TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Introduction

What are games and why are they interesting?

History and State-of-the-art in Game Playing
Game-Tree Search

Minimax

Negamax

a-f pruning
Real-time Game-Tree Search

NegaScout

evaluation functions

practical enhancements

selective search

Multiplayer Game Trees ‘F -:Bi Many slides based on

o m_g Russell & Norvig's slides
=gy - Artificial Intelligence:
=ge=m A Modern Approach

Game Playing: Adversarial Search 1 V2.1 | J. Firnkranz

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Games are a form of multi-agent environment
What do other agents do and how do they affect our success?
Cooperative vs. competitive multi-agent environments.

Competitive multi-agent environments give rise to adversarial
search a.k.a. games

Why study games?
Fun; historically entertaining
Interesting subject of study because they are hard

Easy to represent and agents restricted to small number of
actions

Problem (and success) is easy to communicate

Game Playing: Adversarial Search 2 V2.0 | J. Firnkranz

TU Darmstadt

Search — no adversary

Solution is method for
finding goal

Heuristics and CSP
techniques can find
optimal solution

Evaluation function:

estimate of cost from start
to goal through given node

Examples:

path planning, scheduling
activities

Game Playing: Adversarial Search 3

Einfuhrung in die Klnstliche Intelligenz

Games — adversary

Solution is strategy

strategy specifies move
for every possible
opponent reply

Time limits force an
approximate solution

Evaluation function:

evaluate “goodness” of
game position

Examples:

chess, checkers, Othello,
backgammon, ...

V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Zero-Sum Games

one player's gain is the other player's (or players') loss
turn-taking

players alternate moves
deterministic games vs. games of chance

do random components influence the progress of the game?
perfect vs. imperfect information

does every player see the entire game situation?

deterministic chance
perfect chess, checkers, Go, backgammon,
information Othello monopoly

battleship, kriegspiel,
matching pennies,
Roshambo

imperfect
information

bridge, poker,
scrabble

Game Playing: Adversarial Search 4 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Computer considers possible lines of play
(Babbage, 1846)
Algorithm for perfect play
(Zermelo, 1912; Von Neumann, 1944)
Finite horizon, approximate evaluation
(Zuse, 1945; Wiener, 1948; Shannon, 1950)
First computer chess game
(Turing, 1951)
Machine learning to improve evaluation accuracy
(Samuel, 1952-57)
Selective Search Programs
(Newell, Shaw, Simon 1958; Greenblatt, Eastake, Crocker 1967)
Pruning to allow deeper search
(McCarthy, 1956)
Breakthrough of Brute-Force Programs
(Atkin & Slate, 1970-77)

Game Playing: Adversarial Search 5 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Name: Marion Tinsley

Profession: Teach
mathematics

Hobby: Checkers

Record: Over 42 years
loses only 3 (!)
games of checkers

Game Playing: Adversarial Search 6 © Jonathan Schaeffer V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Chinook

First computer to win human world championship!

Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

Game Playing: Adversarial Search 7 © Jonathan Schaeffer V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Jonathan Schaeffer

One Jump

Ahead

July 19 2007, after 18 years of computation: =

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393

Research Article

Checkers Is Solved

Jonathan Schaetfer.* Neil Burch, Yngvi Bjdmsson, Akihiro Kishimoto, Martin Miiller, Robert Lake, Paul Lu, Steve Sutphen

Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada.

*To whom correspondence should be addressed. E-mail: jonathan(@cs.ualberta.ca

The game of checkers has roughly S00 billion billion 1992, over 200 processors were being used simultaneously.
possible positions (5 x 10°"). The task of solving the The end result is one of the longest running computations
game, determining the final result in a game with no completed to date.

mistakes made by either plaver, is daunting. Since 1989, This paper annournces Thﬂt_ c_hecke_rs has been weakly
almost continuously, dozens of computers have been solved. F!'Gln the starting position (_Plg- 1A), we have a
working on solving checkers, applying state-of the art computational proof that checkers i1s a draw. The proof

consists of an explicit strategy that never loses — the
program can achieve at least a draw against any opponent,
playing either the black or white pieces. That checkers 1s a
draw 1s not a surprise: grandmaster players have
conjectured this for decades.

