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1. Introduction

● Problem 1: 

– many examples, many labels, multiple labels 
per example → but low label density

– e.g. text categorization, protein function 
classification

● Problem 2: 

– even more examples, even more labels, many 
features → but only one label per example

– e.g. image annotation, web advertising
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2. HOMER

● large set of labels L → tree- shaped hierarchy

● nodes contain:

– similar labels Ln L (⊆ disjunction of labels in Ln 
= meta-label)

– multilabel classifier (predicts meta-labels of 
children)

– examples labeled with at least one label of Ln 

(used to train classifiers)
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2. HOMER

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2. HOMER

● fewer training examples for each classifier
● even distribution of labels → more balanced 

training sets
● similarity-based distribution of labels → only 

few branches of tree activated

 

But how do we distribute the labels?
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2.1. Balanced k Means

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● training complexity: O(f(|L|)+|L|), with f(|L|)= 
complexity of balanced clustering 

● testing: O(logk(|L|)), instead of O(|L|)

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● HOMER-R: distributes labels evenly but 
randomly

● HOMER-K: uses k means
● HOMER-B: uses balanced k means
● BR: binary relevance method (one binary 

classifier for each label)
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2.2. Performance

● BR: F-Measure: 0.081, Loss: 0.282

  

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● BR: F-Measure: 0.157, Loss: 0.331

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● BR: 24.6 min delicious, 10.1 min mediamill
● measured in wall time!  

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● BR: 983 classifiers activated, 69.4 min testing 
time

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.2. Performance

● BR: 101 classifiers activated, 7.6 min testing 
time

Figure by G.​ Tsoumakas, I.​ Katakis and I.​ Vlahavas
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2.3. Discussion

Questions? Ideas?

HOMERBalanced k 
Means
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3.  Label Embedding Trees

● T = (N, E, F, L)
–  indexed nodes N = {0, … n}

–  edges E

–  label predictors F = {f1, …, fn} (scoring)

–  label sets L = {l0, …, ln} 

●  label embeddings

→ goal: minimize tree loss
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3.  Label Embedding Trees

  

m = #examples, B(x) = indices of “best” nodes 
● minimize approximation of empirical loss over  
variables F:  

a) count errors of all nodes independently

b) count errors of nodes jointly (check if node 
containing true label is ranked highest of 
siblings)
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3.  Label Embedding Trees

●  minimize overall tree loss over N, E, L:

I. Train k One-vs-Rest classifiers independently

II. Compute confusion matrix on validation set

III. For each internal node: partition label set 
between children's by choosing subsets that have 
max confusion of labels in the subset 
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3.  Label Embedding Trees

How do we predict using the learnt tree? 

Figure by Samy Bengio, Jason Weston and David 
Grangier
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3.  Label Embedding Trees

                                                       
● V is a de×k matrix, k = #labels
● W is a de×d matrix, d = #features
● S(*,*) = measure of similarity
● Փ(i) is a k-dimensional vector with a 1 at the 

ith position and 0 otherwise

How do we learn V and W?
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3.  Label Embedding Trees

a) first learn V, so that similar classes have small 
distance between their label embedding vectors 
→ learn W, by minimizing approximation of 
empirical loss (convex problem)  

b) learn W and V jointly, by directly minimizing 
approximation of empirical loss (non-convex 
problem) 
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3.  Label Embedding Trees

● potentially O(de (d + log(k)) testing speed

Figure by Samy Bengio, Jason Weston and David Grangier
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3.1. Performance

Figure by Samy Bengio, Jason Weston and David 
Grangier
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3.1. Performance

Figure by Samy Bengio, Jason Weston and David Grangier
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3.2. Discussion

Questions? Ideas?

Label 
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4. Conclusion

+ tree structures offer reduction of testing time     
and better predictions in comparison to flat  
structures 

-  all predictable labels have to be known before 
training

-  longer training time (may be reduced by 
optimization)

→ could try building tree with e.g. WordNet for 
text classification 
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