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Outline
 Best-first search

 Greedy best-first search
 A* search
 Heuristics
 Admissible Heuristics
 Graph Search
 Consistent Heuristics

 Local search algorithms
 Hill-climbing search
 Beam search
 Simulated annealing search
 Genetic algorithms

 Constraint Satisfaction Problems Many slides based on 
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
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Motivation
 Uninformed search algorithms are too inefficient

 they expand far too many unpromising paths
 Example:

 8-puzzle

 Average solution depth = 22
 Breadth-first search to depth 22 has to expand about 3.1 x 1010 

nodes

→ try to be more clever with what nodes to expand
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Best-First Search
 Recall

 Search strategies are characterized by the order in which they 
expand the nodes of the search tree

 Uninformed tree-search algorithms sort the nodes by problem-
independent methods (e.g., recency)

 Basic Idea of Best-First Search
 use a heuristic evaluation function  f (n)  for each node

 estimate of the "desirability" of the node's state
 expand most desirable unexpanded node

 Implementation
 use Tree Search algorithm
 order the nodes in fringe in decreasing order of desirability

 Algorithms
 Greedy best-first search
 A* search
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Heuristic
 Greek "heurisko" (εὑρίσκω) → "I find"

 cf. also „Eureka!“

 informally denotes a „rule of thumb“
 i.e., knowledge that may be helpful in solving a problem
 note that heuristics may also go wrong!

 In tree-search algorithms, a heuristic denotes a function that 
estimates the remaining costs until the goal is reached

 Example:
 straight-line distances may be a good approximation for the 

true distances on a map of Romania
 and are easy to obtain (ruler on the map)

 but cannot be obtained directly from the distances on the map
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Romania Example:
Straight-line Distances

176
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Romania Example:
Straight-line Distances

176

366

253
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Greedy Best-First Search
 Evaluation function f (n) = h(n)   (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to 
be closest to goal 

 according to evaluation function
 Example:
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Properties of 
Greedy Best-First Search

 Completeness
 No – can get stuck in loops
 Example: We want to get from Iasi to Fagaras

 Iasi → Neamt → Iasi → Neamt → ...

Neamt is closer
to Fagaras than
Vaslui

Note: 
These two are
different search
nodes referring 

to the same state!
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Properties of 
Greedy Best-First Search

 Completeness 
 No – can get stuck in loops
 can be fixed with careful checking for duplicate states
→ complete in finite state space with repeated-state checking

 Time Complexity
 O(bm), like depth-first search
 but a good heuristic can give dramatic improvement

 optimal case: best choice in each step → only d steps
 a good heuristic improves chances for encountering optimal case

 Space Complexity
 has to keep all nodes in memory → same as time complexity

 Optimality
 No
 Example:

  solution Arad → Sibiu → Fagaras → Bucharest is not optimal
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A* Search
 Best-known form of best-first search

 Basic idea:
 avoid expanding paths that are already expensive
→ evaluate complete path cost not only remaining costs

 Evaluation function:
 g(n) = cost so far to reach node n
 h(n) = estimated cost to get from n to goal
 f (n) = estimated cost of path to goal via n

f n=g nhn
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Beispiel

g (n) h(n)
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A* Search Example
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A* Search Example
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A* Search Example
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A* Search Example
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A* Search Example

Note that Pitesti will be expanded even 
though Bucharest is already in the fringe!
This is good, because we may still find a

shorter way to Budapest.
Greedy Search would not do that.
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A* Search Example
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Properties of A*

 Completeness
 Yes 
 unless there are infinitely many nodes with 

 Time Complexity
 it can be shown that the number of nodes grows exponentially 

unless the error of the heuristic h(n) is bounded by the 
logarithm of the value of the actual path cost h*(n), i.e.

 Space Complexity
 keeps all nodes in memory
 typically the main problem with A* 

 Optimality
 ???
→ following pages

f n ≤ f G 

∣h n−h*
n∣≤ O log h*

n
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Admissible Heuristics

A heuristic is admissible if it never overestimates the 
cost to reach the goal

 Formally:
                    if h*(n) are the true cost from n to goal

 Example:
 Straight-Line Distances hSLD are an admissible heuristics for 

actual road distances h*

 Note:
             must also hold, so that h(goal) = 0

h n≤h*
n

h n≥0
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 If h(n) is admissible, A* using TREE-SEARCH is optimal. If h(n) is admissible, A* using TREE-SEARCH is optimal.

