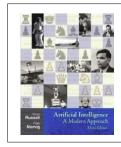
Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Backtracking Search
 - Forward Checking
 - Constraint Propagation
 - Local Search
 - Tree-Structured CSPs

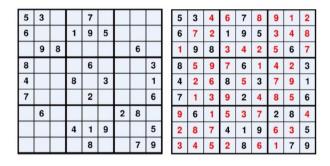


Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Constraint Satisfaction Problems

Special Type of search problem:

- state is defined by variables X_i with d values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Examples:
 - Sudoku

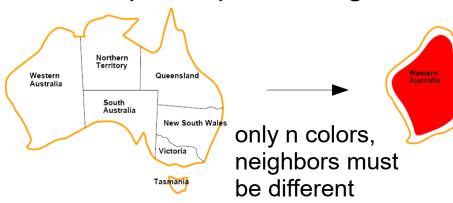


cryptarithmetic puzzle

> SEND MORE

> > MONEY

Graph/Map-Coloring



n-queens

Real-World CSPs

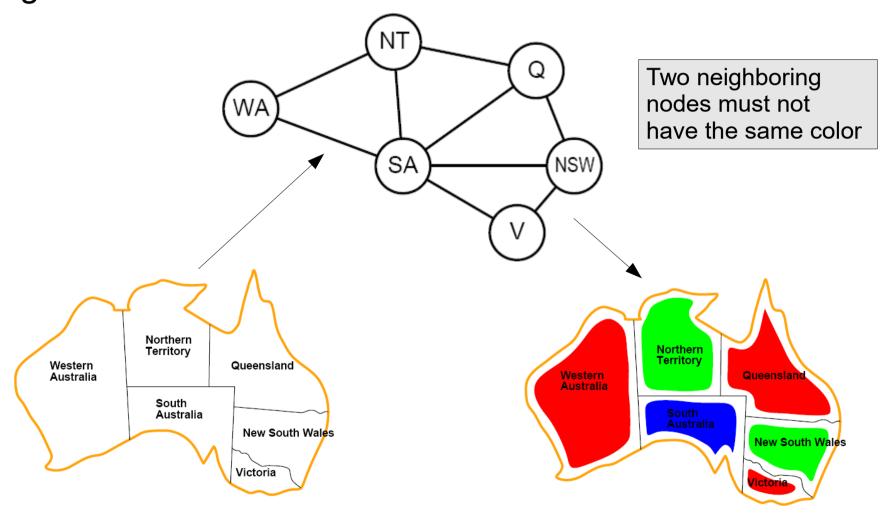
- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Scheduling
 - Job scheduling
 - Constraints are, e.g., start and end times for each job
 - Transportation scheduling
 - Factory scheduling
- Floorplanning

Notice that many real-world problems involve real-valued variables

- Linear constraints solvable in polynomial time using linear programming
- Problems with nonlinear constraints undecidable

