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Outline
 Introduction

 What are games and why are they interesting?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 NegaMax
 α-β pruning

 Real-time Game-Tree Search
 NegaScout
 evaluation functions
 practical enhancements
 selective search

 Multiplayer Game Trees Many slides based on 
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
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Alpha-Beta – NegaMax Formulation

Code by Alexander Reinefeld

Recursive call with negated window

Note the negated return value!

[ MIN=− MAX ,  MIN=−MAX ]
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Alpha-Beta (Min-Max Formulation)

Graph by Alexander Reinefeld
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Alpha-Beta (NegaMax Formulation)

Graph by Alexander Reinefeld
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Values at min-nodes are 
negated, and alpha and 
beta-values are swapped

The child max-node 
returns -4 as the result .

(9>5)

(−4>−5)
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Minimal Window Search
 If we have a good guess about the value of the position, we 

can further increase efficiency of Alpha-Beta by starting with 
a narrower interval than [−∞, +∞]

 such an aspiration window will result in more cut-offs
 with the danger that they may not be correct

 Extreme case: Minimal Window β = α + 1
 No value can be between these two values

 assuming an integer-valued evaluation function
 Possible results:

 FAIL HIGH:

 FAIL LOW:

 Thus, MWS tests efficiently (many cutoffs) whether a position 
is better than a given value or not

Value≥ =1 ⇒ Value

Value≤
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NegaScout
(Principal Variation Search)

 if we can establish that the value of a node is lower 
(FAIL LOW), the node is not interesting (a better node exists)

 If FAIL-HIGH, we know that this is better, but not how much
 need to re-search the tree with a bigger window

Based on a slide by Alexander Reinefeld
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NegaScout (Reinefeld 1982)

Code by Alexander Reinefeld

FAIL-HIGH: 
t is outside the null window 
(but still within the original window)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

1. Fall: t ≤ a:
 Zug brachte keine Verbesserung
 nächster Zug wird mit 

-NEGASCOUT(s,-a-1,-a) 
durchsucht

-NEGASCOUT(s,-a-1,-a)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

2. Fall: a < t < β:
 Zug bringt zumindest t
 Genauer Wert läßt sich aber nicht 

bestimmen, da Zweige aufgrund 
des falschen β-Werts geprunt 
worden sein könnten

 2. Zug muß nochmals durchsucht 
werden mit -NEGASCOUT(s,-β,-t)

-NEGASCOUT(s, -β, -t)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

3. Fall: t ≥ β:
 Zug bringt mehr als β
 Weder dieser noch ein anderer 

Zug wird gespielt werden, da ein 
anderer Pfad im Baum dem 
Gegner mehr verspricht.
→ Beta-Cutoff
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NegaScout Example

Example by Alexander Reinefeld

≥8  4

NegaScout assumes
MIN can get at least 6
→ we can prune this 
branch because MAX 
has already at least 8.

−4

‒2 ‒5 ‒9 -8 ‒1 ‒4

4

≤ -8

+4
+8

+4
+1

 

hope for ≤ 5 / ≥ -5
(-6, -5)

The assumption has 
turned out to be correct 
(4 ≤ 5), so the null Window 
cut-off was justified.
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NegaScout Example

Example by Alexander Reinefeld

Re-Search would 
happen if this subtree
fails high (t > 5)

≥8 4

Then this node 
would return ≥ t

... and the right branch of this node would 
be re-searched with the window [t, +∞]

NegaScout assumes
MIN can get at least 6
→ we can prune this 
branch because MAX 
has already at least 8.

 −4

‒2 ‒5 ‒9 -8 ‒1 ‒4

-4

≤ -8

+4
+8

+4
+1

 

hope for ≤ 5 / ≥ -5
(-6, -5)
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Performance of NegaScout
 Essentially, NegaScout assumes that the first node is best

(i.e., the first node is in the principal variation)
 if this assumption is wrong, it has to do re-searches
 if it is correct, it is much more efficient than Alpha-Beta

→ it works best if the move ordering is good
 for random move orders it will take longer than Alpha-Beta
 10% performance increase in chess engines

 It can be shown that NegaScout prunes every node that is 
also pruned by Alpha-Beta

 Various other algorithms were proposed, but NegaScout is 
still used in practice

 SSS*: based on best-first search
 MTD(f): improves NegaScout by returning upper or lower 

bounds on the true value, needs memory (TTable) for that
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Move Ordering
 The move ordering is crucial to the performance of alpha-

beta search
 Domain-dependent heuristics:

 capture moves first
 ordered by value of capture

 forward moves first
 Domain-independent heuristics:

 Killer Heuristic
 manage a list of moves that produced cutoffs at the current level 

of search 
 Idea: if there is a strong threat, this should be searched first

 History Heuristic
 maintain a table of all possible moves (independent of current 

position)
 if a move produces a cutoff, its value is increased by a value that 

grows fast with the search depth (e.g., d 2 or 2d )
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Imperfect Real-World Decisions
 In general the search tree is too big to make it possible to 

reach the terminal states!
 even though alpha-beta effectively doubles the search depth

 Examples:
 Checkers: ~1040 nodes
 Chess: ~10120 nodes

 For most games, it is not practical within a reasonable 
amount of time

 Key idea (Shannon 1950):
 Cut off search earlier 

 replace TERMINAL-TEST by CUTOFF-TEST
 which determines whether the current position needs to be 

searched deeper
 Use heuristic evaluation function EVAL 

 replace calls to UTILITY with calls to EVAL
 which evaluates how promising the position at the cutoff is
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Using Evaluation Functions
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation 
function
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Brute-Force vs. Selective Search
 Shannon Type-A (Brute Force)

 search all positions until a fixed horizon 
 CUTOFF-TEST test only tests for the depth

of a position
 Shannon Type-B (Selective Search)

 CUTOFF-TEST prunes uninteresting lines 
(as humans do)

 Selective Search preferred by Shannon and contemporaries
 early program limit branching factor (e.g., Newell/Simon/Show 

to the „magical number“ 7)
 Brute-Force Search was shown to outperform selective 

search in the 70s
 Current programs use a mixture

 selective search near the leaves
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Fixed-Depth Alpha-Beta

Cutoff the search at a pre-determined depth
 CUTOFF-TEST compares the current search depth to a fixed 

maximum depth D and returns true if the depth has been 
reached or if the position is a terminal position

 At a terminal position: 
 return the game-theoretic score 

 At a max-depth position: 
 return the value of the evaluation function EVAL

 At an interior node:
 recursively call alpha-beta
 increment the current search depth by one

Note:
 the incrementation of the search depth is often realized with a 

decrement of an initial search depth, and a cutoff at 0.
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Evaluation Function

 Evaluation function or static evaluator is used to evaluate the 
“goodness” of a game position.

 Contrast with heuristic search where the evaluation function 
was a non-negative estimate of the cost from the start node to 
a goal and passing through the given node

 The zero-sum assumption allows us to use a single 
evaluation function to describe the goodness of a board with 
respect to both players. 

 f (n) >> 0: position n good for me and bad for you
 f (n) << 0: position n bad for me and good for you
 f (n)  ≈  0: position n is a neutral position
 f (n) = +∞: win for me
 f (n) = −∞: win for you  

Based on a slide by L. Getoor
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Heuristic Evaluation Function
 Idea: 

 produce an estimate of the expected utility of the game from a 
given position.

 Performance:

 depends on quality of EVAL.

 Requirements:

 EVAL should order terminal-nodes in the same way as 
UTILITY.

 Computation should not take too long (many leaf nodes have 
to be evaluated)

 For non-terminal states the EVAL should be strongly correlated 
with the actual chance of winning.
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Linear Evaluation Functions
 Most evaluation functions are linear combinations of features



 a feature fi encodes a certain characteristic of the position

 e.g., # white queens/rooks/knights,..., # of possible moves, 
# of center squares under control, etc.

 originate from experience with the game
 Advantages:

 conceptually simple, typically fast to compute
 Disadvantages:

 tuning of the weights may be very hard (→ machine learning)
 adding up the weighted features makes the assumption that 

each feature is independent of the other features

EVAL s=w
1
⋅f

1
sw

2
⋅f

2
s...w

n
⋅f

n
 s=∑

i=1

n

w
i
f

i
 s
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Evaluation Function Examples
 Example of an evaluation function for Tic-Tac-Toe: 

 f(n) = [# 3-lengths open for me] − [# 3-lengths open for you] 
 where a 3-length is a complete row, column, or diagonal

 Alan Turing’s function for chess
 f(n) = w(n)/b(n) where 

 w(n) = sum of the point value of white’s pieces 
 b(n) = sum of black’s

 Chess champion program Deep Blue has about 6000 features 
in its evaluation function

 Current state-of-the-art programs use non-linear functions
 e.g. different feature weights in different game phases

Based on a slide by L. Getoor
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Evaluation functions

Evaluation is typically very brittle
 small changes in the position may cause large leaps in the 

evaluation

                         Black is clearly winning               White is clearly winning
                              (up in material)                      (can take black's queen)

→ Evaluation and Search are not independent:
 What is taken care of by search need not be in EVAL

→ Evaluation only applied to stable „quiescent“ position
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Quiescence Search
 Evaluation only useful for quiescent states 

 states w/o wild swings in value in near future
 e.g.: states in the middle of an exchange are not quiet

 Algorithm
 When search depth reached, compute quiescence state 

evaluation heuristic
 If state quiescent, then proceed as usual; otherwise increase 

search depth if quiescence search depth not yet reached
 Example:

 In chess, typically all capturing moves, and all pawn 
promotions are followed

 no depth parameter needed, because there is only a finite 
number of captures and pawn promotions

 Note that this is different with checks!
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Horizon Effect
Fixed depth search 
thinks it can avoid
the queening move

 Problem with fixed-depth search:
 if we only search n moves ahead, 

it may be possible that the 
catastrophy can be delayed by a 
sequence of moves that do not 
make any progress

 also works in other direction 
(good moves may not be found)

 Examples:
 computer starts to give away

its pieces in hopeless positions
(because this avoids the mate)

 checks:
Black can give many
consecutive checks
before white escapes
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Search Extensions
 game-playing programs sometimes extend the search depth

 typically by skipping the step that increments the current 
search depth

 increments with fractional values are also possible (multiple 
fractional extensions are needed for an extension by 1)

 search is then continued as usual (until horizon is reached)
 but the depth of the of the horizon may be different in different 

branches of the trees
 Danger:

 extensions have to be designed carefully so that the search 
will always terminate (within reasonable time)

 Typical idea:
 extend the search when a forced move is found that limits the 

possible replies to one (or very few) possible actions
 Examples in chess:

 checks, recaptures, moves with passed pawns
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Forward Pruning
 Alpha-Beta only prunes search trees when it is safe to do so

 the evaluation will not change (guaranteed)
 Human players prune most of the possible moves

 and make many mistakes by doing so...

 Several variants of forward pruning techniques are used in 
state-of-the-art chess programs

 Null-move pruning
 Futility pruning
 Razoring

 See, e.g., 
 Ernst A. Heinz: Scalable Search in Computer Chess. 

Vieweg 2000.
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Null-Move Pruning
 Idea: in most games, making a move improves the position
 Approach:

 add a „null-move“ to the search, i.e., assume that current 
player does not make a move

 if the null-move search (sometimes at reduced depth) results in 
a cutoff, assume that making a move will do the same

 Danger:
 sometimes it is good to make no move (Zugzwang)

 Improvements:
 do not make a null-move if

 in check
 in endgame
 previous move was a null-move

 verified null-move-pruning: do not cut off but reduce depth 
 adaptive null-move pruning:

 use variable depth reduction for the null-move search
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Iterative Deepening

Repeated fixed-depth searches for depths d = 1, ..., D
 as for single-agent search
 frequently used in game-playing programs

Advantages:
 works well with transposition tables
 improved dynamic move-ordering in alpha-beta

 what worked well in the previous iteration is tried first in the next 
iteration

 simplifies time managements 
 if there is a fixed time limit per move, this can be handled flexibly 

by adjusting the number of iterations during the search
 previous iterations provide useful information that allow to guess 

whether the next iteration can be completed in time
→ Quite frequently the total number of nodes searched is smaller 

than with non-iterative search!
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Why Should Deeper Search Work?
 If we have a perfect evaluation function, we do not need 

search.
 If we have an imperfect evaluation function, why should its 

performance get better if we search deeper?

 Game Tree Pathologies
 One can construct situations or 

games where deeper search 
results in bad performance

 Diminishing returns:
 the gain of deeper searches

goes down with the depth 
 can be observed in most games
 various different explanations

Graph by Martin Fierz

Results of Checkers pograms 
that play with depth d against 

themselves with depth d-2
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Transposition Tables
 Repeated states may occur

 different permutations of the move sequences lead to the 
same positions

 Can cause exponential growth in search cost

Transposition Tables:
 Basic idea:

 store found positions in a hash table
 if it occurs a second time, the value of the node does not have 

to be recomputed
 Essentially identical to the closed  list in GRAPH-SEARCH
 May increase the efficiency by a factor of 2
 Various strategies for swapping positions once the table size 

is exhausted
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Transposition Tables - 
Implementation

Each entry in the hash table stores
 State evaluation value (including whether this was as exact 

value or a fail high/low value)
 Search depth of stored value (in case we search deeper)
 Hash key of position (to eliminate collisions)
 (optional) Best move from position

Zobrist Hash Keys:
 Generate 3d-array of random 64-bit numbers 

 One key for each combination of piece type, location and color
 Start with a 64-bit hash key initialized to 0
 Loop through current position, XOR’ing hash key with Zobrist 

value of each piece found 
 Can be updated incrementally by XORing the “from” location 

and the “to” location to move a piece
Based on slides by Daniel Tauritz
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Zobrist Keys for Connect-4
 Key Table:

Example by Hendrik Baier
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Zobrist Keys for Connect-4
 Computation of a position key:

hash key for above position

Example by Hendrik Baier



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz36

Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one 
value is needed)

f n = f An  , f B n  , f C n
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Multiplayer games
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 Single minimax values become vectors

 one evaluation value for each player
 Example:
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Two-Player 0-sum
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