
 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz1

Reinforcement Learning
 Introduction

 MENACE (Michie 1963)
 Formalization

 Policies
 Value Function
 Q-Function

 Model-based Reinforcement Learning
 Policy Iteration
 Value Iteration

 Model-free Reinforcement Learning
 Q-Learning
 extensions

 Application Examples

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz2

Reinforcement Learning

 Goal
 Learning of policies (action selection strategies) based on

feedback from the environment (reinforcement)
 e.g., game won / game lost

 Applications
 Games

 Tic-Tac-Toe: MENACE (Michie 1963)
 Backgammon: TD-Gammon (Tesauro 1995)
 Schach: KnightCap (Baxter et al. 2000)

 Other
 Elevator Dispatching
 Robot Control
 Job-Shop Scheduling

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz3

MENACE (Michie, 1963)

 Learns to play Tic-Tac-Toe

 Hardware:
 287 Matchboxes

(1 for each position)
 Beads in 9 different colors

(1 color for each square)

 Playing algorithm:
 Select the matchbox corresponding to the current position
 Randomly draw a bead from this matchbox
 Play the move corresponding to the color of the drawn bead

 Implementation: http://www.codeproject.com/KB/cpp/ccross.aspx

X
X

OO

http://www.codeproject.com/KB/cpp/ccross.aspx

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz4

X
X

OO X
X

OO

X
Select the matchbox
corresponding to
this position

X to move

Draw a bead from the
matchbox

Play the move that
corresponds to the

color of the drawn
bead

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz5

Reinforcement Learning in MENACE

 Initialisation
 all moves are equally likely, i.e. every box contains an equal

number of beads for each possible move / color

 Learning algorithm:
 Game lost → drawn beads are kept

(negative reinforcement)
 Game won → put the drawn bead back and add another one

in the same color to this box (positive reinforcement)
 Game drawn → drawn beads are put back (no change)

 This results in
 Increased likelihood that a successful move will be tried again
 Decreased likelihood that an unsuccessful move will be

repeated

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz6

Credit Assignment Problem

 Delayed Reward
 The learner knows whether it has one or lost not before the

end of the game
 The learner does not know which move(s) are responsible

for the win / loss
 a crucial mistake may already have happened early in the

game, and the remaining moves were not so bad (or vice
versa)

 Solution in Reinforcement Learning:
 All moves of the game are rewarded or penalized

(adding or removing beads from a box)
 Over many games, this procedure will converge

 bad moves will rarely receive a positive feedback
 good moves will be more likely to be positively reinforced

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz7

Reinforcement Learning -
Formalization

 Learning Scenario
 : state space
 : action space
 : initial states
 a state transition function
 a reward function

 State and action space can be
 Discrete: S and/or A is a set
 Continuous: S and/or A are infinite (not part of this lecture!)

 State transition function can be
 Stochastic: Next state is drawn according to
 Deterministic: Next state is fixed

 Markov property
 rewards and state

transitions only
depend on last state

 not on how you got
into this state

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz8

Reinforcement Learning -
Formalization

 Enviroment:
 the agent repeatedly chooses an action according to some

policy or
 this will put the agent in state s into a new state s' according to

 stochastic:
 deterministic:

 in some states the agent receives feedback from the
environment (reinforcement)

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz9

MENACE - Formalization
 Framework

 states = matchboxes, discrete
 actions = moves/beads, discrete
 policy = prefer actions with higher number of beads, stochastic
 reward = game won/ game lost

 delayed reward: we don't know right away whether a move was
good or bad+

 transition function: choose next matchbox according to rules,
deterministic

 Task
 Find a policy that maximizes the sum of future rewards

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz10

More Terminology

 delayed reward
 reward for actions may not come immediately

(e.g., game playing)
 modeled as: every state si gives a reward ri, but most ri=0

 trajectory:
 sequence of state-actions
 A deterministic policy and transition function create a unique

trajectory, stochastic policies or transition functions may result
in different trajectories

⟨s0, a0, s1, ... , an−1 , sn⟩

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz11

Learning Task

Learning goal:
 maximize cumulative reward (return) for the trajectories a

policy is generating
 reward from ''now'' until the end of time

 immediate rewards are weighted higher, rewards further in
the future are discounted (discount factor )

 if not discounted, the sum to infinty could be infinite

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz12

Learning Task
 How can we compute ?