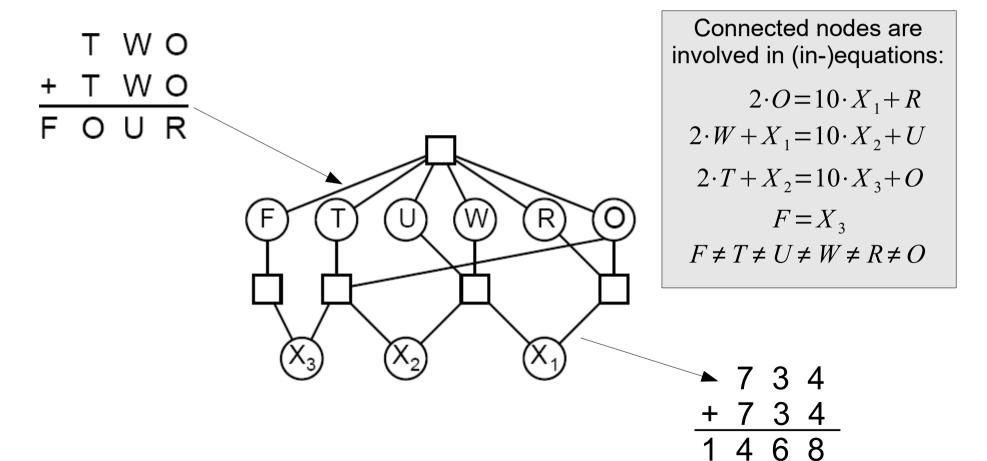
Constraint Graph

- nodes are variables
- edges indicate constraints between them



Constraint Graph

- nodes are variables
- edges indicate constraints between them



Types of Constraints

- Unary constraints involve a single variable,
 - e.g., South Australia \neq green
- Binary constraints involve pairs of variables,
 - e.g., South Australia ≠ Western Australia
- Higher-order constraints involve 3 or more variables
 - e.g., $2 \cdot W + X_1 = 10 \cdot X_2 + U$
- Preferences (soft constraints)
 - e.g., red is better than green
 - are not binding, but task is to respect as many as possible
 - → constrained optimization problems

Solving CSP Problems

Two principal approaches:

Search:

- successively assign values to variable
- check all constraints
- if a constraint is violated → backtrack
- until all variables have assigned values

Constraint Propagation:

- maintain a set of possible values D_i for each variable X_i
- try to reduce the size of D_i by identifying values that violate some constraints

Solving Constraint Problems with Search

- Constraint problems define a simple search space:
 - The start node is an empty assignment of values to variables
 - Its successors are all possible ways of assigning one value to a variable (depth 1)
 - Their successors are those with 2 variables assigned (depth 2)
 -
 - Until at the end all variables have been assigned a value (depth n)
- Goal test:
 - Does a node at depth n satisfy all constraints?
- Observation:
 - All solution nodes will appear at depth n → depth-first search is feasible without losing completeness

Complexity of Naive Search

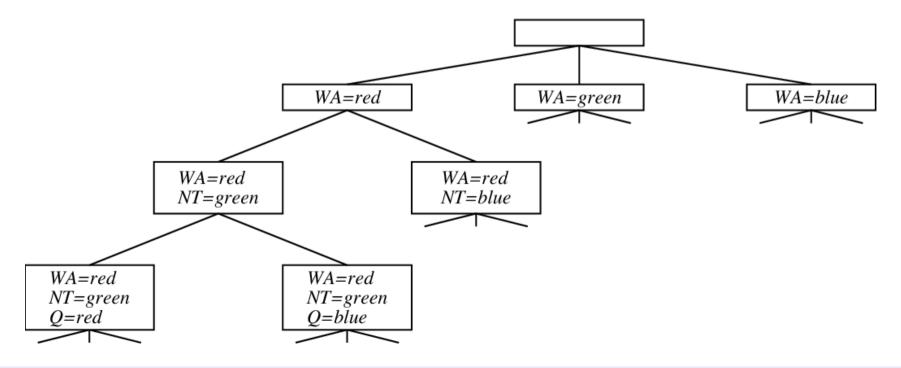
- Assumptions
 - we have n variables
 - \rightarrow all solutions are a depth n in the search tree
 - all variables have v possible values
- Then
 - at level 1 we have n·v possible assignments
 (we can choose one of n variables and one of v values for it)
 - at level 2, we have $(n-1)\cdot v$ possible assignments for each previously assigned variable

(we can choose one of the remaining n-1 variables and one of the v values for it)

- In general: branching factor at depth $l: (n-l+1)\cdot v$
- Hence
 - The search tree has n!vⁿ leaves

Commutative Variable Assignments

- Variable assignments are commutative
 - [WA = red then NT = green] is the same as[NT = green then WA = red]
- Thus, at each node, we only need to make assignments for one of the variables
 - \rightarrow Total complexity reduces to v^n



