Learning

- Learning agents
- Inductive learning
 - Different Learning Scenarios
 - Evaluation
- Neural Networks
 - Perceptrons
 - Multilayer Perceptrons
 - Deep Learning
- Reinforcement Learning
 - Temporal Differences
 - Q-Learning
 - SARSA

Material from Russell & Norvig, chapters 18.1, 18.2, 20.5 and 21

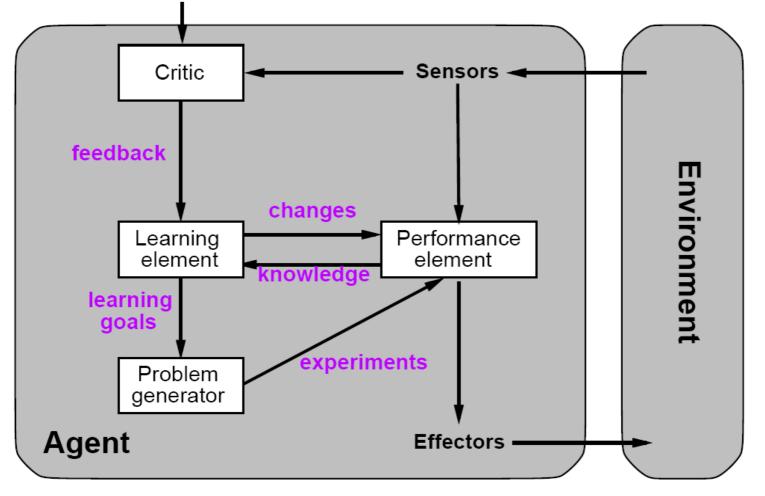
Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil

Learning

- Learning is essential for unknown environments,
 - i.e., when designer lacks omniscience
- Learning is useful as a system construction method,
 - i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent's decision mechanisms to improve performance

Learning Agents

Performance standard

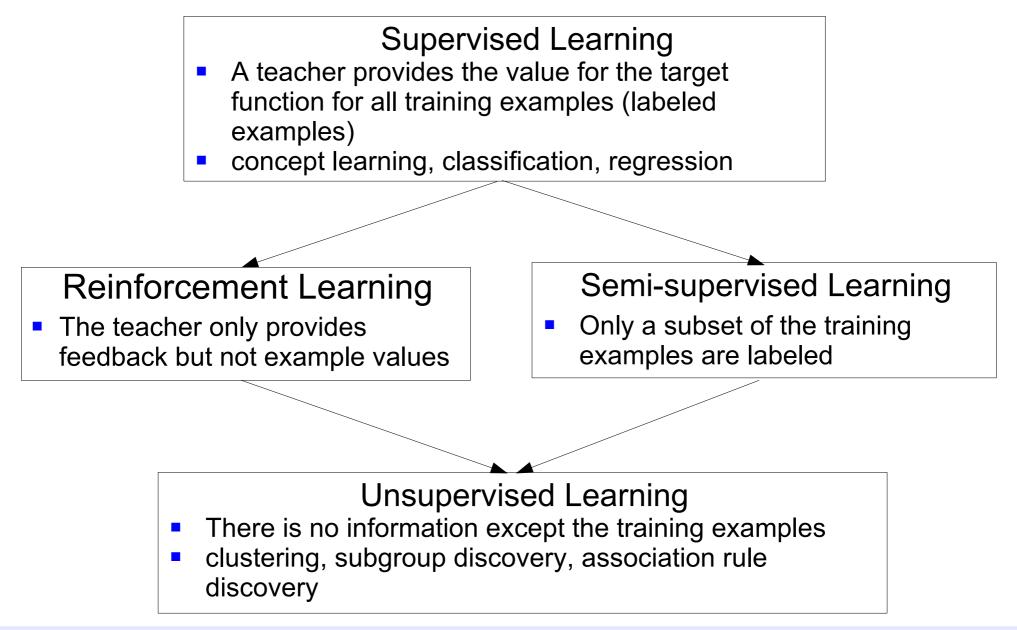


Learning Element

Design of a learning element is affected by

- Which components of the performance element are to be learned
- What feedback is available to learn these components
- What representation is used for the components
- Type of feedback:
 - Supervised learning:
 - correct answers for each example
 - Unsupervised learning:
 - correct answers not given
 - Reinforcement learning:
 - occasional rewards for good actions