The checkers result pushes the boundary of artificial
intelligence (AI). In the early days of Al research, the
easiest path to achieving high performance was seen to be
emulating the human approach. This was fraught with
difficulty, especially the problems of capturing and
encoding human knowledge. Human-like strategies are not

artificial intelligence techniques to the proving process.
This paper announces that checkers is now solved:
perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date,
roughly one million times more complex than Connect
Four. Artificial intelligence technology has been used to
generate strong heuristic-based game-playing
programs, such as DEEP BLUE for chess. Solving a game
takes this to the next level. by replacing the heuristics
with perfection.

ttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

branching factor several
hundred

TD-Gammon v1 —
1-step lookahead,
learns to play games
against itself

TD-Gammon v2.1 —
2-ply search, does
well against world
champions

TD-Gammon has
changed the way 1
experts play J =
backgammon.

Game Playing: Adversarial Search 9 © Jonathan Schaeffer V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

FENG-HSIUNG HSU

Kasparov Deep Blue
5'10” 6’5"
176 Ibs 2,400 Ibs
34 years 4 years
50 billion neurons 512 processors
2 pos/sec 200,000,000 pos/sec
Extensive Primitive
Electrical/chemical Electrical
Enormous None

http://www.wired.com/wired/archive/9.10/chess.htm

Game Playing: Adversarial Search 10 © Jonathan Schaeffer V2.0 | J. Flrnkranz

http://www.wired.com/wired/archive/9.10/chess.html

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Reversi/Othello

Name: Takeshi Murakami

Title: World Othello Champion
1997: Lost 6-0 agalinst Othello
Program Logistello

Game Playing: Adversarial Search 11 © Jonathan Schaeffer V2.0 | J. Flrnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Computer Go

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills:
Selftaught assembly
language programmer
Accomplishments:
dominated computer
go for 4 years.

Game Playing: Adversarial Search 12 © Jonathan Schaeffer V2.0 | J. Flirnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Computer Go, early 2000s

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills:

Selftaught assembly

language programmer
Accomplishments:
dominated computer
go for 4 years.

Gave Handtalk a 9
stone handicap and
still easily beat
the program,
thereby winning
$15, 000

Game Playing: Adversarial Search 13 © Jonathan Schaeffer V2.1 | J. Flrnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Oktober 2015:

AlphaGo beats European
champion Fan Hui

First win of a computer against

a professional Go player
https://gogameguru.com/alpha-go-fan-hui/

March 2016:

AlphaGo beats Lee Sedol,
one of the best professional
players

¢ LEESEDOL
+++00:01:00

Techniques:

] A9
. (@ .
$

Combination of Deep Learning, JasiEee

Google DeepMind

Reinforcement Learning and
Monte-Carlo Tree Search

Game Playing: Adversarial Search 14 V1.0 | J. Firnkranz

https://gogameguru.com/alpha-go-fan-hui/

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Improved version of AlphaGo

Also successfully learned to play chess and Shogi (Japanese
Chess)

December 2017:

AlphaZero beats the strongest programs in all three games
after hours (chess) or days (Go) of training

Game White Black Win Draw Loss
- fi 5 2
Ol Aa"phm_Zer 0 Stockfish 2 .Hfi 0
Stockfish AlphaZero 3 47 0
Shoei AlphaZero Elmo 43 2 3
& Elmo AlphaZero 47 0 3
Go AlphaZero AGO 3-day 31 - 19
AGO 3-day AlphaZero 29 - Zi

Table 1: Tournament evaluation of AlphaZere in chess, shogi, and Go, as games won, drawn
or lost from AlphaZero’s perspective, in 100 game matches against Stockfish, Elmo, and the
previously published AlphaGe Zero after 3 days of training. Each program was given 1 minute

of thinking time per move.
https://arxiv.org/pdf/1712.01815.pdf

Game Playing: Adversarial Search 15 V1.0 | J. Firnkranz

https://arxiv.org/pdf/1712.01815.pdf

TU Darmstadt EinfUhrung in die Kinstliche Intelligenz

Outline

Introduction
= What are games?
= History and State-of-the-art in Game Playing
Game-Tree Search
= Minimax
= Q- pruning
= NegaScout
Real-time Game-Tree Search
= evaluation functions
= practical enhancements
= selective search
Games of imperfect information and games of chance

