
Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz1

Outline
 Introduction

 What are games and why are they interesting?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 NegaMax
 α-β pruning

 Real-time Game-Tree Search
 NegaScout
 evaluation functions
 practical enhancements
 selective search

 Multiplayer Game Trees Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz2

Alpha-Beta – NegaMax Formulation

Code by Alexander Reinefeld

Recursive call with negated window

Note the negated return value!

[ MIN=− MAX ,  MIN=−MAX]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz3

Alpha-Beta (Min-Max Formulation)

Graph by Alexander Reinefeld

2 5 9 1 4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[5,+∞]

[−∞ ,+∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz4

Alpha-Beta (NegaMax Formulation)

Graph by Alexander Reinefeld

‒2 ‒5 ‒9 ‒1 ‒4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[−∞ ,−5]

[−∞ ,+∞]

Values at min-nodes are
negated, and alpha and
beta-values are swapped

The child max-node
returns -4 as the result .

(9>5)

(−4>−5)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz5

Minimal Window Search
 If we have a good guess about the value of the position, we

can further increase efficiency of Alpha-Beta by starting with
a narrower interval than [−∞, +∞]

 such an aspiration window will result in more cut-offs
 with the danger that they may not be correct

 Extreme case: Minimal Window β = α + 1
 No value can be between these two values

 assuming an integer-valued evaluation function
 Possible results:

 FAIL HIGH:

 FAIL LOW:

 Thus, MWS tests efficiently (many cutoffs) whether a position
is better than a given value or not

Value≥ =1 ⇒ Value

Value≤

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz6

NegaScout
(Principal Variation Search)

 if we can establish that the value of a node is lower
(FAIL LOW), the node is not interesting (a better node exists)

 If FAIL-HIGH, we know that this is better, but not how much
 need to re-search the tree with a bigger window

Based on a slide by Alexander Reinefeld

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz7

NegaScout (Reinefeld 1982)

Code by Alexander Reinefeld

FAIL-HIGH:
t is outside the null window
(but still within the original window)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz8

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

1. Fall: t ≤ a:
 Zug brachte keine Verbesserung
 nächster Zug wird mit

-NEGASCOUT(s,-a-1,-a)
durchsucht

-NEGASCOUT(s,-a-1,-a)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz9

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

2. Fall: a < t < β:
 Zug bringt zumindest t
 Genauer Wert läßt sich aber nicht

bestimmen, da Zweige aufgrund
des falschen β-Werts geprunt
worden sein könnten

 2. Zug muß nochmals durchsucht
werden mit -NEGASCOUT(s,-β,-t)

-NEGASCOUT(s, -β, -t)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz10

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

3. Fall: t ≥ β:
 Zug bringt mehr als β
 Weder dieser noch ein anderer

Zug wird gespielt werden, da ein
anderer Pfad im Baum dem
Gegner mehr verspricht.
→ Beta-Cutoff

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz12

NegaScout Example

Example by Alexander Reinefeld

≥8 4

NegaScout assumes
MIN can get at least 6
→ we can prune this
branch because MAX
has already at least 8.

−4

‒2 ‒5 ‒9 -8 ‒1 ‒4

4

≤ -8

+4
+8

+4
+1

hope for ≤ 5 / ≥ -5
(-6, -5)

The assumption has
turned out to be correct
(4 ≤ 5), so the null Window
cut-off was justified.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz13

NegaScout Example

Example by Alexander Reinefeld

Re-Search would
happen if this subtree
fails high (t > 5)

≥8 4

Then this node
would return ≥ t

... and the right branch of this node would
be re-searched with the window [t, +∞]

NegaScout assumes
MIN can get at least 6
→ we can prune this
branch because MAX
has already at least 8.

 −4

‒2 ‒5 ‒9 -8 ‒1 ‒4

-4

≤ -8

+4
+8

+4
+1

hope for ≤ 5 / ≥ -5
(-6, -5)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz14

Performance of NegaScout
 Essentially, NegaScout assumes that the first node is best

(i.e., the first node is in the principal variation)
 if this assumption is wrong, it has to do re-searches
 if it is correct, it is much more efficient than Alpha-Beta

→ it works best if the move ordering is good
 for random move orders it will take longer than Alpha-Beta
 10% performance increase in chess engines

 It can be shown that NegaScout prunes every node that is
also pruned by Alpha-Beta

 Various other algorithms were proposed, but NegaScout is
still used in practice

 SSS*: based on best-first search
 MTD(f): improves NegaScout by returning upper or lower

bounds on the true value, needs memory (TTable) for that

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz15

Move Ordering
 The move ordering is crucial to the performance of alpha-

beta search
 Domain-dependent heuristics:

 capture moves first
 ordered by value of capture

 forward moves first
 Domain-independent heuristics:

 Killer Heuristic
 manage a list of moves that produced cutoffs at the current level

of search
 Idea: if there is a strong threat, this should be searched first

 History Heuristic
 maintain a table of all possible moves (independent of current

position)
 if a move produces a cutoff, its value is increased by a value that

grows fast with the search depth (e.g., d 2 or 2d)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz16

Imperfect Real-World Decisions
 In general the search tree is too big to make it possible to

reach the terminal states!
 even though alpha-beta effectively doubles the search depth

 Examples:
 Checkers: ~1040 nodes
 Chess: ~10120 nodes

 For most games, it is not practical within a reasonable
amount of time

 Key idea (Shannon 1950):
 Cut off search earlier

 replace TERMINAL-TEST by CUTOFF-TEST
 which determines whether the current position needs to be

searched deeper
 Use heuristic evaluation function EVAL

 replace calls to UTILITY with calls to EVAL
 which evaluates how promising the position at the cutoff is

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz17

Using Evaluation Functions
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation
function

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz18

Brute-Force vs. Selective Search
 Shannon Type-A (Brute Force)

 search all positions until a fixed horizon
 CUTOFF-TEST test only tests for the depth

of a position
 Shannon Type-B (Selective Search)

 CUTOFF-TEST prunes uninteresting lines
(as humans do)

 Selective Search preferred by Shannon and contemporaries
 early program limit branching factor (e.g., Newell/Simon/Show

to the „magical number“ 7)
 Brute-Force Search was shown to outperform selective

search in the 70s
 Current programs use a mixture

 selective search near the leaves

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz19

Fixed-Depth Alpha-Beta

Cutoff the search at a pre-determined depth
 CUTOFF-TEST compares the current search depth to a fixed

maximum depth D and returns true if the depth has been
reached or if the position is a terminal position

 At a terminal position:
 return the game-theoretic score

 At a max-depth position:
 return the value of the evaluation function EVAL

 At an interior node:
 recursively call alpha-beta
 increment the current search depth by one

Note:
 the incrementation of the search depth is often realized with a

decrement of an initial search depth, and a cutoff at 0.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz20

Evaluation Function

 Evaluation function or static evaluator is used to evaluate the
“goodness” of a game position.

 Contrast with heuristic search where the evaluation function
was a non-negative estimate of the cost from the start node to
a goal and passing through the given node

 The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.

 f (n) >> 0: position n good for me and bad for you
 f (n) << 0: position n bad for me and good for you
 f (n) ≈ 0: position n is a neutral position
 f (n) = +∞: win for me
 f (n) = −∞: win for you

Based on a slide by L. Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz21

Heuristic Evaluation Function
 Idea:

 produce an estimate of the expected utility of the game from a
given position.

 Performance:

 depends on quality of EVAL.

 Requirements:

 EVAL should order terminal-nodes in the same way as
UTILITY.

 Computation should not take too long (many leaf nodes have
to be evaluated)

 For non-terminal states the EVAL should be strongly correlated
with the actual chance of winning.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz22

Linear Evaluation Functions
 Most evaluation functions are linear combinations of features



 a feature fi encodes a certain characteristic of the position

 e.g., # white queens/rooks/knights,..., # of possible moves,
of center squares under control, etc.

 originate from experience with the game
 Advantages:

 conceptually simple, typically fast to compute
 Disadvantages:

 tuning of the weights may be very hard (→ machine learning)
 adding up the weighted features makes the assumption that

each feature is independent of the other features

EVAL s=w
1
⋅f

1
sw

2
⋅f

2
s...w

n
⋅f

n
 s=∑

i=1

n

w
i
f

i
 s

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz23

Evaluation Function Examples
 Example of an evaluation function for Tic-Tac-Toe:

 f(n) = [# 3-lengths open for me] − [# 3-lengths open for you]
 where a 3-length is a complete row, column, or diagonal

 Alan Turing’s function for chess
 f(n) = w(n)/b(n) where

 w(n) = sum of the point value of white’s pieces
 b(n) = sum of black’s

 Chess champion program Deep Blue has about 6000 features
in its evaluation function

 Current state-of-the-art programs use non-linear functions
 e.g. different feature weights in different game phases

Based on a slide by L. Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz24

Evaluation functions

Evaluation is typically very brittle
 small changes in the position may cause large leaps in the

evaluation

 Black is clearly winning White is clearly winning
 (up in material) (can take black's queen)

→ Evaluation and Search are not independent:
 What is taken care of by search need not be in EVAL

→ Evaluation only applied to stable „quiescent“ position

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz25

Quiescence Search
 Evaluation only useful for quiescent states

 states w/o wild swings in value in near future
 e.g.: states in the middle of an exchange are not quiet

 Algorithm
 When search depth reached, compute quiescence state

evaluation heuristic
 If state quiescent, then proceed as usual; otherwise increase

search depth if quiescence search depth not yet reached
 Example:

 In chess, typically all capturing moves, and all pawn
promotions are followed

 no depth parameter needed, because there is only a finite
number of captures and pawn promotions