Different Learning Scenarios



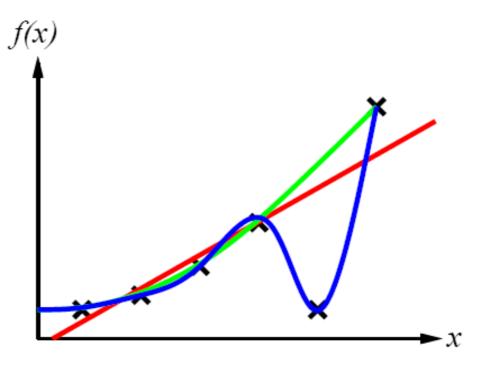
Inductive Learning

Simplest form: learn a function from examples

- f is the (unknown) target function
- An example is a pair (x, f(x))
- Problem: find a hypothesis h
 - given a training set of examples
 - such that $h \approx f$
 - on all examples
 - i.e. the hypothesis must generalize from the training examples
- This is a highly simplified model of real learning:
 - Ignores prior knowledge
 - Assumes examples are given

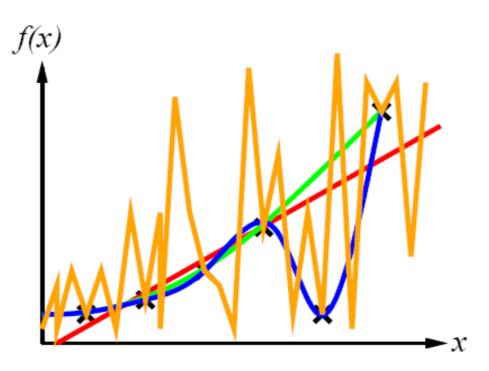
Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is consistent if it agrees with f on all examples
- Example:
 - curve fitting



Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is consistent if it agrees with f on all examples
- Example:
 - curve fitting

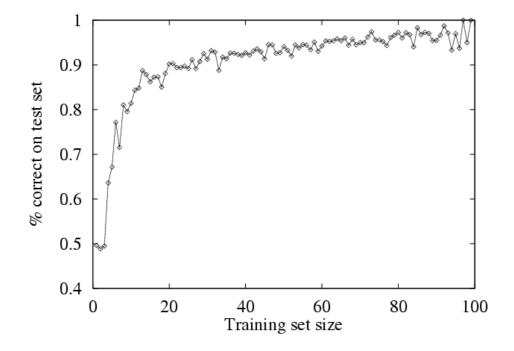


- Ockham's Razor
 - The best explanation is the simplest explanation that fits the data
- Overfitting Avoidance
 - maximize a combination of consistency and simplicity

Performance Measurement

- How do we know that $h \approx f$?
 - Use theorems of computational/statistical learning theory
 - Or try h on a new test set of examples where f is known (use same distribution over example space as training set)

Learning curve = % correct on test set over training set size



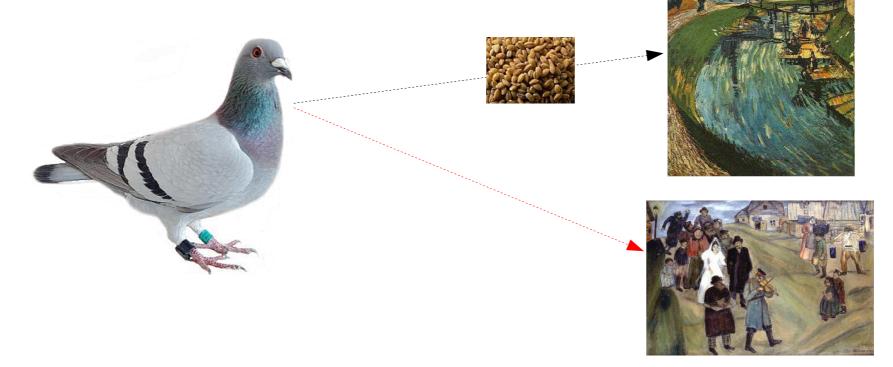
What are Neural Networks?

- Models of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours
- Applications
 - As powerful problem solvers
 - As biological models

Pigeons as Art Experts

Famous experiment (Watanabe et al. 1995, 2001)