Theorem

Suppose some 
suboptimal goal G2 

has been generated 
and is in the fringe.

Let n be an unexpanded 
node in the fringe such 
that n is on a shortest 
path to an optimal goal G
with path cost                    .

Proof:

g G 2C*

because G2 suboptimal
f n≤ C*

f G2=g G2

because hG2=0
(holds for all goal nodes)

f n=g nhn

C*
=g (n)+h*

(n)

hn≤h*n
because h admissible G2 will never be expanded,

and G will be returned

 f G2

C*
=g (G)
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A* and Graph Search
 So far we only had tree search where each node in the 

search tree represents one possible path to the associated 
domain state

 e.g., one can go directly from Arad to Sibiu or via Oradea
 Problem:

 In some cases the path that is detected later may be the better 
path

 so that a previously found solution starting from Sibiu has to 
re-investigated with the new, cheaper path

 Two solutions
 Add ability to detect repeated states 

 → graph search
 general solution that also works for BFS, DFS, ...

 Or ensure that the cheaper path is always taken first 
 → consistent heuristics
 specific solution for A*
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Repeated States

 Failure to detect repeated states can turn a linear problem 
into an exponential one!

Ribbon Example
 two connections from each state to the next
                      d states                          but state space is 2d
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Repeated States

 Failure to detect repeated states can turn a linear problem 
into an exponential one!

(more realistic) Grid Example

 each square on grid has 
4 neighboring states in

 thus, game tree w/o repetitions
has 4d nodes

 but only about 2d 2 different
states are reachable in d steps
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Graph Search

 remembers the states that have been visited in a list closed
 Note: the fringe list is often also called the open list

 Example:
 Dijkstra's algorithm is the graph-search variant of uniform cost search
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Consistent Heuristics
 Graph-Search discards new paths to repeated state even 

though the new path may be cheaper
→ Previous proof breaks down

 2 Solutions
1.Add extra bookkeeping to remove the more expensive path
2.Ensure that optimal path to any repeated state is always 

followed first

 Requirement for Solution 2:

A heuristic is consistent if for every node n 
and every successor n' generated by any 
action a it holds that  

h n≤cn , a , n ' h n ' 
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Lemma 1

 Note:
 not every admissible heuristic is consistent
 but most of them are 

 it is hard to find non-consistent admissible heuristics

 Every consistent heuristic is admissible. Every consistent heuristic is admissible.

Proof Sketch by induction

h n≤cn , a ,G h G =h*
n

Base Case: for all nodes n, in which an action a leads to goal G

By induction on the path length from goal, this argument
can be extended to all nodes, so that eventually 

∀n : h n≤h*
n
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Lemma 2

If h(n) is consistent, then the values of 
f (n) along any path are non-decreasing.

If h(n) is consistent, then the values of 
f (n) along any path are non-decreasing.

Proof:
f n  = g nh n ≤ g ncn , a , n ' hn '  =

g nc n , a , n ' h n'  = g n' h n'  = f n' 
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Theorem

If h(n) is consistent, A* is optimal.If h(n) is consistent, A* is optimal.

A* expands nodes in order of increasing f value
Proof:

Contour labelled fi

contains all nodes
with f n f i

Contours expand gradually
Cannot expand fi+1 until fi is finished.