Simulation Search

= Monte-Carlo search
= UCT search

Game Playing: Adversarial Search 16 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Ultra-weak
prove whether the first player will win, lose, or draw from the
initial position, given perfect play on both sides
could be a non-constructive proof, which does not help in play
could be done via a complete minimax or alpha-beta search

Example:
chess when first move may be a pass

Weak

provide an algorithm which secures a win for one player, or a
draw for either, against any possible moves by the opponent,
from the initial position only
Strong
provide an algorithm which can produce perfect play from any
position
often in the form of a database for all positions

Game Playing: Adversarial Search 17 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Retrograde Analysis Algorithm (goes back to Zermelo 1912)
builds up a database if we want to strongly solve a game

Generate all possible positions

Find all positions that are won for player A

mark all terminal positions that are won for A

mark all positions where A is to move and can make a
move that leads to a marked position

mark all positions where B is to move and all moves lead

to a marked position

if there are positions that have not yet been considered goto ii.
Find all positions that are won for B

analogous to 1.

All remaining positions are draw

Game Playing: Adversarial Search 18 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Several Games habe been solved completely using RA
Tic-Tac-Toe, Go-Moku, Connect-4, ...
For other games, solutions for partial

Chess

All endgames with 7 pieces (=2 kings + 5 additional pieces)
are solved since 2012

ca. 500 000 000 000 000 positions had to be stored, even when
considering symmetries etc.

Accessible on-line http://tb7.chessok.com/
https://chessprogramming.wikispaces.com/Endgame+Tablebases

Checkers

In checkers, databases with up to 10 pieces were crucial for
(weakly) solving the game

Overall, RA is too complex for most games
Impossible to store all possible game states

Game Playing: Adversarial Search 19 V1.0 | J. Firnkranz

http://tb7.chessok.com/
https://chessprogramming.wikispaces.com/Endgame+Tablebases

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Solved

Tic-Tac-Toe, Connect-4, Go-Moku, 9-men Morris

Most recent addition: Checkers is a draw

Solved with 18 years of computation time
(first endgame databases were computed in 1989)
http://www.sciencemag.org/cgi/content/abstract/1144079

Partly solved

Chess

all 6-men endgames, some 7-men endgames

longest win: position in KQN vs. KRBN after 517 moves
http://timkr.nome.xs4all.nl/chess2/diary_16.htm

World-Championship strength

Chess, Backgammon, Scrabble, Othello, Go, Shogi
Human Supremacy

Bridge, Poker

Game Playing: Adversarial Search 20 V2.1 | J. Firnkranz

http://www.sciencemag.org/cgi/content/abstract/1144079
http://timkr.home.xs4all.nl/chess2/diary_16.htm

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Two players: MAX and MIN

MAX moves first and they take turns until the game is over.

ply: a half-move by one of the players
move: two plies, one by MAX and one by MIN

Winner gets award, looser gets penalty.

Games as search:

Initial state:
e.g., board configuration of chess
Successor function:
list of (move,state) pairs specifying legal moves.
Terminal test:
Is the game finished?
Utility function (objective function, payoff function)
Gives numerical value of terminal states
E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe (next)
typically from the point of view of MAX

Game Playing: Adversarial Search 21 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

MAX (x)
MIN (o) : X X X
X X X

MAX X0 X |0 X

%) ° MAX is to move at odd depths
MIN (o) CLT] o P o MIN is to move at even depths

x[o[x] [X[o[x] X[o[x] --- Terminal nodes are evaluated
TERMINAL O[X| [O|O|X X ' . .
ol | [xIxlo] [xlolo from MAX's point of view
Utlity -1 0 +1

Game Playing: Adversarial Search 22 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Perfect play for deterministic, perfect-information games

Find the best strategy for MAX assuming an infallible MIN
opponent.

Assumption: Both players play optimally
Basic idea:

the terminal positions are evaluated form MAX's point of view
MAX player tries to maximize the evaluation of the position

MAX chooses move B
MAX to move 5 :> with value 5

A C

Game Playing: Adversarial Search 23 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Perfect play for deterministic, perfect-information games

Find the best strategy for MAX assuming an infallible MIN
opponent.