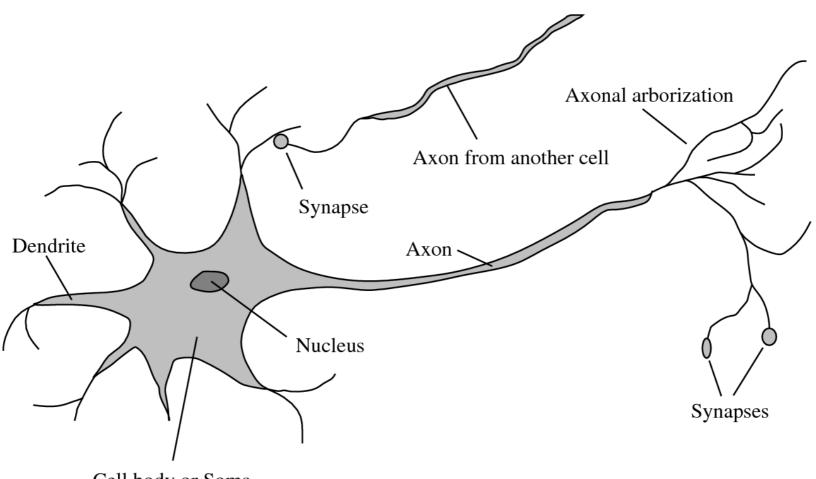
- Pigeon in Skinner box
- Present paintings of two different artists (e.g. Chagall / Van Gogh)
- Reward for pecking when presented a particular artist



Results

- Pigeons were able to discriminate between Van Gogh and Chagall with 95% accuracy
 - when presented with pictures they had been trained on
- Discrimination still 85% successful for previously unseen paintings of the artists
- \rightarrow Pigeons do not simply memorise the pictures
 - They can extract and recognise patterns (the 'style')
 - They generalise from the already seen to make predictions
- This is what neural networks (biological and artificial) are good at (unlike conventional computer)

A Biological Neuron

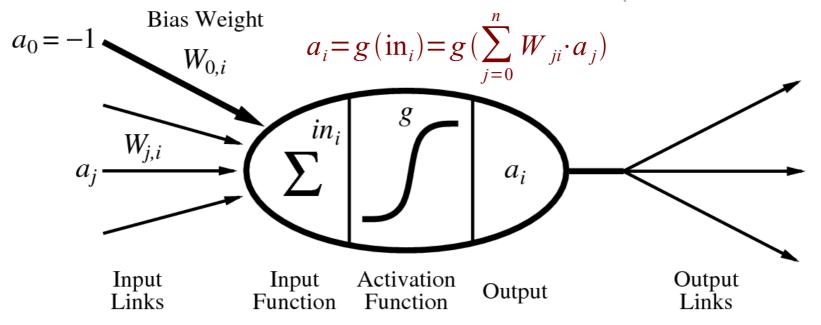


Cell body or Soma

- Neurons are connected to each other via synapses
- If a neuron is activated, it spreads its activation to all connected neurons

An Artificial Neuron

(McCulloch-Pitts, 1943)



- Neurons correspond to nodes or units
- A link from unit *j* to unit *i* propagates activation a_j from *j* to *i*
- The weight $W_{j,i}$ of the link determines the strength and sign of the connection
- The total input activation is the sum of the input activations
- The output activation is determined by the activiation function g

Perceptron

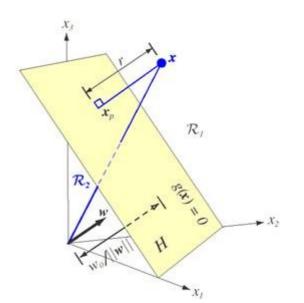
(Rosenblatt 1957, 1960)

- A single node
 - connecting *n* input signals a_i with one output signal *a*
 - typically signals are −1 or +1
- Activation function

• A simple threshold function:

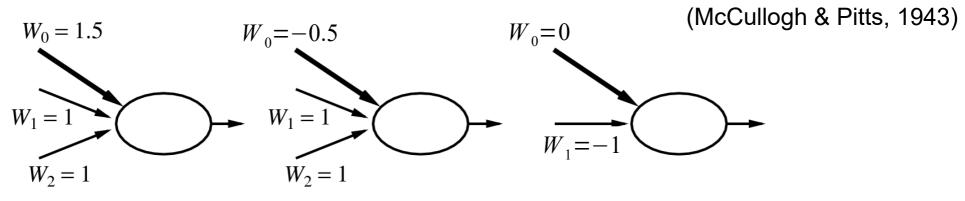
$$a = \begin{vmatrix} -1 & \text{if } \sum_{j=0}^{n} W_{j} \cdot a_{j} \le 0 \\ 1 & \text{if } \sum_{j=0}^{n} W_{j} \cdot a_{j} > 0 \end{vmatrix}$$

- Thus it implements a linear separator
 - i.e., a hyperplane that divides *n*-dimensional space into a region with output -1 and a region with output 1

