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Learning
 Learning agents
 Inductive learning 

 Different Learning Scenarios
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 Reinforcement Learning
 Temporal Differences
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Learning

 Learning is essential for unknown environments,
 i.e., when designer lacks omniscience

 Learning is useful as a system construction method,
 i.e., expose the agent to reality rather than trying to write it 

down

 Learning modifies the agent's decision mechanisms to 
improve performance
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Learning Agents
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Learning Element

 Design of a learning element is affected by
 Which components of the performance element are 

to be learned
 What feedback is available to learn these 

components
 What representation is used for the components

 Type of feedback:
– Supervised learning: 

• correct answers for each example
– Unsupervised learning: 

• correct answers not given
– Reinforcement learning: 

• occasional rewards for good actions
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Different Learning Scenarios

Supervised Learning
 A teacher provides the value for the target 

function for all training examples (labeled 
examples)

 concept learning, classification, regression

Unsupervised Learning
 There is no information except the training examples
 clustering, subgroup discovery, association rule 

discovery

Reinforcement Learning
 The teacher only provides 

feedback but not example values

Semi-supervised Learning
 Only a subset of the training 

examples are labeled 
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Inductive Learning

Simplest form: learn a function from examples

 f  is the (unknown) target function

 An example is a pair (x, f(x))

 Problem: find a hypothesis h
 given a training set of examples
 such that h ≈ f
 on all examples 

 i.e. the hypothesis must generalize from the training examples

 This is a highly simplified model of real learning:
 Ignores prior knowledge
 Assumes examples are given
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Inductive Learning Method
 Construct/adjust h to agree with f on training set

 h is consistent if it agrees with f on all examples
 Example:

 curve fitting
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Inductive Learning Method
 Construct/adjust h to agree with f on training set

 h is consistent if it agrees with f on all examples
 Example:

 curve fitting

 Ockham's Razor
 The best explanation is the simplest explanation that fits the data

 Overfitting Avoidance
 maximize a combination of consistency and simplicity



   Neural Networks                                                                                      

   TU Darmstadt                                                                                                                                                                    Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz9

Performance Measurement
 How do we know that h ≈ f ?

 Use theorems of computational/statistical learning theory
 Or try h on a new test set of examples where f is known

(use same distribution over example space as training set)

Learning curve = % correct on test set over training set size
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What are Neural Networks?
 Models of the brain and nervous system
 Highly parallel

 Process information much more like the brain than a serial 
computer

 Learning

 Very simple principles
 Very complex behaviours

 Applications
 As powerful problem solvers
 As biological models
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Pigeons as Art Experts

Famous experiment (Watanabe et al. 1995, 2001)
 Pigeon in Skinner box
 Present paintings of two different artists (e.g. Chagall / Van Gogh)
 Reward for pecking when 

presented a particular artist 
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Results
 Pigeons were able to discriminate between Van Gogh and 

Chagall with 95% accuracy 
 when presented with pictures they had been trained on

 Discrimination still 85% successful for previously unseen 
paintings of the artists

→ Pigeons do not simply memorise the pictures
 They can extract and recognise patterns (the ‘style’)
 They generalise from the already seen to make predictions

 This is what neural networks (biological and artificial) are 
good at (unlike conventional computer)
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A Biological Neuron

 Neurons are connected to each other via synapses
 If a neuron is activated, it spreads its activation to all connected 

neurons
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An Artificial Neuron 

 Neurons correspond to nodes or units
 A link from unit j to unit i propagates activation aj from j to i
 The weight Wj,i of the link determines the strength and sign of the 

connection
 The total input activation is the sum of the input activations 
 The output activation is determined by the activiation function g

(McCulloch-Pitts,1943)

ai=g ini=g ∑
j=0

n

W ji⋅a j
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Perceptron
 A single node 

 connecting n input signals a
j
 with one output signal a

 typically signals are −1 or +1

 Activation function
 A simple threshold function: 