Assumption: Both players play optimally
Basic idea:

the terminal positions are evaluated form MAX's point of view
MAX player tries to maximize the evaluation of the position
MIN player tries to minimize MAX's evaluation of the position

MIN chooses move C
MIN to move v :> with value 1

A C

Game Playing: Adversarial Search 24 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Perfect play for deterministic, perfect-information games
Find the best strategy for MAX assuming an infallible MIN
opponent.

Assumption: Both players play optimally

Basic idea:
the terminal positions are evaluated form MAX's point of view
MAX player tries to maximize the evaluation of the position
MIN player tries to minimize MAX's evaluation of the position

Minimax value

Given a game tree, the optimal strategy can be determined by
using the minimax value of each node:

UTILITY (n) if n is a terminal state
MINIMAX (1)=|max, g ccrssons,y MINIMAX (s) if n is a MAX node

Min, ¢ gccpssors(m MINIMAX (s) if # is a MIN node

Game Playing: Adversarial Search 25 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

E MAX chooses move q,

MAX 3/A with value 3

MIN 3)\&/

Minimax maximizes the worst-case outcome for MAX.

Game Playing: Adversarial Search 26 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

v «— MAX-VALUE(state)
return action a which has value v and ¢, s is in SUCCESSORS(state)

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
Vé&— —O0
for a, sin SUCCESSORS(state) do v« MaX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
U o0
for a, sin SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Game Playing: Adversarial Search 27 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

The minimax algorithm can be reformulated in a simpler way

for evaluation functions that are symmetric around O
(zero-sum)

Basic idea:

Assume that evaluations in all nodes (and leaves) are always
from the point of view of the player that is to move
the MIN-player now also maximizes its value
As the values are zero-sum, the value of a position for MAX is
equal to minus the value of position for MIN
— NegaMax = Negated Maximum

NEGAMAX (n)= UTILITY (n) if n 1s a terminal state
max, SUCCESSORS(n)(_NEGAMAX(S>) if n is an internal node

Game Playing: Adversarial Search 28 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Completeness

Yes, if tree is finite

e.g., chess guarantees this through separate rules
(3-fold repetition or 50 moves w/o irreversible moves are draw)

Note that there might also be finite solutions in infinite trees
Optimality

Yes, if the opponent also plays optimally

If not, there might be better strategies (— opponent modeling)

Time Complexity

o(b")

has to search all nodes up to maximum depth (i.e., until

terminal positions are reached)

for many games unfeasible (e.g., chess: p~35, m~60)
Space Complexity

search proceeds depth-first — O(m-b)

Game Playing: Adversarial Search 29 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Minimax needs to search an exponential number of states
Possible solution:

Do not examine every node
remove nodes that can not influence the final decision

“If you have an idea that is surely bad, don't take the time to
see how truly awful it is.” -- Pat Winston

MAX 22 « We don’t need to compute the value
at this node.
MIN =2 <1 * No matter what it is, it can’t affect
the value of the root node.
MAX
2 7 1 ?
Game Playing: Adversarial Search 30

Based on a slide by Lise Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Maintains two values [a,p] for all nodes in the current path

Alpha:

the value of the best choice (i.e., highest value) for the MAX
player at any choice node for MAX in the current path

— MAX can obtain a value of at least a

Beta:

the value of the best choice (i.e., lowest value) for the MIN
player at any choice node for MIN in the current path

— MIN can make sure that MAX obtains a value of at most f3

The values are initialized with [—oo, +o0]

Game Playing: Adversarial Search 31 V2.0 | J. Flirnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha and Beta are used for pruning the search tree:

Alpha-Cutoff:
if we find a move with value <o at a MIN node, we do not
examine alternatives to this move

we already know that MAX can achieve a better result in a
different variation

Beta-Cutoff:

if we find a move with value > 3 at a MAX node, we do not
examine alternatives to this move

we already know that MIN can achieve a better result in a
different variation

Game Playing: Adversarial Search 32 V2.0 | J. Flirnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

function ALrHA-BETA-DECISION(state) returns an action
v «— MAX-VALUE(state, —0 , +x)
return action @ which has value v and g, s is in SUCCESSORS(state)

function MaAX-VALUE(state, o,) returns a utility value
inputs: state, current state in game

v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

U =0 if TERMINAL-TEST(state) return UTILITY (state)
for a, sin SUCCESSORS(state) do Y <+ o0
ve— M Ax(y, MiN-V ALUE(S, «, _.;3)) for a, s in SUCCESSORS(state) do
v «— MIN(v, MAX-VALUE(s, o, p))
- if v < o then return v
a— M A}&(O{, "E-‘) ,8 - MINw ,V)
return v return v

if v > [then return v

function NMIN-VALU E-(sta.te, Q, __f‘3) returns a utility value
same as MAX-VALUE but with roles of «, (3 reversed