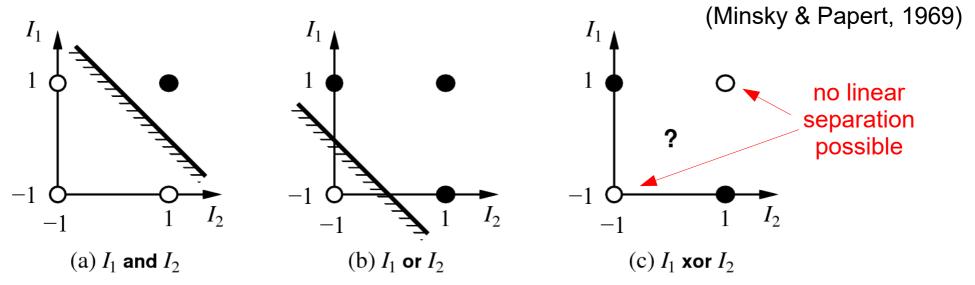


Perceptrons and Boolean Fucntions

a Perceptron can implement all elementary logical functions



more complex functions like XOR cannot be modeled



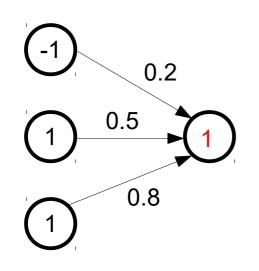
Perceptron Learning

Perceptron Learning Rule for Supervised Learning

$$W_{j} \leftarrow W_{j} + \alpha \cdot (f(\mathbf{x}) - h(\mathbf{x})) \cdot x_{j}$$

earning rate error

• Example:



Computation of output signal h(x)

in $(x) = -1 \cdot 0.2 + 1 \cdot 0.5 + 1 \cdot 0.8 = 1.1$ h(x) = 1 because in (x) > 0 (activation function)

Assume target value f(x) = -1 (and $\alpha = 0.5$) $W_0 \leftarrow 0.2 + 0.5 \cdot (-1 - 1) \cdot -1 = 0.2 + 1 = 1.2$ $W_1 \leftarrow 0.5 + 0.5 \cdot (-1 - 1) \cdot 1 = 0.5 - 1 = -0.5$ $W_2 \leftarrow 0.8 + 0.5 \cdot (-1 - 1) \cdot 1 = 0.8 - 1 = -0.2$

Measuring the Error of a Network

- The error for one training example x can be measured by the squared error
 - the squared difference of the output value h(x) and the desired target value f(x)

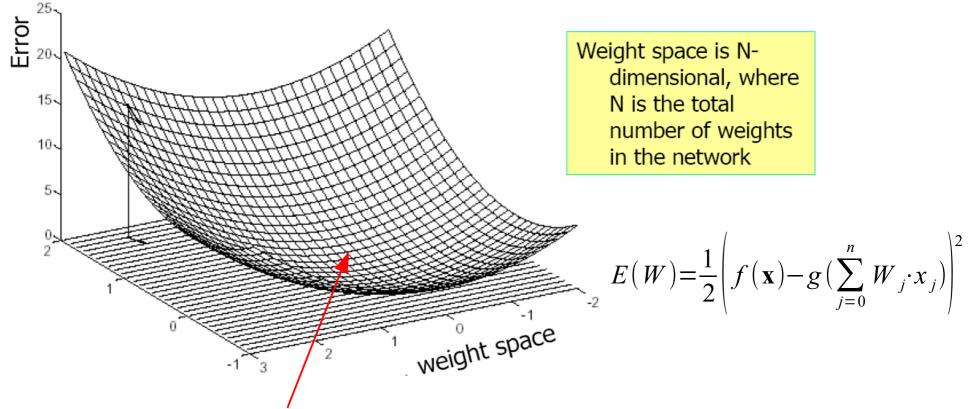
$$E(\mathbf{x}) = \frac{1}{2} Err^{2} = \frac{1}{2} (f(\mathbf{x}) - h(\mathbf{x}))^{2} = \frac{1}{2} \left| f(\mathbf{x}) - g(\sum_{j=0}^{n} W_{j} \cdot x_{j}) \right|^{2}$$