 Thus it implements a linear separator
 i.e., a hyperplane that divides 

n-dimensional space into a 
region with output −1
and a region with output 1 

a={−1 if ∑
j=0

n

W j⋅a j≤0

1 if ∑
j=0

n

W j⋅a j> 0

(Rosenblatt 1957, 1960)
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Perceptrons and Boolean Fucntions
 a Perceptron can implement all elementary logical functions

 more complex functions like XOR cannot be modeled

no linear
separation
possible

(McCullogh & Pitts, 1943)

(Minsky & Papert, 1969)

W 0=0

W 1=−1

−1
−1

−1
−1

−1
−1

W 0=−0.5
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Perceptron Learning
 Perceptron Learning Rule for Supervised Learning

 Example:

W j ←W j+ α⋅( f (x)−h(x))⋅x j

1

-1

1

0.2

0.5

0.8

1

Computation of output signal h(x)
in  x=−1⋅0.21⋅0.51⋅0.8=1.1

h(x)=1  because  in (x)>0  (activation function)

Assume target value f (x) = −1 (and α = 0.5)

W 0 0.20.5⋅−1−1⋅−1=0.21=1.2

W 1 0.50.5⋅−1−1⋅1=0.5−1=−0.5

W 2 0.80.5⋅−1−1⋅1=0.8−1=−0.2

learning rate error
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Measuring the Error of a Network
 The error for one training example x can be measured by the 

squared error
 the squared difference of the output value h(x) and the desired 

target value f (x) 

 For evaluating the performance of a network, we can try the 
network on a set of datapoints and average the value

(= sum of squared errors)

E (x)=1
2

Err2=1
2
( f (x)−h(x))2=1

2 ( f (x)−g (∑
j=0

n

W j⋅x j))
2

E Network =∑i=1

N
E x i
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Error Landscape
 The error function for one training example may be 

considered as a function in a multi-dimensional weight space

 The best weight setting for one example is where the error 
measure for this example is minimal

E (W )=1
2 ( f (x)−g (∑

j=0

n

W j⋅x j))
2
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Error Minimization via Gradient Descent
 In order to find the point with the minimal error:

 go downhill in the direction where it is steepest

 … but make small steps, or you might shoot over the target

E (W )=1
2 ( f (x)−g (∑

j=0

n

W j⋅x j))
2
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Error Minimization

 It is easy to derive a perceptron training algorithm that 
minimizes the squared error

 Change weights into the direction of the steepest descent of 
the error function

 To compute this, we need a continuous and differentiable 
activation function g!

 Weight update with learning rate α: 
 positive error → increase network output

 increase weights of nodes with positive input
 decrease weights of nodes with negative input

E= 1
2

Err2=1
2
( f (x)−h(x))2=1

2 ( f (x)−g (∑
j=0

n

W j⋅x j))
2

∂ E
∂W j

=Err⋅∂ Err
∂W j

=Err⋅ ∂
∂W j

( f (x)−g (∑
k=0

n

W k⋅xk))=−Err⋅g ' (in)⋅x j

W j←W j+α⋅Err⋅g ' (in)⋅x j
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Threshold Activation Function
 The regular threshold activation function is problematic

 g'(x) = 0, therefore

→ no weight changes!

g  x={0 if x≤0
1 if x0

g '  x=0

∂E
∂W j , i

=−Err⋅g ' (ini)⋅x j=0
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Sigmoid Activation Function
 A commonly used activation function is the sigmoid function

 similar to the threshold function
 easy to differentiate
 non-linear

g  x= 1

1e−x

g '  x=g  x 1−g  x 

g  x={0 if x≤0
1 if x0

g '  x=0
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Multilayer Perceptrons
 Perceptrons may have multiple output nodes

 may be viewed as multiple parallel perceptrons
 The output nodes may be combined with another perceptron

 which may also have multiple output nodes
 The size of this hidden layer is determined manually
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Multilayer Perceptrons

