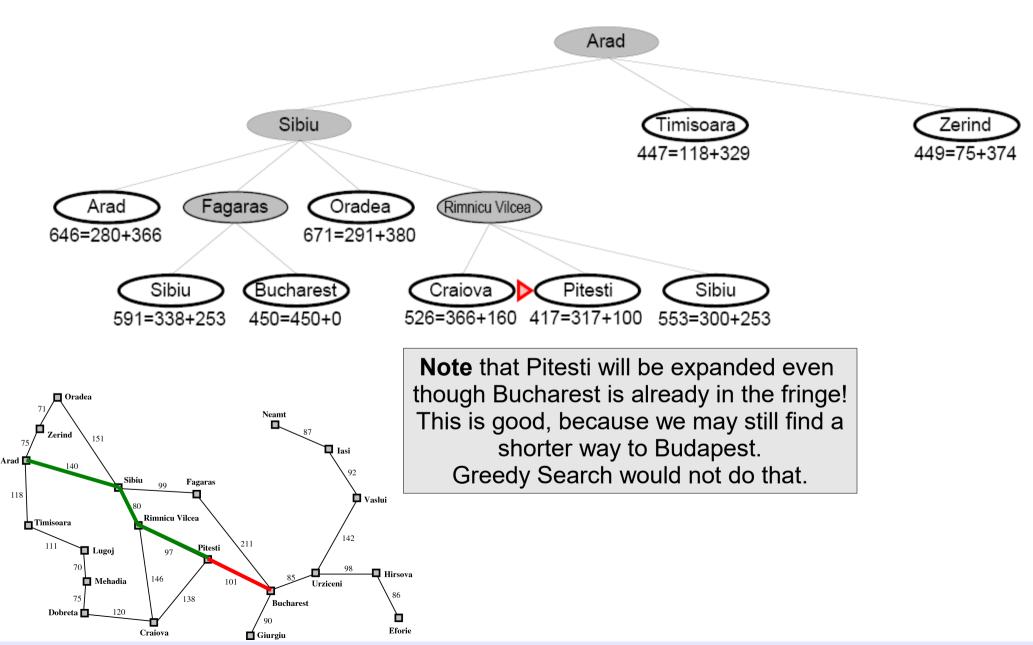


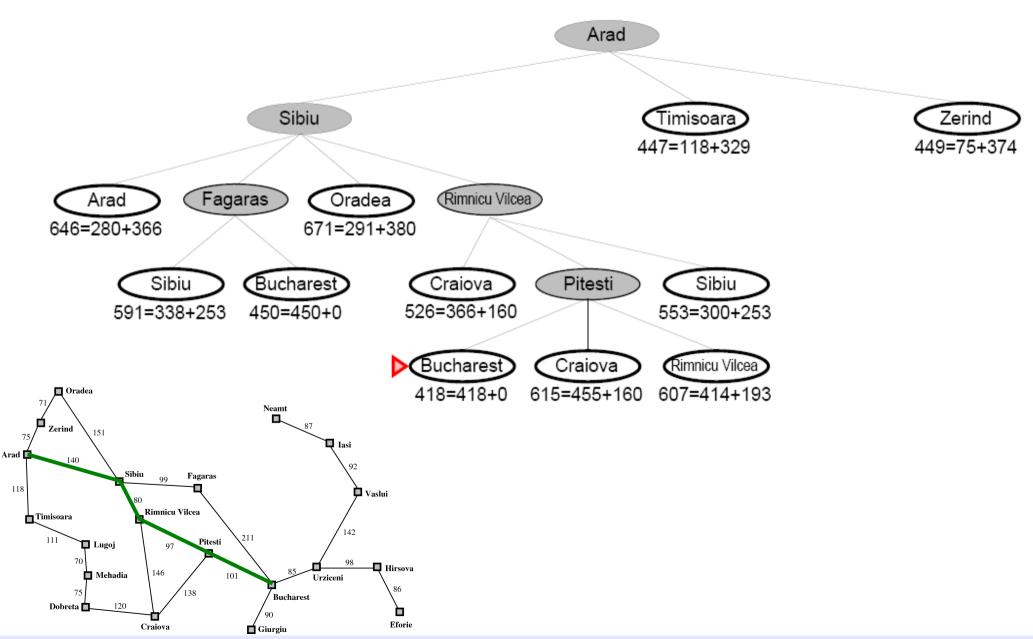


Informed Search








Informed Search

Informed Search

Informed Search

Properties of A*

Completeness

- Yes
- unless there are infinitely many nodes with $f(n) \le f(G)$

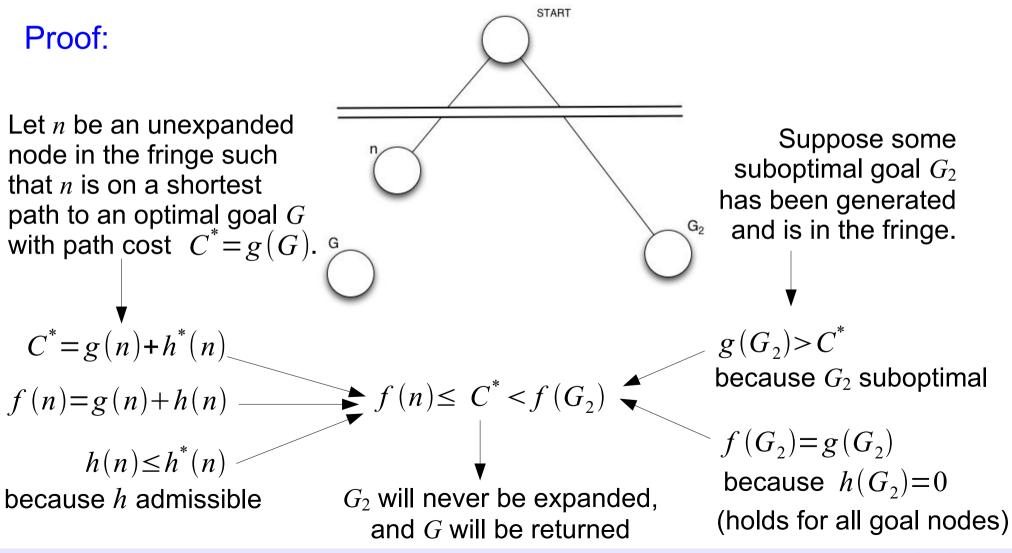
Time Complexity

it can be shown that the number of nodes grows exponentially unless the error of the heuristic *h*(*n*) is bounded by the logarithm of the value of the actual path cost *h*^{*}(*n*), i.e.

$$|h(n) - h^*(n)| \le O(\log h^*(n))$$