 For evaluating the performance of a network, we can try the network on a set of datapoints and average the value (= sum of squared errors)

$$E(Network) = \sum_{i=1}^{N} E(\mathbf{x}_i)$$

Error Landscape

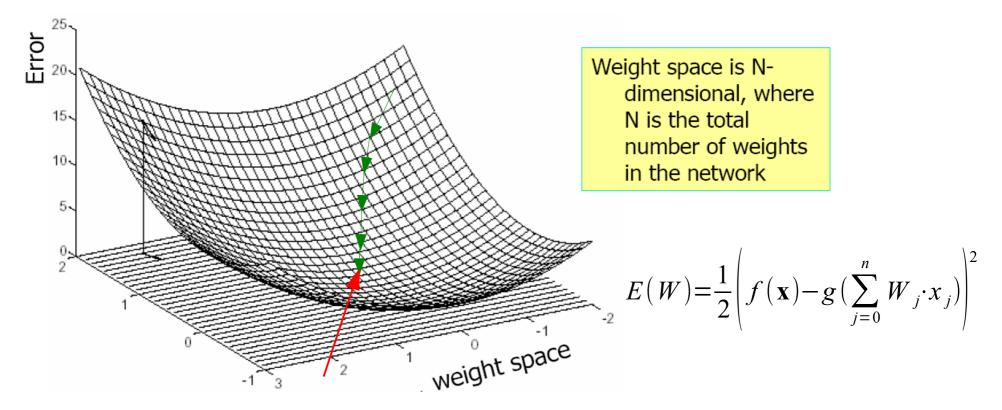
 The error function for one training example may be considered as a function in a multi-dimensional weight space



 The best weight setting for one example is where the error measure for this example is minimal

Error Minimization via Gradient Descent

- In order to find the point with the minimal error:
 - go downhill in the direction where it is steepest



... but make small steps, or you might shoot over the target

Error Minimization

 It is easy to derive a perceptron training algorithm that minimizes the squared error

$$E = \frac{1}{2} Err^{2} = \frac{1}{2} (f(\mathbf{x}) - h(\mathbf{x}))^{2} = \frac{1}{2} \left(f(\mathbf{x}) - g(\sum_{j=0}^{n} W_{j} \cdot x_{j}) \right)^{2}$$

 Change weights into the direction of the steepest descent of the error function

$$\frac{\partial E}{\partial W_{j}} = Err \cdot \frac{\partial Err}{\partial W_{j}} = Err \cdot \frac{\partial}{\partial W_{j}} \left(f(\mathbf{x}) - g(\sum_{k=0}^{n} W_{k} \cdot x_{k}) \right) = -Err \cdot g'(\mathrm{in}) \cdot x_{j}$$

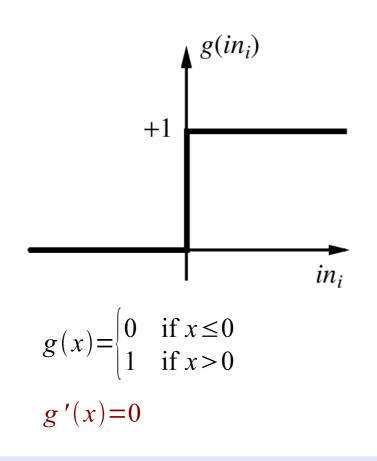
 To compute this, we need a continuous and differentiable activation function g!

• Weight update with learning rate α : $W_j \leftarrow W_j + \alpha \cdot Err \cdot g'(in) \cdot x_j$

- positive error \rightarrow increase network output
 - increase weights of nodes with positive input
 - decrease weights of nodes with negative input

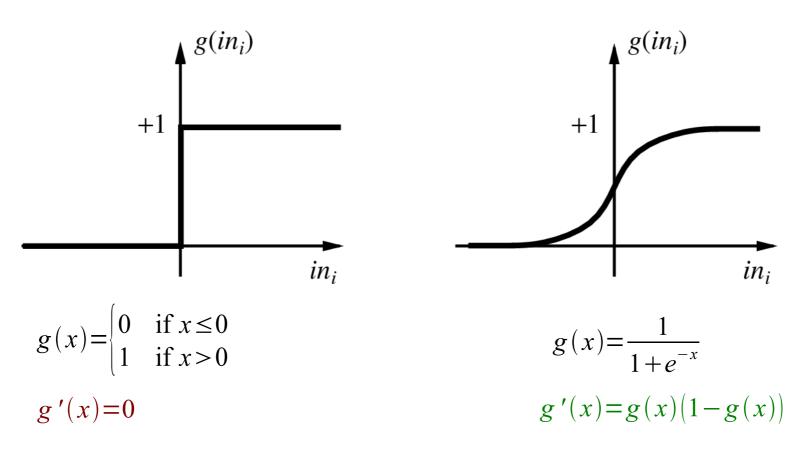
Threshold Activation Function

- The regular threshold activation function is problematic
 - g'(x) = 0, therefore $\frac{\partial E}{\partial W_{j,i}} = -Err \cdot g'(in_i) \cdot x_j = 0$ \rightarrow no weight changes!



