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Reinforcement Learning
 Introduction

 MENACE (Michie 1963)
 Formalization

 Policies
 Value Function
 Q-Function

 Model-based Reinforcement Learning
 Policy Iteration
 Value Iteration

 Model-free Reinforcement Learning
 Q-Learning
 extensions

 Application Examples
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Reinforcement Learning

 Goal
 Learning of policies (action selection strategies) based on 

feedback from the environment (reinforcement)
 e.g., game won / game lost

 Applications
 Games

 Tic-Tac-Toe: MENACE (Michie 1963)
 Backgammon: TD-Gammon (Tesauro 1995)
 Schach: KnightCap (Baxter et al. 2000)

 Other
 Elevator Dispatching
 Robot Control
 Job-Shop Scheduling
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MENACE (Michie, 1963)

 Learns to play Tic-Tac-Toe

 Hardware:
 287 Matchboxes 

(1 for each position)
 Beads in 9 different colors 

(1 color for each square)

 Playing algorithm:
 Select the matchbox corresponding to the current position
 Randomly draw a bead from this matchbox
 Play the move corresponding to the color of the drawn bead

 Implementation: http://www.codeproject.com/KB/cpp/ccross.aspx

X
X

OO

http://www.codeproject.com/KB/cpp/ccross.aspx
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Reinforcement Learning in MENACE

 Initialisation
 all moves are equally likely, i.e. every box contains an equal 

number of beads for each possible move / color

 Learning algorithm:
 Game lost → drawn beads are kept

(negative reinforcement)
 Game won → put the drawn bead back and add another one 

in the same color to this box (positive reinforcement)
 Game drawn → drawn beads are put back (no change)

 This results in 
 Increased likelihood that a successful move will be tried again 
 Decreased likelihood that an unsuccessful move will be 

repeated
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Credit Assignment Problem

 Delayed Reward
 The learner knows whether it has one or lost not before the 

end of the game
 The learner does not know which move(s) are responsible 

for the win / loss
 a crucial mistake may already have happened early in the 

game, and the remaining moves were not so bad (or vice 
versa)

 Solution in Reinforcement Learning:
 All moves of the game are rewarded or penalized

(adding or removing beads from a box)
 Over many games, this procedure will converge

 bad moves will rarely receive a positive feedback
 good moves will be more likely to be positively reinforced
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Reinforcement Learning - 
Formalization

 Learning Scenario
            : state space
           : action space 
           : initial states
 a state transition function 
 a reward function

 State and action space can be
 Discrete: S and/or A is a set
 Continuous: S and/or A are infinite (not part of this lecture!)

 State transition function can be
 Stochastic: Next state is drawn according to  
 Deterministic: Next state is fixed 

 Markov property
 rewards and state 

transitions only 
depend on last state

 not on how you got 
into this state
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Reinforcement Learning - 
Formalization

 Enviroment:
 the agent repeatedly chooses an action according to some 

policy            or 
 this will put the agent in state s into a new state s' according to 

  stochastic: 
 deterministic: 

 in some states the agent receives feedback from the 
environment (reinforcement)
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MENACE - Formalization
 Framework

 states = matchboxes, discrete
 actions = moves/beads, discrete
 policy = prefer actions with higher number of beads, stochastic
 reward = game won/ game lost 

 delayed reward: we don't know right away whether a move was 
good or bad+

 transition function: choose next matchbox according to rules, 
deterministic

 Task
 Find a policy that maximizes the sum of future rewards
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More Terminology

 delayed reward
 reward for actions may not come immediately 

(e.g., game playing)
 modeled as: every state si gives a reward ri, but most ri=0

 trajectory: 
 sequence of state-actions
 A deterministic policy and transition function create a unique 

trajectory, stochastic policies or transition functions may result 
in different trajectories

⟨s0, a0, s1, ... , an−1 , sn⟩
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Learning Task

Learning goal: 
 maximize cumulative reward (return) for the trajectories a 

policy is generating
 reward from ''now'' until the end of time

 immediate rewards are weighted higher, rewards further in 
the future are discounted (discount factor )

 if not discounted, the sum to infinty could be infinite 
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Learning Task
 How can we compute           ?