Space Complexity

- keeps all nodes in memory
- typically the main problem with A*
- Optimality
 - ???
 - \rightarrow following pages

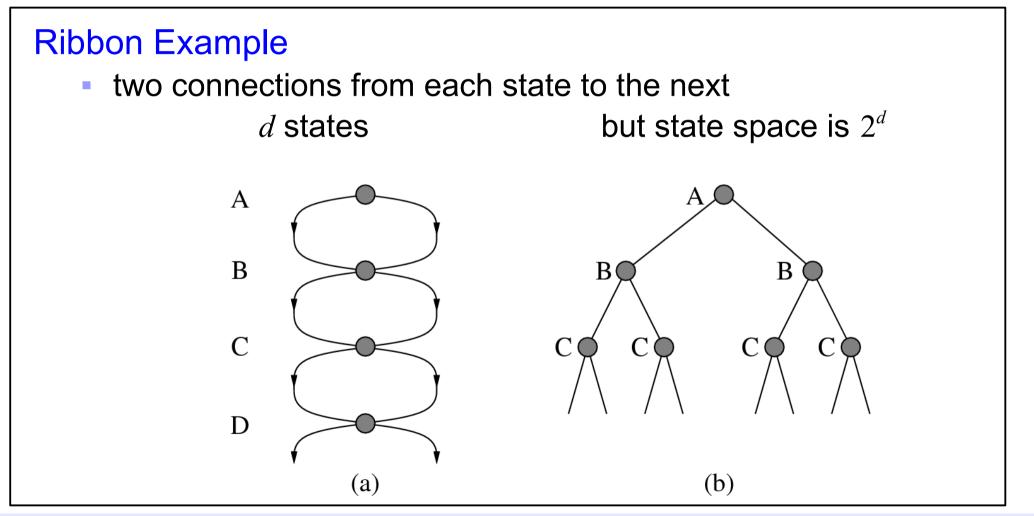

Admissible Heuristics

A heuristic is admissible if it *never* overestimates the cost to reach the goal

- Formally:
 - $h(n) \le h^*(n)$ if $h^*(n)$ are the true cost from *n* to goal
- Example:
 - Straight-Line Distances h_{SLD} are an admissible heuristics for actual road distances h^*
- Note:
 - $h(n) \ge 0$ must also hold, so that h(goal) = 0