 Sum the observed rewards (with decay)

 Value function = return when starting in state s and
following policy π afterwards

+

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz13

Optimal Policies and Value Functions
 Optimal policy

 the policy with the highest expected value for all states s

 Always select the action that maximizes the value function for
the next step, when following the optimal policy afterwards

 But we don't know the optimal policy...

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz14

Policy Iteration
 Policy Improvement Theorem

 if it is true that selecting the first action in each state according
to a policy π' and continuing with policy π is better than always
following π then π' is a better policy than π

 Policy Improvement
 always select the action that maximizes the value function of

the current policy

 Policy Evaluation
 Compute the value function for the new policy

 Policy Iteration
 Interleave steps of policy evaluation with policy improvement

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz15

Policy Evaluation

 We need the value of all states, but can only start in s
0

 Update all states along the trajectory

 We assumed the transition function to be deterministic, that
is not realistic in many settings

 Monte Carlo approximation
 Create k samples and average

+

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz16

Policy Evaluation - Example
 Simplified task

 we don't know 
 we don't know r
 but we are given a policy π

 i.e., we have a function that gives
us an action in each state

 Goal:
 learn the value of each state

 Note:
 here we have no choice about the actions to take
 we just execute the policy and observe what happens

Based on a Slide by Dan Klein (Berkeley)

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz17

Policy Evaluation – Example

V π(1,1)←(92+−106)/2=−7

V π(3,3)←(99+97+−102)/3=31.3
Transitions are
indeterministic!

Based on a Slide by Dan Klein (Berkeley)

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz18

Policy Improvement
 Compute the value for every state
 Update the policy according to

 But here we need the transition function we don't know ?

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V1.0 | J. Fürnkranz19

Simple Approach:
Learn the Model from Data

P3,3∣2,3 , right=2 /2

P4,3∣ 3,3 , right =1 /3

Based on a Slide by Dan Klein (Berkeley)

But do we really need to learn the transition model?But do we really need to learn the transition model?

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz20

Q-function
 the Q-function does not evaluate states, but evaluates state-

action pairs
 The Q-function for a given policy π

 is the cumulative reward for starting in s, applying action a,
and, in the resulting state s', play according to π

 Now we update the policy without the transition function

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz21

Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 The current approach requires us to evaluate every action
 We need to sample each state (that is reachable from s

0
)

 We need to compute argmax a over all available actions

 Exhaustive sampling is unrealistic
 The state/action space may be very large, even infinite

(continuous)
 We approximate an expectation, hence multiple samples for

every state/action are required

 We need to decide where to sample the transition function
 Interesting = visited by the optimal policy
 But we don't know the optimal policy till the end

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz22

Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 Exploit
 Use the action we assume to be the best
 Approximate the optimal policy

 Explore
 Optimal action may be wrong due to approximation errors
 Try a suboptimal action

 Define probabilities for exploration and exploitation
 Policy evaluation with stochastic policy

 Well-defined tradeoff can substantially reduce sample counts
 Most relevant problem for reinforcement learning

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz23

Exploration vs. Exploitation

Based on a Slide by Dan Klein (Berkeley)

 ϵ-greedy
 Fixed probability for selecting a suboptimal action

 Soft-Max
 Action probability related to expected value

 High exploration in the beginning
 Pure exploitation at the end
 Tradeoff must change over time

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz24

Drawbacks
 Policy Iteration with Monte Carlo evaluation works well in

practise with small state spaces
 Don't learn a policy for each state, but learn the policy as a

function
 Especially well suited for continuous state spaces
 Amount of function parameters usually much smaller than the

amount of states
 Requires well defined function space

→ Direct Policy Search (not part of this lecture)

 Alternative: Bootstrapping
 Evaluate policy based on estimates
 May induce errors
 But requires much lower amount of samples

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz25

Optimal Q-function

 the optimal Q-function is the cumulative reward for starting
in s, applying action a, and, in the resulting state s', play
optimally (derivation: deterministic policy)

 Bellman equation:

 the value of the Q-function for the current state s and an action
a is the same as the sum of

 the reward in the current state s for the chosen action a
 the (discounted) value of the Q-function for the best action that I

can play in the successor state s'

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz26

Better Approach:
Directly Learning the Q-function

 Basic strategy:
 start with some function , and update it after each step
 in MENACE: returns for each box s and each action a the

number of beads in the box
 update rule:

 the Bellman equation will in general not hold for Q
i.e., the left side and the right side will be different

 We can not easily compute the expectation
 But we have multiple samples that contribute to the

expectation

Q̂
Q̂

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz27

Better Approach:
Directly Learning the Q-function

 Update Q-Function whenever we observe a transition s,a,r,s'