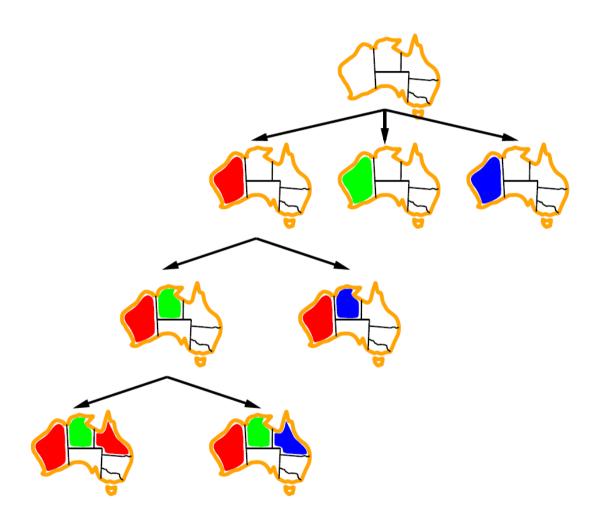
Backtracking Search

- Depth-first search with single variable assignments per level is also called backtracking search
- Backtracking is the basic uninformed search algorithm for CSPs
 - add one constraint at a time without conflict
 - succeed if a legal assignment is found
 - Can solve n-queens problems for up to $n \simeq 25$
- Complexity:
 - Worst case is still exponentional
 - heuristics for selecting variables (SelectUnassignedVariable) and for ordering values (OrderDomainValues) can improve practical performance

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Backtracking Search

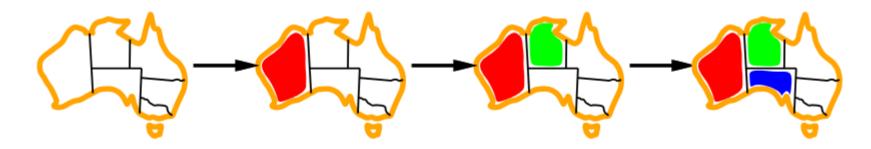


General-purpose methods can give huge gains in speed:

- 1) Which variable should be assigned next?
- 2) In what order should its values be tried?
- 3) Can we detect inevitable failure early?
- 4) Can we take advantage of problem structure?

General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values

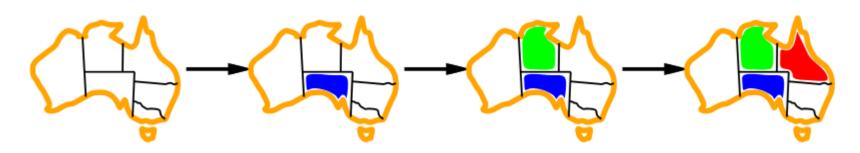


General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem

General-purpose heuristics

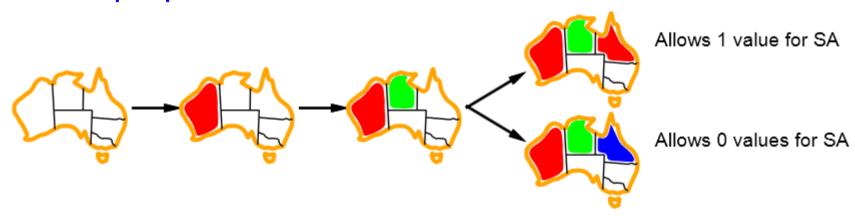
- For CSP, good general-purpuse heuristics are known:
- Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
- Degree Heuristic
 - choose the variable with the most constraints on remaining variables



OrderDomainValues

General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics



Least Constraining Value Heuristic

 Given a variable, choose the value that rules out the fewest values in the remaining variables

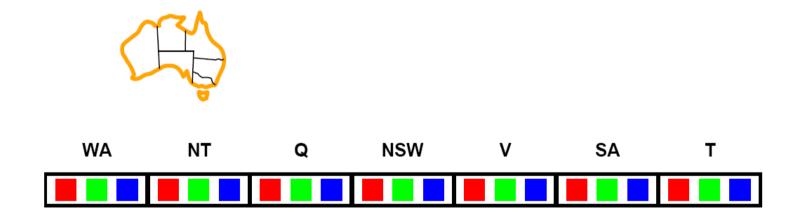
General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem