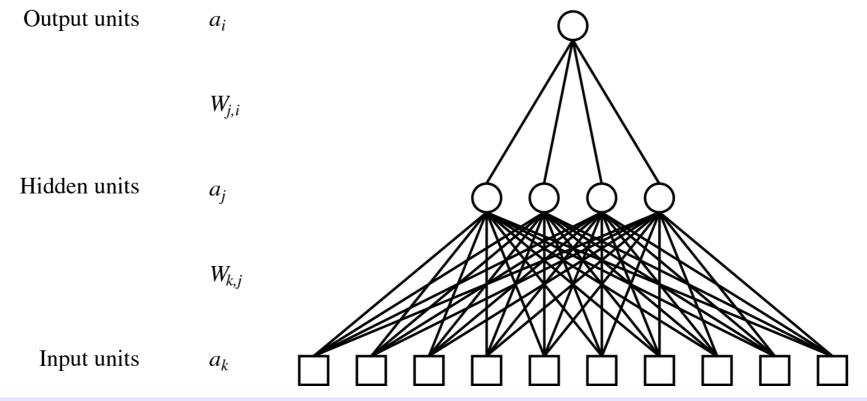
Sigmoid Activation Function

- A commonly used activation function is the sigmoid function
 - similar to the threshold function
 - easy to differentiate
 - non-linear

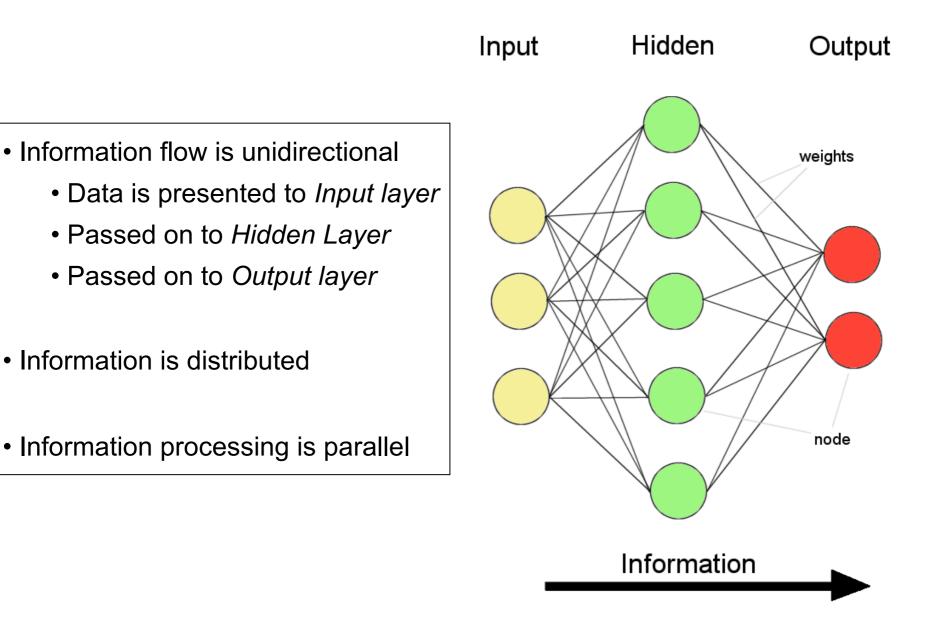


Multilayer Perceptrons

- Perceptrons may have multiple output nodes
 - may be viewed as multiple parallel perceptrons
- The output nodes may be combined with another perceptron
 - which may also have multiple output nodes
- The size of this hidden layer is determined manually



Multilayer Perceptrons



Expressiveness of MLPs

- Every continuous function can be modeled with three layers
 - i.e., with one hidden layer
- Every function can be modeled with four layers
 - i.e., with two hidden layers

Backpropagation Learning

The output nodes are trained like a normal perceptron

$$W_{ji} \leftarrow W_{ji} + \alpha \cdot Err_i \cdot g'(\text{in }_i) \cdot x_j = W_{ji} + \alpha \cdot \Delta_i \cdot x_j$$

- Δ_i is the error term of output node *i* times the derivation of its inputs
- the error term Δ_i of the output layers is propagated back to the hidden layer

$$\Delta_{j} = \left(\sum_{i} W_{ji} \cdot \Delta_{i}\right) \cdot g'(\operatorname{in}_{j}) \qquad W_{kj} \leftarrow W_{kj} + \alpha \cdot \Delta_{j} \cdot x_{k}$$

