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Outline
 Best-first search

 Greedy best-first search
 A* search
 Heuristics

 Local search algorithms
 Hill-climbing search
 Beam search
 Simulated annealing search
 Genetic algorithms

 Constraint Satisfaction Problems
 Backtracking Search
 Forward Checking
 Constraint Propagation
 Local Search
 Tree-Structured CSPs

Many slides based on 
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
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Constraint Satisfaction Problems

Special Type of  search problem:
 state is defined by variables Xi with d values from domain Di

 goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

 Examples:
 Sudoku

 Graph/Map-Coloring

only n colors,
neighbors must 
be different

 cryptarithmetic 
puzzle

 n-queens
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Real-World CSPs
 Assignment problems

 e.g., who teaches what class
 Timetabling problems

 e.g., which class is offered when and where?
 Hardware configuration
 Spreadsheets
 Scheduling

 Job scheduling
 Constraints are, e.g., start and end times for each job

 Transportation scheduling
 Factory scheduling

 Floorplanning

Notice that many real-world problems involve real-valued variables
 Linear constraints solvable in polynomial time using linear programming
 Problems with nonlinear constraints undecidable
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Constraint Graph
 nodes are variables
 edges indicate constraints between them

Two neighboring 
nodes must not 
have the same color
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Constraint Graph
 nodes are variables
 edges indicate constraints between them

Connected nodes are 
involved in (in-)equations:

2⋅O=10⋅X 1R
2⋅W X 1=10⋅X 2U

2⋅T X 2=10⋅X 3O

F=X 3

F≠T≠U≠W≠ R≠O

    7  3  4
+  7  3  4
1  4  6  8
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Types of Constraints
 Unary constraints involve a single variable, 

 e.g., South Australia ≠ green

 Binary constraints involve pairs of variables,
 e.g., South Australia ≠ Western Australia

 Higher-order constraints involve 3 or more variables
 e.g., 

 Preferences (soft  constraints)
 e.g., red is better than green
 are not binding, but task is to respect as many as possible
→ constrained optimization problems

2⋅W X 1=10⋅X 2U
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Solving CSP Problems 

Two principal approaches:

 Search:
 successively assign values to variable
 check all constraints
 if a constraint is violated → backtrack
 until all variables have assigned values

 Constraint Propagation:
 maintain a set of possible values Di for each variable Xi 
 try to reduce the size of Di by identifying values that violate 

some constraints
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Solving Constraint Problems 
with Search

 Constraint problems define a simple search space:
 The start node is an empty assignment of values to variables
 Its successors are all possible ways of assigning one value to 

a variable (depth 1)
 Their successors are those with 2 variables assigned (depth 2)
 ….
 Until at the end all variables have been assigned a value 

(depth n)
 Goal test: 

 Does a node at depth n satisfy all constraints?
 Observation: 

 All solution nodes will appear at depth n → depth-first search is 
feasible without losing completeness
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 Complexity of Naive Search
 Assumptions

 we have n variables
→ all solutions are a depth n in the search tree

 all variables have v possible values
 Then

 at level 1 we have n∙v possible assignments
(we can choose one of n variables and one of v values for it)

 at level 2, we have (n−1)∙v possible assignments for each 
previously assigned variable

(we can choose one of the remaining n−1 variables and one of 
the v values for it)

 In general: branching factor at depth l: (n−l+1)∙v
 Hence

 The search tree has n!vn leaves 
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Commutative Variable Assignments
 Variable assignments are commutative

 [WA = red then NT = green] is the same as 
[NT = green then WA = red]

 Thus, at each node, we only need to make assignments for 
one of the variables

→ Total complexity reduces to vn
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Backtracking Search
 Depth-first search with single variable assignments per level 

is also called backtracking search

 Backtracking is the basic uninformed search algorithm for 
CSPs

 add one constraint at a time without conflict
 succeed if a legal assignment is found
 Can solve n-queens problems for up to 

 Complexity: 
 Worst case is still exponentional
 heuristics for selecting variables (SELECTUNASSIGNEDVARIABLE)

and for ordering values (ORDERDOMAINVALUES) can improve 
practical performance

n≃25
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Backtracking Search
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Backtracking Search

General-purpose methods 
can give huge gains in 
speed:
1) Which variable should be 

assigned next?
2) In what order should its 

values be tried?
3) Can we detect inevitable 

failure early?
4) Can we take advantage 

of problem structure?
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General Heuristics for CSP
 Domain-Specific Heuristics

 Depend on the particular characteristics of the problem
 Obviously, a heuristic for the 8-puzzle can not be used for the 