 Sum the observed rewards (with decay)

 Value function = return when starting in state s and 
following policy π afterwards 

+
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Optimal Policies and Value Functions
 Optimal policy

 the policy with the highest expected value for all states s

 Always select the action that maximizes the value function for 
the next step, when following the optimal policy afterwards

 But we don't know the optimal policy...
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Policy Iteration
 Policy Improvement Theorem

 if it is true that selecting the first action in each state according 
to a policy π' and continuing with policy π is better than always 
following π then π' is a better policy than π 

 Policy Improvement
 always select the action that maximizes the value function of 

the current policy

 Policy Evaluation
 Compute the value function for the new policy

 Policy Iteration
 Interleave steps of policy evaluation with policy improvement
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Policy Evaluation

 We need the value of all states, but can only start in s
0

 Update all states along the trajectory

 We assumed the transition function to be deterministic, that 
is not realistic in many settings

 Monte Carlo approximation
 Create k samples and average

 

+
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Policy Evaluation - Example
 Simplified task

 we don't know 
 we don't know r
 but we are given a policy π

 i.e., we have a function that gives
us an action in each state

 Goal:
 learn the value of each state

 Note:
 here we have no choice about the actions to take
 we just execute the policy and observe what happens

Based on a Slide by Dan Klein (Berkeley)
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Policy Evaluation – Example

V π(1,1)←(92+−106)/2=−7

V π(3,3)←(99+97+−102)/3=31.3
Transitions are
indeterministic!

Based on a Slide by Dan Klein (Berkeley)
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Policy Improvement
 Compute the value for every state
 Update the policy according to

 But here we need the transition function we don't know ?
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Simple Approach: 
Learn the Model from Data

P3,3∣2,3 , right=2 /2

P4,3∣ 3,3 , right =1 /3

Based on a Slide by Dan Klein (Berkeley)

But do we really need to learn the transition model?But do we really need to learn the transition model?
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Q-function
 the Q-function does not evaluate states, but evaluates state-

action pairs
 The Q-function for a given policy π

 is the cumulative reward for starting in s, applying action a, 
and, in the resulting state s', play according to π

 Now we update the policy without the transition function
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Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 The current approach requires us to evaluate every action
 We need to sample each state (that is reachable from s

0 
)

 We need to compute argmax a over all available actions

 Exhaustive sampling is unrealistic
 The state/action space may be very large, even infinite 

(continuous)
 We approximate an expectation, hence multiple samples for 

every state/action are required

 We need to decide where to sample the transition function
 Interesting = visited by the optimal policy
 But we don't know the optimal policy till the end
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Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 Exploit
 Use the action we assume to be the best
 Approximate the optimal policy

 Explore
 Optimal action may be wrong due to approximation errors
 Try a suboptimal action

 Define probabilities for exploration and exploitation
 Policy evaluation with stochastic policy

 Well-defined tradeoff can substantially reduce sample counts 
 Most relevant problem for reinforcement learning
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Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 ϵ-greedy
 Fixed probability for selecting a suboptimal action

 Soft-Max
 Action probability related to expected value

 High exploration in the beginning
 Pure exploitation at the end
 Tradeoff must change over time
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Drawbacks
 Policy Iteration with Monte Carlo evaluation works well in 

practise with small state spaces
 Don't learn a policy for each state, but learn the policy as a 

function
 Especially well suited for continuous state spaces
 Amount of function parameters usually much smaller than the 

amount of states
 Requires well defined function space

→ Direct Policy Search (not part of this lecture)

 Alternative: Bootstrapping
 Evaluate policy based on estimates
 May induce errors
 But requires much lower amount of samples
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Optimal Q-function

 the optimal Q-function is the cumulative reward for starting 
in s, applying action a, and, in the resulting state s', play 
optimally (derivation: deterministic policy) 

 Bellman equation:

 the value of the Q-function for the current state s and an action 
a is the same as the sum of

 the reward in the current state s for the chosen action a
 the (discounted) value of the Q-function for the best action that I 

can play in the successor state s'
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Better Approach:
Directly Learning the Q-function

 Basic strategy:
 start with some function    , and update it after each step
 in MENACE:     returns for each box s and each action a the 

number of beads in the box
 update rule:

 the Bellman equation will in general not hold for Q 
i.e., the left side and the right side will be different