 Note that this is different with checks!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz26

Horizon Effect
Fixed depth search
thinks it can avoid
the queening move

 Problem with fixed-depth search:
 if we only search n moves ahead,

it may be possible that the
catastrophy can be delayed by a
sequence of moves that do not
make any progress

 also works in other direction
(good moves may not be found)

 Examples:
 computer starts to give away

its pieces in hopeless positions
(because this avoids the mate)

 checks:
Black can give many
consecutive checks
before white escapes

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz27

Search Extensions
 game-playing programs sometimes extend the search depth

 typically by skipping the step that increments the current
search depth

 increments with fractional values are also possible (multiple
fractional extensions are needed for an extension by 1)

 search is then continued as usual (until horizon is reached)
 but the depth of the of the horizon may be different in different

branches of the trees
 Danger:

 extensions have to be designed carefully so that the search
will always terminate (within reasonable time)

 Typical idea:
 extend the search when a forced move is found that limits the

possible replies to one (or very few) possible actions
 Examples in chess:

 checks, recaptures, moves with passed pawns

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz28

Forward Pruning
 Alpha-Beta only prunes search trees when it is safe to do so

 the evaluation will not change (guaranteed)
 Human players prune most of the possible moves

 and make many mistakes by doing so...

 Several variants of forward pruning techniques are used in
state-of-the-art chess programs

 Null-move pruning
 Futility pruning
 Razoring

 See, e.g.,
 Ernst A. Heinz: Scalable Search in Computer Chess.

Vieweg 2000.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz29

Null-Move Pruning
 Idea: in most games, making a move improves the position
 Approach:

 add a „null-move“ to the search, i.e., assume that current
player does not make a move

 if the null-move search (sometimes at reduced depth) results in
a cutoff, assume that making a move will do the same

 Danger:
 sometimes it is good to make no move (Zugzwang)

 Improvements:
 do not make a null-move if

 in check
 in endgame
 previous move was a null-move

 verified null-move-pruning: do not cut off but reduce depth
 adaptive null-move pruning:

 use variable depth reduction for the null-move search

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz30

Iterative Deepening

Repeated fixed-depth searches for depths d = 1, ..., D
 as for single-agent search
 frequently used in game-playing programs

Advantages:
 works well with transposition tables
 improved dynamic move-ordering in alpha-beta

 what worked well in the previous iteration is tried first in the next
iteration

 simplifies time managements
 if there is a fixed time limit per move, this can be handled flexibly

by adjusting the number of iterations during the search
 previous iterations provide useful information that allow to guess

whether the next iteration can be completed in time
→ Quite frequently the total number of nodes searched is smaller

than with non-iterative search!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz31

Why Should Deeper Search Work?
 If we have a perfect evaluation function, we do not need

search.
 If we have an imperfect evaluation function, why should its

performance get better if we search deeper?

 Game Tree Pathologies
 One can construct situations or

games where deeper search
results in bad performance

 Diminishing returns:
 the gain of deeper searches

goes down with the depth
 can be observed in most games
 various different explanations

Graph by Martin Fierz

Results of Checkers pograms
that play with depth d against

themselves with depth d-2

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz32

Transposition Tables
 Repeated states may occur

 different permutations of the move sequences lead to the
same positions

 Can cause exponential growth in search cost

Transposition Tables:
 Basic idea:

 store found positions in a hash table
 if it occurs a second time, the value of the node does not have

to be recomputed
 Essentially identical to the closed list in GRAPH-SEARCH
 May increase the efficiency by a factor of 2
 Various strategies for swapping positions once the table size

is exhausted

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz33

Transposition Tables -
Implementation

Each entry in the hash table stores
 State evaluation value (including whether this was as exact

value or a fail high/low value)
 Search depth of stored value (in case we search deeper)
 Hash key of position (to eliminate collisions)
 (optional) Best move from position

Zobrist Hash Keys:
 Generate 3d-array of random 64-bit numbers

 One key for each combination of piece type, location and color
 Start with a 64-bit hash key initialized to 0
 Loop through current position, XOR’ing hash key with Zobrist

value of each piece found
 Can be updated incrementally by XORing the “from” location

and the “to” location to move a piece
Based on slides by Daniel Tauritz

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz34

Zobrist Keys for Connect-4
 Key Table:

Example by Hendrik Baier

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz35

Zobrist Keys for Connect-4
 Computation of a position key:

hash key for above position

Example by Hendrik Baier

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz36

Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one
value is needed)

f n = f An  , f B n  , f C n

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz37

Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one
value is needed)

f n = f An  , f B n  , f C n

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Games of imperfect information
	Folie 17
	Folie 18
	Folie 19
	Evaluation function
	Heuristic EVAL
	Folie 22
	Evaluation function examples
	Folie 24
	Folie 25
	Horizon effect
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Multiplayer games
	Folie 37