Game Playing: Adversarial Search 33 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

The window is initialized with [—oo, +o0]
search runs depth-first
until first leaf is found (value 3) Aufruf von

/ MAX-VALUE(A,—,+o)

Aufruf von [—o0, +00]
MIN-VALUE(B,—OO,+OO)

Aufruf von
MAX-VALUE(E,—c0,+)

Game Playing: Adversarial Search 34 V2.0 | J. Flirnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

It is followed that at node B, MIN can obtain at least 3
Subsequent search below B is now initialized with [—oo, +3]
The leaf node (value 12) is worse for MIN (higher value for MAX)

Aufruf von
/\ MAX-VALUE(F,—o0,+3)

in der 2. lteration der
Schleife von MIN-VALUE

Game Playing: Adversarial Search 35 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

The next leaf is also worse for MIN (value 8)
Node B is now completed, and evaluated with 3
The value is propagated up to A as a new minimum for MAX

0 43 Aufruf von
| o MAX-VALUE(F—o+3)
[—o0,+3] in der 2. Iteration der

Schleife von MIN-VALUE

Game Playing: Adversarial Search 36 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Subsequent searches now know that MAX can achieve at
least 3, i.e., the alpha-beta window is [+3, +w]

The value 2 is found below the min node

As the value is outside the window (2 < 3), we can prune all
other nodes at this level

[—o0,+ 0]

Game Playing: Adversarial Search 37 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Subsequent searches now know that MAX can achieve at
least 3, i.e., the alpha-beta window is [+3, +x]

The value 14 is found below the min node

Game Playing: Adversarial Search 38 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

The next search now knows that MAX can achieve at least 3
but MIN can hold him down to 14

l.e., the alpha-beta window is [+3, +14]
For the final node the window is [+3, +5]

Game Playing: Adversarial Search 39 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Note that the order of the evaluation of the nodes is crucial

e.g., if in node D, the node with evaluation 2 is seached first,
another cutoff would have been possible

— good move order is crucial for good performance

Game Playing: Adversarial Search 40 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Consider a node »
somewhere In the tree

If Player has a better choice

at parent node of n
or at any choice point
further up
n Will never be reached Iin
actual play.

Player Hence we can prune n

as soon as we can
Opponent establish that there is a
better choice

Player

Opponent

Game Playing: Adversarial Search 41 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Of course, cutoffs can also occur at MAX-nodes

(-00, +00)

o cutoff

B cutoff

Game Playing: Adversarial Search 42 Graph by Alexander Reinefeld V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Cutoffs may occur arbitrarily deep in (sub-)trees

shallow a cutoff

deep a cutoff

Game Playing: Adversarial Search 43 Graph by Alexander Reinefeld V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
_ _
| | N H
| N N N N
[]
(1 L1 L[] ey e N e I e I

OO0 oo oL
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 44 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
| H
[—o0,+o0]
N H B L
[—o0,+ 0]
N B L L L
[—o0, 4 00]
L]
[—o0,+ 0]
(1 L [] (1 01 0O L [e e I A I
[—oo,—I-O[D] 0]

oo o o

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 45 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

_
[—o0,+ 0]
N |
[—o0,+o0]
N L N N
[—o0,+ 0]
N N L N N
[—o0,+00]
0 []
[—o0,+ 0]
O[] [0 [1 O OO O 0O oo o 0 [
[_w’+of]_ 0]

oo oon

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 46 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
| H
[—o0, + 0]
N H B L
[—c0,+ 0]
N B L L L
[—c0,+ 0]
0[] []
[0H 0]
0[]-3[1 [(1 01 0O L [e e I A I
[0,pre0]