 We can not easily compute the expectation
 But we have multiple samples that contribute to the 

expectation

Q̂
Q̂
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Better Approach:
Directly Learning the Q-function

 Update Q-Function whenever we observe a transition s,a,r,s'

 Weighted update by a learning rate 

new Q-value for state 
s and action a

old Q-value for this 
state/action pair

predicted Q-value for
state s' and action a'
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Q-learning (Watkins, 1989)

1. initialize all              with 0
2. observe current state s
3. loop

1. select an action a and execute it
2. receive the immediate reward and observe the new state s' 
3. update the table entry

4. s = s'

1. initialize all              with 0
2. observe current state s
3. loop

1. select an action a and execute it
2. receive the immediate reward and observe the new state s' 
3. update the table entry

4. s = s'

Q s , a  Q  s , a[ r  s ,amaxa '
Q s ' , a ' − Q s , a]

Temporal Difference:
Difference between the estimate of the value of a
state/action pair before and after performing the action.
→ Temporal Difference Learning

Q s , a 
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Example: Maze
 Q-Learning will produce the following values

Based on a Slide by Dan Klein (Berkeley)
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Miscellaneous

 Weight Decay:
  decreases over time, e.g. 

 Convergence:
it can be shown that Q-learning converges 

 if every state/action pair is visited infinitely often
 not very realistic for large state/action spaces
 but it typically converges in practice under less restricting 

conditions

 Representation
 in the simplest case,             is realized with a look-up table 

with one entry for each state/action pair
 a better idea would be to have trainable function, so that 

experience in some part of the space can be generalized
 special training algorithms for, e.g., neural networks exist

=
1

1visits s , a 

Q  s , a 
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Drawbacks of Q-Learning
 We still need to compute arg max a, requiring estimates for all 

actions
 arg max a is the optimal policy
 our policy converges to the optimal policy

→ don't use arg max a, but the action from the current policy
 

 perform on-policy updates
 update rule assumes action a' is chosen according to current 

policy
 Update whenever observing a sample s,a,r,s',a'

 convergence if the policy gradually moves towards a policy 
that is greedy with respect to the current Q-function

→ SARSA
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Properties of RL Algorithms
 Transition Function

 Model-based: Assumed to be know or approximated
 Model-free

 Sampling
 On-Policy: Samples must be from the policy we want to evaluate
 Off-Policy: Samples obtained from any policy

 Policy Evaluation
 Value-based: Computes a state/action value function (this lecture)
 Direct: Compute expected return for a policy

 Exploration
 Directed: Method guides to a specific trajectory/state/action
 Undirected: Method allows random sampling close to the expected 

maximum
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TD-Gammon (Tesauro, 1995)

 world champion-calibre backgammon program
 Developed from beginner to world-

champion strength after 1,500,000 
training games against itself (!) 

 Lost World championship 1998 in a match
over 100 games with a mere 8 points

 Led to changes in backgammon theory
and was used as a popular practice and
analysis partner of leading human players

 Improvements over MENACE:
 Faster convergence because of → Temporal Difference 

Learning 
 Neural Network instead of boxes and beads allows 

generalization
 use of positional characteristics as features
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KnightCap (Baxter et al. 2000)

 Learned to play expertly in chess
 improvement from 1650 Elo (beginner)

to 2150 Elo (good club player) 
in only ca. 1000 games on the internet

 Improvements over TD-Gammon:
 Integration of TD-learning with deep searches which are 

necessary for computer chess 
 self-play training is replaced with training by playing 

against various partners on the internet 
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Super Human ATARI playing 
(Minh et al. 2013)

 Reinforcement Learning with
Deep Learning

 State-of-the-Art

 Better than humans in 29/49 
ATARI games

 Extremely high computation
times 
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Reinforcement Learning Resources

 Book
 On-line Textbook on Reinforcement learning

 http://www.cs.ualberta.ca/~sutton/book/the-book.html
 More Demos

 Grid world
 http://thierry.masson.free.fr/IA/en/qlearning_applet.htm

 Robot learns to crawl
 http://www.applied-mathematics.net/qlearning/qlearning.html

 Reinforcement Learning Repository
 tutorial articles, applications, more demos, etc.

 http://www-anw.cs.umass.edu/rlr/
 RL-Glue (Open Source RL Programming framework)

 http://glue.rl-community.org/
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