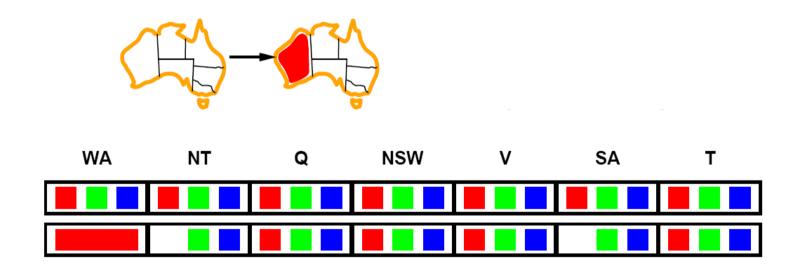
General-purpose heuristics

- For CSP, good general-purpuse heuristics are known:
- Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
- Degree Heuristic
 - choose the variable that imposes the most constraints on the remaining values
- Least Constraining Value Heuristic
 - Given a variable, choose the value that rules out the fewest values in the remaining variables
- used in this order, these three can greatly speed up search
 - e.g., n-queens from 25 queens to 1000 queens

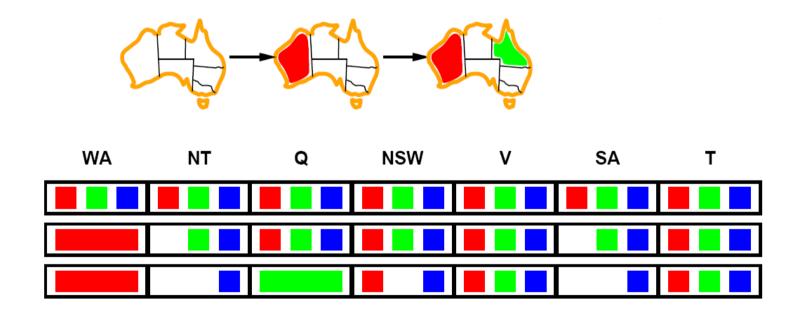
- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



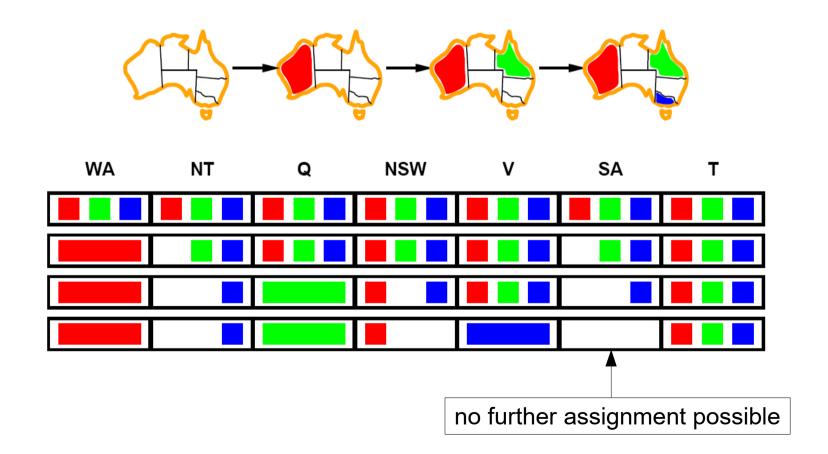
- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