Eventually
 A* expands all nodes with 
 A* expands some nodes with 
 A* expands no nodes with 

Eventually
 A* expands all nodes with 
 A* expands some nodes with 
 A* expands no nodes with 

f n  C*

f n = C*

f n   C*

How would
such contours

look like for
uniform-cost 

search?
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 Some solutions to A* space problems 
(maintaining completeness and optimality)

 Iterative-deepening A* (IDA*)
 like iterative deepening
 cutoff information is the f-cost (g + h) instead of depth

 Recursive best-first search (RBFS)
 recursive algorithm that attempts to mimic 

standard best-first search with linear space.
 keeps track of the f-value of the best alternative 

path available from any ancestor of current node
 heuristic evaluations are updated with results of successors

 (Simple) Memory-bounded A* ((S)MA*)
 drop the worst leaf node when memory is full
 its value will be updated to its parent
 May need to be re-searched later

Memory-Bounded Heuristic Search
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Admissible Heuristics: 8-Puzzle

 hMIS(n) = number of misplaced tiles
 admissible because each misplaced tile must be moved at 

least once
 hMAN(n) = total Manhattan distance

 i.e., no. of squares from desired location of each tile
 admissible because this is the minimum distance of each tile to 

its target square
 Example:

hMIS start =8

hMAN start =18

h*
 start =26
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Effective Branching Factor
 Evaluation Measure for a search algorithm:

 assume we searched N nodes and found solution in depth d
 the effective branching factor b* is the branching factor of a 

uniform tree of depth d with N+1 nodes, i.e.

 Measure is fairly constant for different instances of 
sufficiently hard problems

 Can thus provide a good guide to the heuristic’s overall 
usefulness.

 A good value of b* is 1

1N = 1b*
b*


2
...b*


d



   Informed Search                                                                      35

   TU Darmstadt                                                                                                                                                                    Einführung in die Künstliche Intelligenz

 V2.5 ©  J. Fürnkranz

Efficiency of A* Search
 Comparison of number of nodes searched by A* and  

Iterative Deepening Search (IDS)
 average of 100 different 8-puzzles with different solutions 
 Note: heuristic                is always better than  h2=hMAN h1=hMIS
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Dominance

 If h1 and h2 are admissible, h2 dominates h1 if 
 If h1 and h2 are admissible, h2 dominates h1 if ∀n : h2n≥h1 n

 if h2 dominates h1 it will perform better because it will always be 

closer to the optimal heuristic h*

 Example:
 hMAN dominates hMIS because if a tile is misplaced, its 

Manhattan distance is ≥ 1

Theorem: (Combining admissible heuristics)

 If h1 and h2 are two admissible heuristics than

           is also admissible and dominates h1 and h2 

h n=max h1n , h2n
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Relaxed Problems
 A problem with fewer restrictions on the actions is called a 

relaxed problem
 The cost of an optimal solution to a relaxed problem is an 

admissible heuristic for the original problem

 Examples:
 If the rules of the 8-puzzle are relaxed so that a tile can move 

anywhere, then hMIS gives the shortest solution
 If the rules are relaxed so that a tile can move to any adjacent 

square, then hMAN gives the shortest solution

 Thus, looking for relaxed problems is a good strategy for 
inventing admissible heuristics.
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Pattern Databases
 Admissible heuristics can also be derived from the solution 

cost of a subproblem of a given problem.
 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution (length) for every 
possible subproblem instance

 constructed once for all by searching backwards from the goal 
and recording every possible pattern

 Example:
 store exact solution costs for solving 4 tiles of the 8-puzzle
 sample pattern:
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Learning of Heuristics
 Another way to find a heuristic is through learning from 

experience
 Experience: 

 states encountered when solving lots of 8-puzzles
 states are encoded using features, so that similarities between 

states can be recognized
 Features:

 for the 8-puzzle, features could, e.g. be 
 the number of misplaced tiles
 number of pairs of adjacent tiles that are also adjacent in goal
 ...

 An inductive learning algorithm can then be used to predict 
costs for other states that arise during search.

 No guarantee that the learned function is admissible!
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Summary
 Heuristic functions estimate the costs of shortest paths
 Good heuristics can dramatically reduce search costs
 Greedy best-first search expands node with lowest estimated 

remaining cost
 incomplete and not always optimal

 A* search minimizes the path costs so far plus the estimated 
remaining cost

 complete and optimal, also optimally efficient:
 no other search algorithm can be more efficient, because they all 

have search the nodes with               
 otherwise it could miss a solution

 Admissible search heuristics can be derived from exact 
solutions of reduced problems

 problems with less constraints
 subproblems of the original problem

f nC*
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