 Weighted update by a learning rate 

new Q-value for state
s and action a

old Q-value for this
state/action pair

predicted Q-value for
state s' and action a'

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz28

Q-learning (Watkins, 1989)

1. initialize all with 0
2. observe current state s
3. loop

1. select an action a and execute it
2. receive the immediate reward and observe the new state s'
3. update the table entry

4. s = s'

1. initialize all with 0
2. observe current state s
3. loop

1. select an action a and execute it
2. receive the immediate reward and observe the new state s'
3. update the table entry

4. s = s'

Q s , a  Q  s , a[ r  s ,amaxa '
Q s ' , a ' − Q s , a]

Temporal Difference:
Difference between the estimate of the value of a
state/action pair before and after performing the action.
→ Temporal Difference Learning

Q s , a 

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz29

Example: Maze
 Q-Learning will produce the following values

Based on a Slide by Dan Klein (Berkeley)

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz30

Miscellaneous

 Weight Decay:
  decreases over time, e.g.

 Convergence:
it can be shown that Q-learning converges

 if every state/action pair is visited infinitely often
 not very realistic for large state/action spaces
 but it typically converges in practice under less restricting

conditions

 Representation
 in the simplest case, is realized with a look-up table

with one entry for each state/action pair
 a better idea would be to have trainable function, so that

experience in some part of the space can be generalized
 special training algorithms for, e.g., neural networks exist

=
1

1visits s , a 

Q  s , a 

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz31

Drawbacks of Q-Learning
 We still need to compute arg max a, requiring estimates for all

actions
 arg max a is the optimal policy
 our policy converges to the optimal policy

→ don't use arg max a, but the action from the current policy

 perform on-policy updates
 update rule assumes action a' is chosen according to current

policy
 Update whenever observing a sample s,a,r,s',a'

 convergence if the policy gradually moves towards a policy
that is greedy with respect to the current Q-function

→ SARSA

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz33

Properties of RL Algorithms
 Transition Function

 Model-based: Assumed to be know or approximated
 Model-free

 Sampling
 On-Policy: Samples must be from the policy we want to evaluate
 Off-Policy: Samples obtained from any policy

 Policy Evaluation
 Value-based: Computes a state/action value function (this lecture)
 Direct: Compute expected return for a policy

 Exploration
 Directed: Method guides to a specific trajectory/state/action
 Undirected: Method allows random sampling close to the expected

maximum

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz42

TD-Gammon (Tesauro, 1995)

 world champion-calibre backgammon program
 Developed from beginner to world-

champion strength after 1,500,000
training games against itself (!)

 Lost World championship 1998 in a match
over 100 games with a mere 8 points

 Led to changes in backgammon theory
and was used as a popular practice and
analysis partner of leading human players

 Improvements over MENACE:
 Faster convergence because of → Temporal Difference

Learning
 Neural Network instead of boxes and beads allows

generalization
 use of positional characteristics as features

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz43

KnightCap (Baxter et al. 2000)

 Learned to play expertly in chess
 improvement from 1650 Elo (beginner)

to 2150 Elo (good club player)
in only ca. 1000 games on the internet

 Improvements over TD-Gammon:
 Integration of TD-learning with deep searches which are

necessary for computer chess
 self-play training is replaced with training by playing

against various partners on the internet

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz44

Super Human ATARI playing
(Minh et al. 2013)

 Reinforcement Learning with
Deep Learning

 State-of-the-Art

 Better than humans in 29/49
ATARI games

 Extremely high computation
times

 Reinforcement Learning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz45

Reinforcement Learning Resources

 Book
 On-line Textbook on Reinforcement learning

 http://www.cs.ualberta.ca/~sutton/book/the-book.html
 More Demos

 Grid world
 http://thierry.masson.free.fr/IA/en/qlearning_applet.htm

 Robot learns to crawl
 http://www.applied-mathematics.net/qlearning/qlearning.html

 Reinforcement Learning Repository
 tutorial articles, applications, more demos, etc.

 http://www-anw.cs.umass.edu/rlr/
 RL-Glue (Open Source RL Programming framework)

 http://glue.rl-community.org/

	Folie 1
	Reinforcement Learning
	Folie 3
	Menace - Operation
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Value Function
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Q-function
	Folie 26
	Folie 27
	Q-learning
	Folie 29
	Folie 30
	Folie 31
	Folie 33
	TD-Gammon
	KnightCap
	Folie 44
	Folie 45