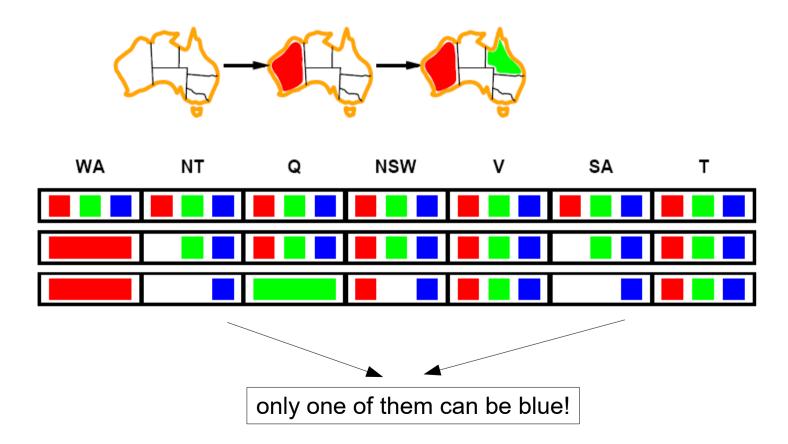
- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



Constraint Propagation

Problem:

- forward checking propagates information from assigned to unassigned variables
- but doesn't look ahead to provide early detection for all failures



Constraint Propagation - Sudoku

Problem

CSP with 81 variables

Constraints

- some values are assigned in the start (unary constraints)
- 27 constraints on 9 values that must all be different (9 rows, 9 columns, 9 squares)

Constraint Propagation

- People often write a list of possible values into empty fields
- try to successively eliminate values

Status

 Automated constraint solvers can solve the hardest puzzles in no time

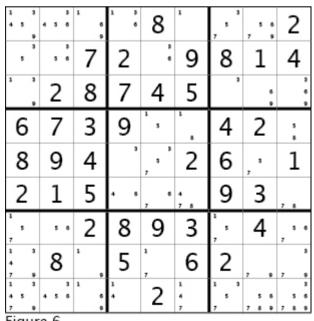


Figure 6

Node Consistency

Node Consistency

- the possible values of a variable must conform to all unary constraints
- can be trivially enforced
- Example:
 - Sudoku: Some nodes are already filled out, i.e., constrained to a single value

More General Idea: Local Consistency

- make each node in the graph consistent with its neighbors
- by (iteratively) enforcing the constraints corresponding to the edges

Arc Consistency

every domain must be consistent with the neighbors:

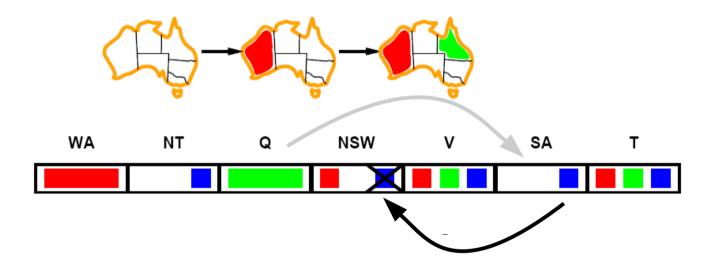
A variable X_i is arc-consistent with a variable X_j if

- for every value in its domain D_i
- there is some value in D_i
- that satisfies the constraint on the arc (X_i, X_j)

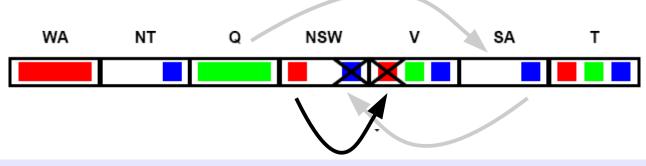
- can be generalized to n-ary constraints
 - each tuple involving the variable X_i has to be consistent

Maintaining Arc Consistency (MAC)

 After each new assignment of a value to a variable, possible values of the neighbors have to be updated:



 If one variable (NSW) looses a value (blue), we need to recheck its neighbors as well because they might have lost a possible value



Arc Consistency Algorithm

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
                                                                      If X loses a value,
                                                                      neigbors of X need
         for each X_k in Neighbors [X_i] do
                                                                      to be rechecked.
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in Domain[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

Run-time: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$) more efficient than forward checking