8-queens problem
 General-purpose heuristics

 For CSP, good general-purpuse heuristics are known:
 Mininum Remaining Values Heuristic

 choose the variable with the fewest consistent values
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General Heuristics for CSP
 Domain-Specific Heuristics

 Depend on the particular characteristics of the problem
 Obviously, a heuristic for the 8-puzzle can not be used for the 

8-queens problem
 General-purpose heuristics

 For CSP, good general-purpuse heuristics are known:
 Mininum Remaining Values Heuristic

 choose the variable with the fewest consistent values
 Degree Heuristic

 choose the variable with the most constraints on remaining 
variables
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General Heuristics for CSP
 Domain-Specific Heuristics

 Depend on the particular characteristics of the problem
 Obviously, a heuristic for the 8-puzzle can not be used for the 

8-queens problem
 General-purpose heuristics

 Least Constraining Value Heuristic
 Given a variable, choose the value that rules out the fewest 

values in the remaining variables 
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General Heuristics for CSP
 Domain-Specific Heuristics

 Depend on the particular characteristics of the problem
 Obviously, a heuristic for the 8-puzzle can not be used for the 

8-queens problem
 General-purpose heuristics

 For CSP, good general-purpuse heuristics are known:
 Mininum Remaining Values Heuristic

 choose the variable with the fewest consistent values
 Degree Heuristic

 choose the variable that imposes the most constraints on the 
remaining values

 Least Constraining Value Heuristic
 Given a variable, choose the value that rules out the fewest 

values in the remaining variables 
 used in this order, these three can greatly speed up search

 e.g., n-queens from 25 queens to 1000 queens
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Forward Checking
 Idea: 

 keep track of remaining legal values for unassigned variables
 terminate search when any variable has no more legal values
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Forward Checking
 Idea: 

 keep track of remaining legal values for unassigned variables
 terminate search when any variable has no more legal values
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Forward Checking
 Idea: 

 keep track of remaining legal values for unassigned variables
 terminate search when any variable has no more legal values
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Forward Checking
 Idea: 

 keep track of remaining legal values for unassigned variables
 terminate search when any variable has no more legal values

no further assignment possible
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Constraint Propagation
 Problem:

 forward checking propagates information from assigned to 
unassigned variables

 but doesn't look ahead to provide early detection for all failures

only one of them can be blue!
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Constraint Propagation - Sudoku
 Problem

 CSP with 81 variables
 Constraints

 some values are assigned in the start (unary constraints)
 27 constraints on 9 values that must all be different

(9 rows, 9 columns, 9 squares)
 Constraint Propagation

 People often write a list of possible 
values into empty fields

 try to successively eliminate values
 Status

 Automated constraint solvers can
solve the hardest puzzles in no time
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Node Consistency

Node Consistency
 the possible values of a variable must conform to all unary 

constraints
 can be trivially enforced
 Example:

 Sudoku: Some nodes are already filled out, i.e., constrained to 
a single value

More General Idea: Local Consistency
 make each node in the graph consistent with its neighbors
 by (iteratively) enforcing the constraints corresponding to the 

edges
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Arc Consistency
 every domain must be consistent with the neighbors:

A variable Xi  is arc-consistent with a variable Xj if 
 for every value in its domain Di

 there is some value in Dj

 that satisfies the constraint on the arc (Xi ,Xj)

 can be generalized to n-ary constraints
 each tuple involving the variable Xi has to be consistent
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Maintaining Arc Consistency (MAC)
 After each new assignment of a value to a variable, possible values 

of the neighbors have to be updated:

 If one variable (NSW) looses a value (blue), we need to recheck its 
neighbors as well because they might have lost a possible value
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Arc Consistency Algorithm

If X loses a value, 
neigbors of X need 
to be rechecked.

 Run-time: O(n2d 3) (can be reduced to O(n2d 2))
                 more efficient than forward checking
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Path Consistency
 Arc Consistency is often sufficient to

 solve the problem (all domains have size 1)
 show that the problem cannot be solved (some domains empty)

 but may not be enough
 there is always a consistent value in the neighboring region

→ Path consistency
 tightens the binary constraints by considering triples of values

 Algorithm AC-3 can be adapted to this case (known as PC-2)

A pair of variables (Xi , Xj ) is path-consistent with Xm if 
 for every assignment that satisfies the constraint on the arc (Xi ,Xj)
 there is an assignment that satisfies the constraints on the arcs 

(Xi,Xm) and (Xj,Xm)

A pair of variables (Xi , Xj ) is path-consistent with Xm if 
 for every assignment that satisfies the constraint on the arc (Xi ,Xj)
 there is an assignment that satisfies the constraints on the arcs 

(Xi,Xm) and (Xj,Xm)
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k-Consistency
 The concept can be generalized so that a set of k values 

need to be consistent

 1-consistency = node consistency
 2-consistency = arc consistency
 3-consistency = path consistency
 ....