OO0 oOoOoDOdooo oo L
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 47 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
| H
[—o0,+o0]
N H B L
[—o0,+ 0]
N B L L L
[—o0,+00]
07 []
[0H 0]
0[]-3[1 L[] (1 01 0O L [e e I A I
[0,pre0]

OO0 o oo oo S E L
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 48 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

]
[—o0,+ 0]
[] []
[—o0,+ 0]
[] [] [] []
[—o0,+ 0]
0[] [] [] [] []
[—o0,+00]
07 []
[0H 0]
0[]-3] L[(1 01 0O L [e e I A I
0,00]

OO0 oo oo o L
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 49 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
M H
[—o0,+ 0]
N N N H
[—o0,+ 0]
0[] N N H H
[\, 0]
0 3 L]
-y
0 []-3[] 3[] (1 [L [(1 L [[[]
[—o0]0]

oot

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 50 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
M H
[—o0,+ 0]
N N N H
[—o0,+ 0]
0[] N N H N
[\, 0]
0 3[] []
.
0 []-3[] 3[] (1 L [(1 L [[[]
NN 10000000 oL

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 51 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
o[| H
[—o0,+ 0]
o[| [] [] []
[—o0,+ 0]
0[] N N H H
0 3[] []
0 []-3[] 3[] (1 L [(1 L [[[]
NN 10000000 oL

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 52 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

_
[~ +20]
o[| H
[~0,0]
o[| N | |
[—00,0
0[] M N N ||
[~0,0]
0 3[] []
[—o0, 0]
0 []-3[] 3[] 501 OO0 O 0O 0O 0O 0O 0O
[—o0, 0]
SN JO0O000000oO00o0a

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 53 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
O[] H
[—0,0]
O[|] N L
[—0, 0
0[] N N N N
[_OO)O]
0 3[] 2 []
[—0,0]
0 []-3[] 3[] 2[] L L (1 L L L []
oo O]
L] NN NNINNN N

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 54 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
o[| H
[—0,0]
0l | N N L
[—,0
0 [| N N N N
[_OO)O]
0 3[] 2[] L]
[—0, 0]
0 []-3[] 3[] 2[] L 0 O e I e
NN N HiNINININININ e

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 55 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt

Game Playing: Adversarial Search

Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
o[| H
[—0,0]
0l | 2 | N N
[—0,0,
0 [2] | N N L
[_OO)O]
0 3[] 2[] L]
-3[] 3[] 2[] L 0 O e I e
NN N HiNINININININ e
o 5 333 -302-23525-50151-30-55 -33 2

56 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt

Game Playing: Adversarial Search

Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

|
[—o0,+ 0]
o[H
[—0,0]
ol | 2] | N H
[, 0
0[] 2[]] H
0 3[] 2[] L]
-3[] 3[] 2[] N [[[]
NN HiN HiNEIN NN nn
05 -333 -302 -23525-501051-30--55 -33 2

S7 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt

Game Playing: Adversarial Search

Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

o[|
[—o0,+ 0]
o[| H

o | 2| | N L
0[] 2[] L] L

0 3[2[] []
-3[] 3[] 2[| [e e I A I
. [1[] HiEINNININ N
05 333 -302-23525-50151-30--55 -33 2

58 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

o]
10,4+ 0]

o[]]
[0, + 00

0 | 2] | N N
[0,+o0]

0[] 2[] [N

(0,400

10,4+ 0]

0 []-3[] 3[] 2[] sC1 01 01 [L[]

[0, +o0]
mjuln (1L minln|nininl=inln

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 59 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

o]
10,4+ 0]

o[]]
[0, + 00

0 | 2] | N N
[0, +o0]
0[] 207 [N

[0,+ 00

10,4+ 0]

0 []-3[] 3[] 2 | 1] L[L L []

[O]
il (][] ooooooon

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 60 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

o]
10,4+ 0]

o[M
[0,+ 00
O[| 2[] []]
10,4+ 0]
0[] 2[] [] []

[0, +00
0 3[2[] 11 [
1J+ o]

0 []-3[] 3[] 2[] i(1-3[1 [[1 L[]
[1.poo]

LI ET L Hin NN
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 61 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