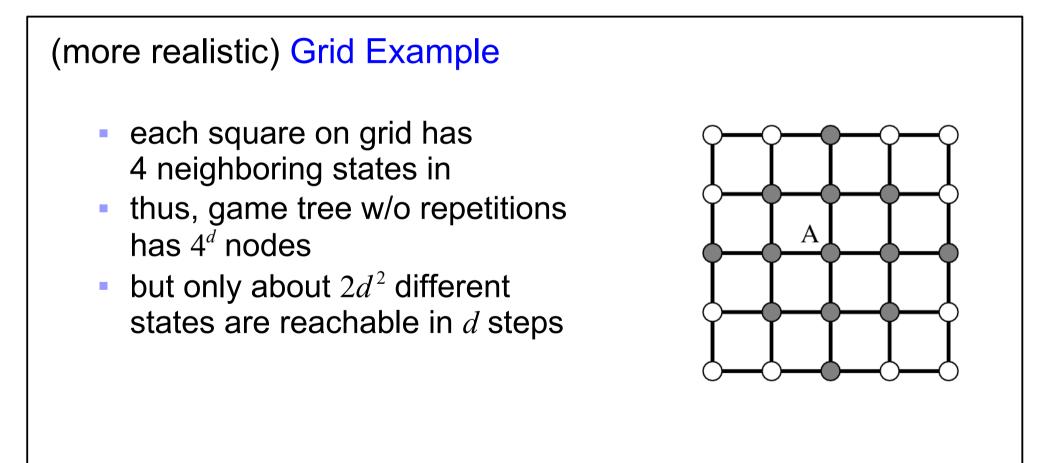
Theorem

If h(n) is admissible, A* using TREE-SEARCH is optimal.

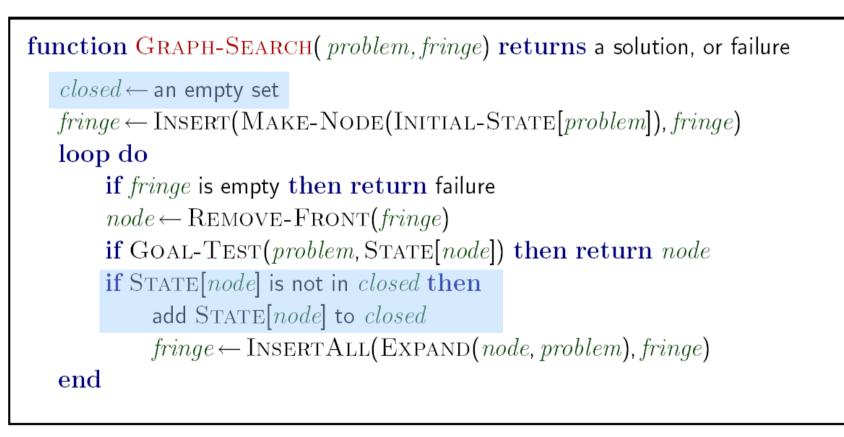


A* and Graph Search

- So far we only had tree search where each node in the search tree represents one possible path to the associated domain state
 - e.g., one can go directly from Arad to Sibiu or via Oradea
- Problem:
 - In some cases the path that is detected later may be the better path
 - so that a previously found solution starting from Sibiu has to re-investigated with the new, cheaper path
- Two solutions
 - Add ability to detect repeated states
 - \rightarrow graph search
 - general solution that also works for BFS, DFS, ...
 - Or ensure that the cheaper path is always taken first
 - \rightarrow consistent heuristics
 - specific solution for A*


Repeated States

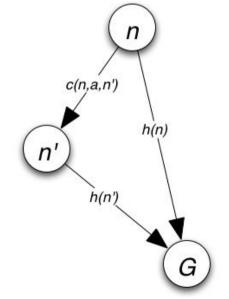
 Failure to detect repeated states can turn a linear problem into an exponential one!


Repeated States

 Failure to detect repeated states can turn a linear problem into an exponential one!