• Information flow is unidirectional

• Data is presented to Input layer

• Passed on to Hidden Layer

• Passed on to Output layer

• Information is distributed

• Information processing is parallel
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Expressiveness of MLPs
 Every continuous function can be modeled with three layers

 i.e., with one hidden layer
 Every function can be modeled with four layers

 i.e., with two hidden layers
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Backpropagation Learning
 The output nodes are trained like a normal perceptron

 Δi is the error term of output node i times the derivation of its 
inputs

 the error term Δi of the output layers is propagated back to 
the hidden layer

 the training signal of hidden layer node j is the weighted sum 
of the errors of the output nodes

 Thus the information provided by the gradient flows 
backwards through the network

W ji←W ji+α⋅Err i⋅g ' (in i)⋅x j=W ji+α⋅Δi⋅x j

 j=∑i

W ji⋅ i ⋅g '  in j W kj←W kj+α⋅Δ j⋅xk



   Neural Networks                                                                                      

   TU Darmstadt                                                                                                                                                                    Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz28

Minimizing the Network Error

 The error landscape for the entire network may be thought of 
as the sum of the error functions of all examples

 will yield many local minima → hard to find global minimum 
 Minimizing the error for one training example may destroy 

what has been learned for other examples
 a good location in weight space for one 

example may be a bad location for 
another examples

 Training procedure:
 try all examples in turn
 make small adjustments

for each example
 repeat until convergence

 One Epoch = One iteration 
through all examples 
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Overfitting
 Training Set Error continues to decrease with increasing number 

of training examples / number of epochs 
 an epoch is a complete pass through all training examples

 Test Set Error will start to increase because of overfitting

 Simple training protocol:
 keep a separate validation set to watch the performance

 validation set is different from training and test sets!
 stop training if error on validation set gets down
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Deep Learning
 In the last years, great success has been observed with training 

„deep“ neural networks
 Deep networks are networks 

with multiple layers
 Successes in particular in image 

classification
 Idea is that layers sequentially 

extract information from image
 1st layer → edges, 
 2nd layer → corners, etc…

 Key ingredients:
 A lot of training data are needed and available (big data)
 Fast processing and a few new tricks made fast training for big data 

possible
 Unsupervised pre-training of layers

 Autoencoder use the previous layer as 
input and output for the next layer
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Convolutional Neural Networks

 Convolution:
 for each pixel of an image, a new feature is computed 

using a weighted combination of its nxn neighborhood

5x5 image 3x3 convolution
runs over all 
possible 3x3 
subimages 
of  picture

resulting image
only one

pixel shown
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Convolution - Blur
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Convolution - Edge detection
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Outputs of Convolution
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Outputs of Convolution
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Outputs of Convolution
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Image Processing Networks
 Convolutions can be encoded as network layers 

 all possible 3x3 pixels of the input image are connected to the 
corresponding pixel in the next layer

 Convolutional Layers are at the heart of Image Recognition
 Several stacked on top of each other and parallel to each other 

 Example: LeNet (LeCun et al. 1989)

 GoogLeNet is a modern variant of this architecture
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Neural Artistic Art Transfer
(Gatys et al., 2016)

Style Image

Content Image

Synthesized Image
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Recurrent Neural Networks
 Recurrent Neural Networks (RNN)

 allow to process sequential data
 by feeding back the output of the 

network into the next input

 Long-Short Term Memory (LSTM)
 add „forgetting“ to RNNs
 good for mapping sequential input 

data into sequential output data 
 e.g., text to text, or time series to time series

 Deep Learning often allows „end-to-end learning“
 e.g., learn a network that does the complete translation of text 

in one language into another language
 previously, learning often concentrated on individual 

components (e.g. word sense disambiguation)
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Wide Variety of Applications
 Speech Recognition
 Autonomous Driving
 Handwritten Digit Recognition
 Credit Approval
 Backgammon
 etc.

 Good for problems where the final output depends on 
combinations of many input features

 rule learning is better when only a few features are relevant
 Bad if explicit representations of the learned concept are 

needed
 takes some effort to interpret the concepts that form in the 

hidden layers
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