Path Consistency

- Arc Consistency is often sufficient to
 - solve the problem (all domains have size 1)
 - show that the problem cannot be solved (some domains empty)
- but may not be enough
 - there is always a consistent value in the neighboring region
- → Path consistency
 - tightens the binary constraints by considering triples of values

A pair of variables (X_i, X_j) is path-consistent with X_m if

- for every assignment that satisfies the constraint on the arc (X_i, X_j)
- there is an assignment that satisfies the constraints on the arcs (X_i, X_m) and (X_j, X_m)
- Algorithm AC-3 can be adapted to this case (known as PC-2)

k-Consistency

- The concept can be generalized so that a set of k values need to be consistent
 - 1-consistency = node consistency
 - 2-consistency = arc consistency
 - 3-consistency = path consistency
 -
- May lead to faster solution (O(n²d))
 - but checking for k-Consistency is exponentional in k in the worst case
- therefore arc consistency is most frequently used in practice

Sudoku

- simple puzzles can be solved with AC-3
 - the puzzle has 9 constraints on the rows, 9 on the columns and 9 on the square (27 in total)
 - each such constraint requires that 9 values are all different
 - the 9-valued AllDiff constraints can be converted into pairwise binary constraints
 - 9x8/2 = 36 pairwise constraints
 - therefore 27x36 = 972 arc constraints
- somewhat more with PC-2
 - there are 255,960 path constraints
- however, not all problems can be solved with constraint progapagation alone
 - to solve all puzzles we need a bit of search

Integrating Constraint Propagation and Backtracking Search

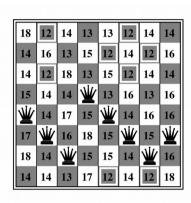
Performance of Backtracking can be further sped up by integrating constraint propagation into the search

Key idea:

- each time a variable is assigned, a constraint propagation algorithm is run in order to reduce the number of choice points in the search
- Possible algorithms
 - Forward Checking
 - AC-3, but initial queue of constraints only contains constraints with the variable that has been changed

Local Search for CSP

- Modifications for CSPs:
 - work with complete states
 - allow states with unsatisfied constraints
 - operators reassign variable values



Min-conflicts is the

heuristic that we studied

for the 8-queens problems.

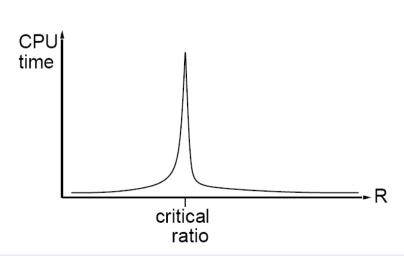
Min-conflicts Heuristic:

- randomly select a conflicted variable
- choose the value that violates the fewest constraints
- hill-climbing with h(n) = # of violated constraints

Performance:

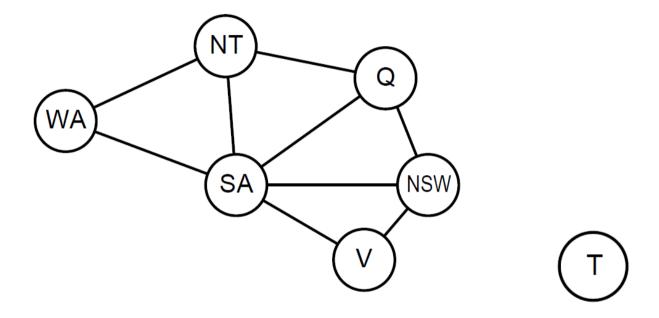
- can solve randomly generated
 CSPs with a high probability
- except in a narrow range of

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



Problem Structure

Decomposing the problem into independent subproblems



 The problem of coloring Tasmania is independent of the problem of coloring the mainland of Australia