Graph Search

- remembers the states that have been visited in a list *closed*
 - Note: the fringe list is often also called the open list



- Example:
 - Dijkstra's algorithm is the graph-search variant of uniform cost search

Consistent Heuristics

- Graph-Search discards new paths to repeated state even though the new path may be cheaper
 - \rightarrow Previous proof breaks down
- 2 Solutions
 - 1. Add extra bookkeeping to remove the more expensive path
 - Ensure that optimal path to any repeated state is always followed first
- Requirement for Solution 2:

A heuristic is consistent if for every node *n* and every successor *n*' generated by any action *a* it holds that $h(n) \le c(n, a, n') + h(n')$

Lemma 1

Every consistent heuristic is admissible.

Proof Sketch by induction

Base Case: for all nodes n, in which an action a leads to goal G

 $h(n) \leq c(n, a, G) + h(G) = h^*(n)$

By *induction on the path length from goal*, this argument can be extended to all nodes, so that eventually

 $\forall n:h(n) \leq h^*(n)$

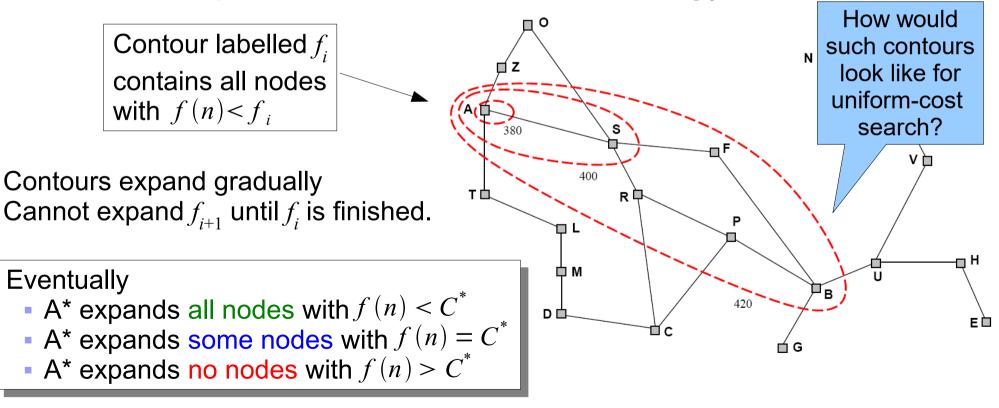
Note:

- not every admissible heuristic is consistent
- but most of them are
 - it is hard to find non-consistent admissible heuristics

Lemma 2

If h(n) is consistent, then the values of f(n) along any path are non-decreasing.

Proof:

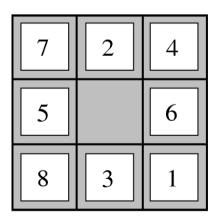

 $f(n) = g(n) + h(n) \le g(n) + c(n, a, n') + h(n') =$ g(n) + c(n, a, n') + h(n') = g(n') + h(n') = f(n')

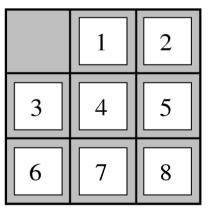
Theorem

If h(n) is consistent, A* is optimal.

Proof:

A* expands nodes in order of increasing *f* value




Memory-Bounded Heuristic Search

- Some solutions to A* space problems (maintaining completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - like iterative deepening
 - cutoff information is the *f*-cost (g + h) instead of depth
 - Recursive best-first search (RBFS)
 - recursive algorithm that attempts to mimic standard best-first search with linear space.
 - keeps track of the *f*-value of the best alternative path available from any ancestor of current node
 - heuristic evaluations are updated with results of successors
 - (Simple) Memory-bounded A* ((S)MA*)
 - drop the worst leaf node when memory is full
 - its value will be updated to its parent
 - May need to be re-searched later

Admissible Heuristics: 8-Puzzle

- $h_{\text{MIS}}(n) =$ number of misplaced tiles
 - admissible because each misplaced tile must be moved at least once
- $h_{\text{MAN}}(n) = \text{total Manhattan distance}$
 - i.e., no. of squares from desired location of each tile
 - admissible because this is the minimum distance of each tile to its target square
- Example:

 $h_{MIS}(start) = 8$

 $h_{MAN}(start) = 18$

$$h^*(start) = 26$$

Start State

Goal State

Effective Branching Factor

- Evaluation Measure for a search algorithm:
 - assume we searched *N* nodes and found solution in depth *d*
 - the effective branching factor b^{*} is the branching factor of a uniform tree of depth d with N+1 nodes, i.e.

$$1 + N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

- Measure is fairly constant for different instances of sufficiently hard problems
 - Can thus provide a good guide to the heuristic's overall usefulness.
 - A good value of b^* is 1

Efficiency of A* Search

- Comparison of number of nodes searched by A* and Iterative Deepening Search (IDS)
 - average of 100 different 8-puzzles with different solutions
 - **Note:** heuristic $h_2 = h_{MAN}$ is always better than $h_1 = h_{MIS}$

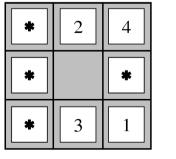
	Suchkosten			Effektiver Verzweigungsfaktor		
d	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$
2	10	6	6	2,45	1,79	1,79
4	112	13	12	2,87	1,48	1,45
6	680	20	18	2,73	1,34	1,30
8	6384	39	25	2,80	1,33	1,24
10	47127	93	39	2,79	1,38	1,22
12	3644035	227	73	2,78	1,42	1,24
14	-	539	113	-	1,44	1,23
16	-	1301	211	-	1,45	1,25
18	-	3056	363	-	1,46	1,26
20	-	7276	676		1,47	1,27
22	-	18094	1219	-	1,48	1,28
24	_	39135	1641	-	1,48	1,26

Dominance

If h_1 and h_2 are admissible, h_2 dominates h_1 if $\forall n : h_2(n) \ge h_1(n)$

- if h_2 dominates h_1 it will perform better because it will *always* be closer to the optimal heuristic h^*
- Example:
 - $h_{\rm MAN}$ dominates $h_{\rm MIS}$ because if a tile is misplaced, its Manhattan distance is ≥ 1

Theorem: (Combining admissible heuristics)


If h_1 and h_2 are two admissible heuristics than $h(n) = max(h_1(n), h_2(n))$ is also admissible and dominates h_1 and h_2

Relaxed Problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- Examples:
 - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{\rm MIS}$ gives the shortest solution
 - If the rules are relaxed so that a tile can move to any adjacent square, then h_{MAN} gives the shortest solution
- Thus, looking for relaxed problems is a good strategy for inventing admissible heuristics.

Pattern Databases

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
 - This cost is a lower bound on the cost of the real problem.
- Pattern databases store the exact solution (length) for every possible subproblem instance
 - constructed once for all by searching backwards from the goal and recording every possible pattern
- Example:
 - store exact solution costs for solving 4 tiles of the 8-puzzle
 - sample pattern:

Start State

Goal State

Δ

3

2

Learning of Heuristics

- Another way to find a heuristic is through learning from experience
- Experience:
 - states encountered when solving lots of 8-puzzles
 - states are encoded using features, so that similarities between states can be recognized
- Features:
 - for the 8-puzzle, features could, e.g. be
 - the number of misplaced tiles
 - number of pairs of adjacent tiles that are also adjacent in goal

• ...

- An inductive learning algorithm can then be used to predict costs for other states that arise during search.
- No guarantee that the learned function is admissible!

Learning of Heuristics

- Another way to find a heuristic is through learning from experience
- Experience:
 - states encountered when solving lots of 8-puzzles
 - states are encoded using features, so that similarities between states can be recognized
- Features:
 - for the 8-puzzle, features could, e.g. be
 - the number of misplaced tiles
 - number of pairs of adjacent tiles that are also adjacent in goal

• ...

- An inductive learning algorithm can then be used to predict costs for other states that arise during search.
- No guarantee that the learned function is admissible!

Summary

- Heuristic functions estimate the costs of shortest paths
- Good heuristics can dramatically reduce search costs
- Greedy best-first search expands node with lowest estimated remaining cost
 - incomplete and not always optimal
- A* search minimizes the path costs so far plus the estimated remaining cost
 - complete and optimal, also optimally efficient:
 - no other search algorithm can be more efficient, because they all have search the nodes with $f(n) < C^*$
 - otherwise it could miss a solution
- Admissible search heuristics can be derived from exact solutions of reduced problems
 - problems with less constraints
 - subproblems of the original problem