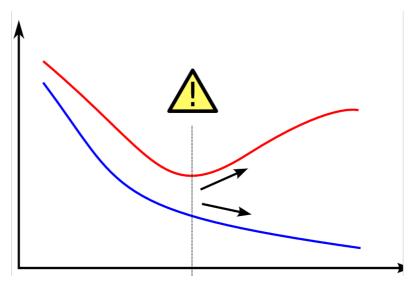
- the training signal of hidden layer node j is the weighted sum of the errors of the output nodes
- Thus the information provided by the gradient flows backwards through the network

Minimizing the Network Error

- The error landscape for the entire network may be thought of as the sum of the error functions of all examples
 - will yield many local minima \rightarrow hard to find global minimum
- Minimizing the error for one training example may destroy what has been learned for other examples
 - a good location in weight space for one example may be a bad location for another examples
- Training procedure:
 - try all examples in turn
 - make small adjustments for each example
 - repeat until convergence
- One Epoch = One iteration through all examples

Overfitting

- Training Set Error continues to decrease with increasing number of training examples / number of epochs
 - an epoch is a complete pass through all training examples
- Test Set Error will start to increase because of overfitting



- Simple training protocol:
 - keep a separate validation set to watch the performance
 - validation set is different from training and test sets!
 - stop training if error on validation set gets down

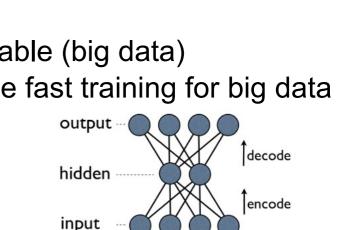
Face Node

Deep Learning

 In the last years, great success has been observed with training "deep" neural networks

Diagonal

- Deep networks are networks with multiple layers
- Successes in particular in image classification
 - Idea is that layers sequentially extract information from image
 - 1st layer \rightarrow edges,
 - 2nd layer \rightarrow corners, etc...
- Key ingredients:
 - A lot of training data are needed and available (big data)
 - Fast processing and a few new tricks made fast training for big data possible
 - Unsupervised pre-training of layers
 - Autoencoder use the previous layer as input and output for the next layer



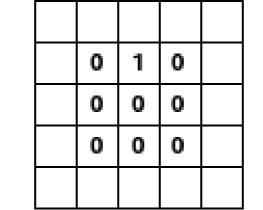
lode

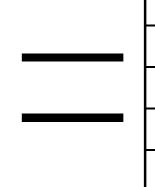
Convolutional Neural Networks

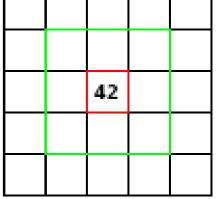
- Convolution:
 - for each pixel of an image, a new feature is computed using a weighted combination of its nxn neighborhood

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

5x5 image







3x3 convolution runs over all possible 3x3 subimages of picture

resulting image only one pixel shown

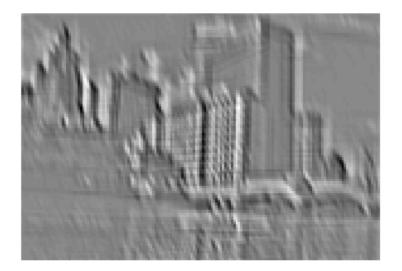
Convolution - Blur

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Convolution - Edge detection

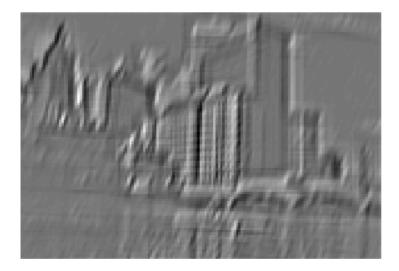
2-3		2-2	5	3)
30-33 32-33	0	1	0	<u>_</u>
	1	-4	1	
	0	1	0	
2 - 3		2-3	5	3)