 May lead to faster solution (O(n2d))
 but checking for k-Consistency is exponentional in k in the 

worst case
 therefore arc consistency is most frequently used in practice 



   Informed Search – Constraint Satisfaction Problems                                                  

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.1 |  J. Fürnkranz30

Sudoku
 simple puzzles can be solved with AC-3

 the puzzle has 9 constraints on the rows, 9 on the columns 
and 9 on the square (27 in total)

 each such constraint requires that 9 values are all different
 the 9-valued AllDiff constraints can be converted into pairwise 

binary constraints 
 9x8/2 = 36 pairwise constraints 

 therefore 27x36 = 972 arc constraints

 somewhat more with PC-2
 there are 255,960 path constraints

 however, not all problems can be solved with constraint 
progapagation alone

 to solve all puzzles we need a bit of search
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Integrating Constraint Propagation 
and Backtracking Search

 Performance of Backtracking can be further sped up by 
integrating constraint propagation into the search

 Key idea:
 each time a variable is assigned, a constraint propagation 

algorithm is run in order to reduce the number of choice points 
in the search

 Possible algorithms
 Forward Checking
 AC-3, but initial queue of constraints only contains constraints 

with the variable that has been changed
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Local Search for CSP
 Modifications for CSPs:

 work with complete states 
 allow states with unsatisfied constraints
 operators reassign variable values

 Min-conflicts Heuristic:
 randomly select a conflicted variable
 choose the value that violates the fewest constraints
 hill-climbing with h(n) = # of violated constraints

 Performance:
 can solve randomly generated 

CSPs with a high probability
 except in a narrow range of 

Min-conflicts is the
heuristic that we studied
for the 8-queens problems.

Min-conflicts is the
heuristic that we studied
for the 8-queens problems.
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Problem Structure
 Decomposing the problem into independent subproblems

 The problem of coloring Tasmania is independent of the 
problem of coloring the mainland of Australia
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The Power of Problem Decomposition
 Search space for a constraint satisfaction with n variables, 

each of which can have d values = O(d n)
 Decomposing the problem into subproblems with c variables 

each:
 Each problem has complexity = O(d c)
 There are n/c such problems

→ Total complexity = O(n/c∙d c)
 Thus the total complexity can be reduced from exponential in 

n to linear in n!

 Example: Unconditional 
Independence 

is powerful 
but rare!

Unconditional 
Independence 

is powerful 
but rare!
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Tree-Structured CSP
 A CSP is tree-structured if in the constraint graph any two 

variables are connected by a single path

Theorem: Any tree-structured CSP can be solved in linear time
 in the number of variables (more precisely: O(n∙d 2))

Theorem: Any tree-structured CSP can be solved in linear time
 in the number of variables (more precisely: O(n∙d 2))
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Linear Algorithm for 
Tree-Structured CSPs

1) Choose a variable as a root, order nodes so that a parent always 
comes before its children (each child can have only one parent)

2) For j = n downto 2
 Make the arc (Xi , Xj ) arc-consistent, calling 

REMOVE-INCONSISTENT-VALUE(Xi , Xj )

3) For i = 1 to n
 Assign to Xi any value that is consistent with its parent.
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Nearly Tree-structured Problems
 Tree-structured problems are also rare.
 Most maps are clearly not tree-structured…

 Exception: Sulawesi

 Two approaches for making 
problems tree-structured:

 Removing nodes so that the remaining nodes form a tree
(cutset conditioning) 

 Collapsing nodes together (decompose the graph into a set of 
independent tree-shaped subproblems)
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Cutset Conditioning

1) Choose a subset S of the variables such that the constraint graph 
becomes a tree after removal of S (= the cycle cutset)

2) Choose a (consistent) assignment of variables for S
3) Remove from the remaining variables all values that are 

inconsistent with the variable of S
4) Solve the CSP problem for the remaining variables
5) If no solution → choose a different assignment for variables in 2)

 Example: S = {SA}
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Summary
 CSPs are a special kind of problem:

 states defined by values of a fixed set of variables
 goal test defined by constraints on variable values

 Backtracking = depth-first search with one variable assigned 
per node

 Variable ordering and value selection heuristics help 
significantly

 Forward checking prevents assignments that guarantee later 
failure

 Constraint propagation (e.g., arc consistency) does 
additional work

 to constrain values and detect inconsistencies
 The CSP representation allows analysis of problem structure
 Tree-structured CSPs can be solved in linear time
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