The Power of Problem Decomposition

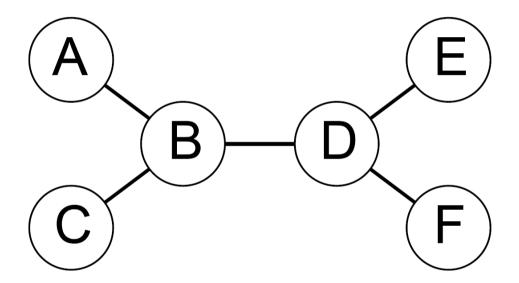
- Search space for a constraint satisfaction with n variables,
 each of which can have d values = O(dⁿ)
- Decomposing the problem into subproblems with c variables each:
 - Each problem has complexity = $O(d^c)$
 - There are n/c such problems
 - \rightarrow Total complexity = O(n/c· d^c)
- Thus the total complexity can be reduced from exponential in n to linear in n!
- Example:

E.g., n=80, d=2, c=20 $2^{80}=4$ billion years at 10 million nodes/sec $4\cdot 2^{20}=0.4$ seconds at 10 million nodes/sec

Unconditional Independence is powerful but rare!

Tree-Structured CSP

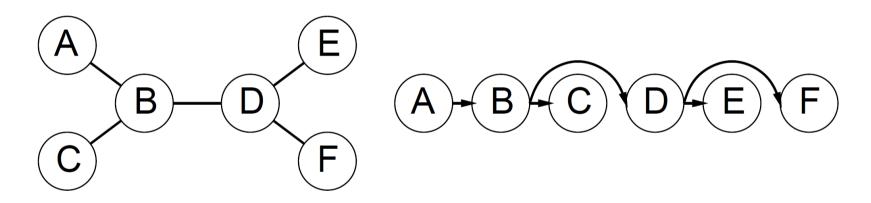
 A CSP is tree-structured if in the constraint graph any two variables are connected by a single path



Theorem: Any tree-structured CSP can be solved in linear time in the number of variables (more precisely: $O(n \cdot d^2)$)

Linear Algorithm for Tree-Structured CSPs

1) Choose a variable as a root, order nodes so that a parent always comes before its children (each child can have only one parent)



- 2) For j = n downto 2
 - Make the arc (X_i, X_j) arc-consistent, calling Remove-Inconsistent-Value (X_i, X_j)
- 3) For i = 1 to n
 - Assign to X_i any value that is consistent with its parent.

Nearly Tree-structured Problems

- Tree-structured problems are also rare.
- Most maps are clearly not tree-structured...
 - Exception: Sulawesi

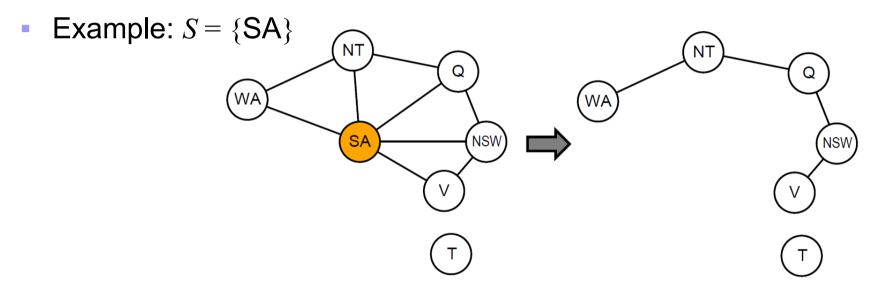
 Two approaches for making problems tree-structured:

Laut Sulawes

- Removing nodes so that the remaining nodes form a tree (cutset conditioning)
- Collapsing nodes together (decompose the graph into a set of independent tree-shaped subproblems)

Cutset Conditioning

1) Choose a subset S of the variables such that the constraint graph becomes a tree after removal of S (= the cycle cutset)



- 2) Choose a (consistent) assignment of variables for S
- 3) Remove from the remaining variables all values that are inconsistent with the variable of *S*
- 4) Solve the CSP problem for the remaining variables
- 5) If no solution → choose a different assignment for variables in 2)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work
 - to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time