Outputs of Convolution



Outputs of Convolution





Outputs of Convolution

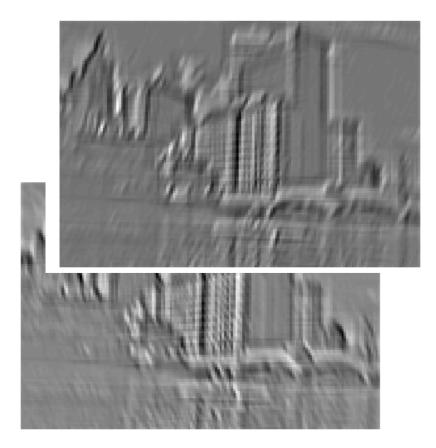
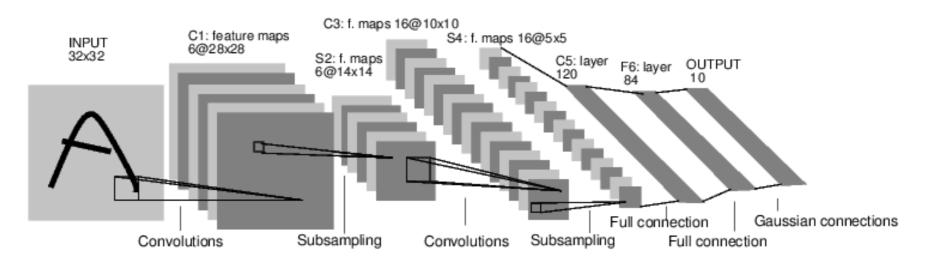


Image Processing Networks

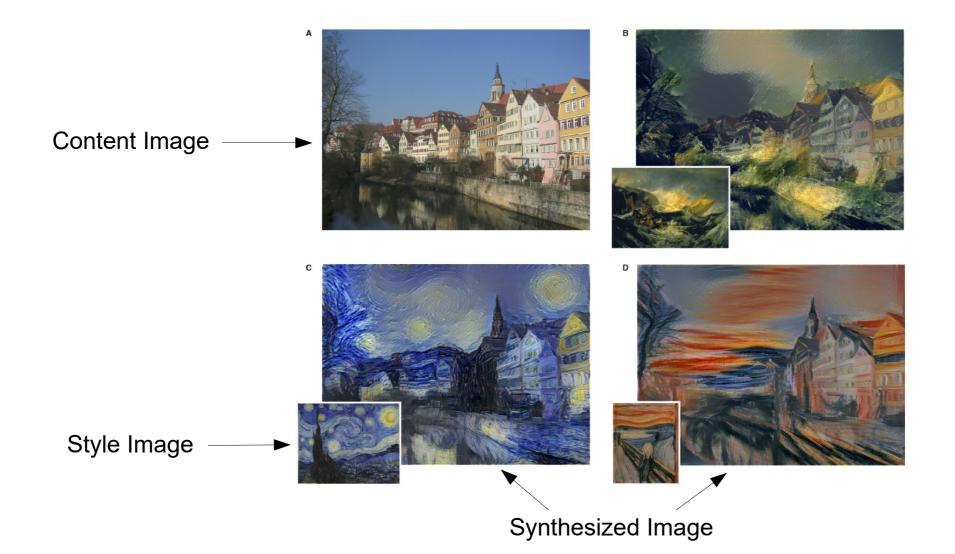
- Convolutions can be encoded as network layers
 - all possible 3x3 pixels of the input image are connected to the corresponding pixel in the next layer
- Convolutional Layers are at the heart of Image Recognition
 - Several stacked on top of each other and parallel to each other
- **Example:** LeNet (LeCun et al. 1989)



GoogLeNet is a modern variant of this architecture

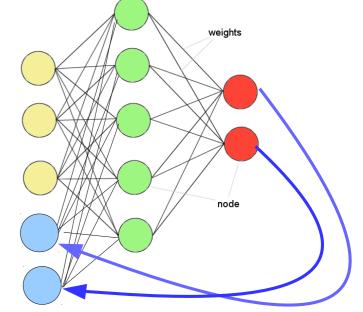
Neural Artistic Art Transfer

(Gatys et al., 2016)



Recurrent Neural Networks

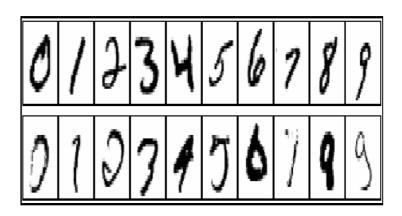
- Recurrent Neural Networks (RNN)
 - allow to process sequential data
 - by feeding back the output of the network into the next input
- Long-Short Term Memory (LSTM)
 - add "forgetting" to RNNs
 - good for mapping sequential input data into sequential output data



- e.g., text to text, or time series to time series
- Deep Learning often allows "end-to-end learning"
 - e.g., learn a network that does the complete translation of text in one language into another language
 - previously, learning often concentrated on individual components (e.g. word sense disambiguation)

Wide Variety of Applications

- Speech Recognition
- Autonomous Driving
- Handwritten Digit Recognition
- Credit Approval
- Backgammon
- etc.



- Good for problems where the final output depends on combinations of many input features
 - rule learning is better when only a few features are relevant
- Bad if explicit representations of the learned concept are needed
 - takes some effort to interpret the concepts that form in the hidden layers