N
[0, +0o0]
O[] M
[0,+00
o[2[] (] []
[0, +0o0]
0[] 2[]] N
[0, 400
0 3 2[] 1] []
1J+ o]
0 []-3[] 3[] 2[] i(1-3[1 [[1 L[]
[1,ftoo]
NN N NN

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 62 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt

Game Playing: Adversarial Search

Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

o]
[0, +o0]
o[]
[O,+oo
o[2[] 1[] [
[0, +o0]
0[] 2] 1[] []
[O,+oo
0 3[] 2[] 1] [
-3[] 3[] 2[] 10]1-3[1 [0 O [
NN i NN Innn
o5 333 -302-23525-50151-30--55 -33 2

63 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

R
o[| M

0l | 2 | 1] |

0[] 2] 1[| ||
1,+00]

0 3[] 2[| 1 []
1,(+o0]
0 []-3[] 3[] 2[] 1[]-3[]-5 [1 L[]
[Li+0]

LI][] HiEIE NI
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 64 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

R
o[| M

0l | 2 | 1] |

0[] 2] | 1[| N

0 []-3[] 3[] 207 1[] -3[] -5 1 O
[1+o0]

LI][] HiEIE NI
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 65 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

R
o[| M

0l | 2 | 1] |

0[] 2] | 1] -5 |

0 []-3[] 3[] 2[] 1[]-3[]-5 L1 L]

LI][] HiEIE NI
05 -333-302-23525-50151-30-55-33 2

Game Playing: Adversarial Search 66 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt

Game Playing: Adversarial Search

Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

0[]
[0, +0]
0| | 1] |
o[] 2[] 1] [
0[] 2[] 1[] -5 [
0 3[2[] 1[] -5[]
-3[] 3[] 2[] 1[] -3[] -5 L]
minln (100 Hinln []
o 5 - 333302 -23525-50151-30--55 -33 2

67 Example due to L. Getoor V2.0 | J. Flrnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

1[]
[0,+00]
0[] 1[]
[0,1]
o[’ 2[1] []
0,1]
0[] 2[1[] -5 []
[0,1]
0 3[] 2] 1[] -5[] []
[0,1]
0[]-3[] 3[] 2[] 1[] -3[] -5[] o
[0,1]
L1 B Hil OO B N

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 68 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

1]
[0,+00]
0[] 1]
[0,1]
0[] 2[] 1] 2[
0,1]
0[] 2[] 1[] -5 2[]

[0,1]

0 3[2[] 1[] -5[] 2[]
[0,1]

0[]-3[]1 3[] 2] | 1[] -3[]-5[] 2[|
[0,1]

L1 B Hil OO B N

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 69 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Alpha-Beta Example

Principal Variation
The line that will be 1

played if both players A
play optimally. The PV =

determines the value of
the position at the root.

[]

05 -333 -302-23525-50151-30-55 -33 2

Game Playing: Adversarial Search 70 Example due to L. Getoor V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Pruning does not affect final results
Entire subtrees can be pruned.
Effectiveness depends on ordering of branches
Good move ordering improves effectiveness of pruning
With “perfect ordering,” time complexity is O(56™?)
this corresponds to a branching factor of Vb
— Alpha-beta pruning can look twice as deep as minimax in the
same amount of time
However, perfect ordering not possible
perfect ordering implies perfect play w/o search
random orders have a complexity of O(b*"")
crude move orders are often possible and get you within a

constant factor of O(5™?)
e.g., in chess: captures and pawn promotions first, forward
moves before backward moves

Game Playing: Adversarial Search 71 V2.0 | J. Firnkranz

TU Darmstadt Einfuhrung in die Klnstliche Intelligenz

Animated explanations and examples of Alpha-Beta at work
(in German)
http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php

Game Playing: Adversarial Search 72 V2.0 | J. Firnkranz

http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php

	Folie 1
	What are and why study games?
	Relation of Games to Search
	Folie 4
	Folie 5
	Chinook vs. Tinsley
	Chinook
	Folie 8
	Backgammon
	Man vs. Machine
	Reversi/Othello
	Go: On the One Side
	Go: On the One Side
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Game setup
	Partial Game Tree for Tic-Tac-Toe
	Folie 23
	Folie 24
	Optimal strategies
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Alpha-beta pruning
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	General alpha-beta pruning
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Final Comments about Alpha-Beta Pruning
	Folie 72

