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Unsupervised and Unsupervised and 
Semi-Supervised LearningSemi-Supervised Learning

● Unsupervised Learning
 Clustering: Motivation and Applications
 k-means Clustering
 Bottom-Up Hierarchical Clustering

● Semi-Supervised Learning
 Active Learning, Uncertainty Sampling
 Self-Training
 Co-Training and Multi-View Learning
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ClusteringClustering

● Given:
 a set of documents
 no labels (→ unsupervised learning)

● Find:
 a grouping of the examples into meaningful clusters
 so that we have a high

● intra-class similarity: 
 similarity between objects in same cluster

● inter-class dissimilarity: 
 dissimilarity between objects in different clusters
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Some Applications of ClusteringSome Applications of Clustering
● Query disambiguation

 Eg: Query“Star” retrieves documents about astronomy, 
plants, animals, movies etc. 
– Solution:
• Clustering document responses to queries
• e.g., http://www.clusty.com/

● Manual construction of topic hierarchies and 
taxonomies
– Solution: 

● Preliminary clustering of large samples of web documents.

● Speeding up similarity search
– Solution:

● Restrict the search for documents similar to a query to  most 
representative cluster(s).

http://www.clusty.com/
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For better navigation of search resultsFor better navigation of search results

● For grouping search results thematically
 clusty.com / Vivisimo

Manning and Raghavan
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Application: Build up a Web CatalogueApplication: Build up a Web Catalogue
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… (30)

www.yahoo.com/Science

... ...

Manning and Raghavan



6 © J. FürnkranzWeb Mining | Clustering | V2.0

Application: Build up a Web CatalogueApplication: Build up a Web Catalogue

Manning and Raghavan

http://www.dmoz.org/
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Browsing Documents: Scatter/Gather Browsing Documents: Scatter/Gather 
(Cutting, Karger, and Pedersen)(Cutting, Karger, and Pedersen)

Manning and Raghavan
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k-means Clusteringk-means Clustering

● Based on EM (Expectation Maximization) algorithm

● Efficiently find k clusters:

1. Randomly select k points ck as cluster centers
2. E-Step: Assign each example to the nearest cluster center
3. M-Step: Compute new cluster centers as the average of all 

points assigned to the cluster

4. Goto 2. unless no improvement

ck 
1
nk
∑
i=1

nk

d i
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Id   x   y

 0:  1.0  0.0
 1:  3.0  2.0
 2:  5.0  4.0
 3:  7.0  2.0
 4:  9.0  0.0
 5:  3.0 -2.0
 6:  5.0 -4.0
 7:  7.0 -2.0
 8: -1.0  0.0
 9: -3.0  2.0
10: -5.0  4.0
11: -7.0  2.0
12: -9.0  0.0
13: -3.0 -2.0
14: -5.0 -4.0
15: -7.0 -2.0
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k-means: Examplek-means: Example

● find the best 2 clusters
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Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887
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Cluster Centers:  (7.0 -2.0) (-1.61538 0.46153)
Average Distance: 4.35887
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Clustering: ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
No improvement.
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Termination Conditions and Termination Conditions and 
ConvergenceConvergence

● Several possibilities for termination conditions, e.g.,
 repeat for a fixed number of iterations.
 repeat until document partition unchanged
 repeat until centroid positions unchanged

● Convergence
 Why should the K-means algorithm ever reach a fixed point?

● Fixed Point: A state in which clusters don’t change.
 K-means is a special case of a general procedure known as 

the Expectation Maximization (EM) algorithm.
● EM is known to converge, but number of iterations could be 

large.
● However, K-means typically converges quickly

Manning and Raghavan
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Convergence of K-MeansConvergence of K-Means
● Define goodness measure of cluster k as sum of squared 

distances from cluster centroid ck:
                            (sum over all di in cluster k)

● and goodness measure for clustering as the sum


● E-Step (reassignment) monotonically decreases G since 
each vector is assigned to the closest centroid
 i.e., the distance to the cluster center cannot increase

● M-Step (recomputation) monotonically decreases each Gk 
because                               minimizes the function
 Proof: 

Manning and Raghavan

Gk=∑
i=1

nk

d i−ck 
2

G=∑
k=1

K

G k

f x=∑i
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Time ComplexityTime Complexity

● Computing distance between two docs:
 O(m) where m is the dimensionality of the vectors.

● Reassigning clusters: 
 O(Kn) distance computations, in total O(Knm)

● Computing centroids: 
 Each doc gets added once to some centroid: O(nm).

● Repeat this for I iterations:  
→ Complexity is O(IKnm) in total

Manning and Raghavan
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Seed ChoiceSeed Choice

● Results can vary based on random 
seed selection.
 Some seeds can result in poor 

convergence rate, or convergence 
to sub-optimal clusterings.

● Possible Strategies:
 Select good seeds using a heuristic 

(e.g., doc least similar to any 
existing mean)

 Try out multiple starting points
 Initialize with the results of another 

method.

In the above, if you start
with B and E as centroids
you converge to {A,B,C}
and {D,E,F}
If you start with D and F
you converge to 
{A,B,D,E} {C,F}

Example showing
sensitivity to seeds

Manning and Raghavan
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How Many Clusters?How Many Clusters?

● The number of desired clusters K is not always given
● Finding the “right” K may be part of the problem

 Given documents, partition into an “appropriate” number of 
subsets.

 E.g., for query results - ideal value of K not known up front - 
though UI may impose limits.

● Simple Strategy:
 Compute a clustering for various values of K
 choose the best one

● But how can we measure Cluster Quality?
 Why can't we use, e.g., the G-measure?

Manning and Raghavan
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Trading Off Cluster Quality and Trading Off Cluster Quality and 
Number of ClustersNumber of Clusters

● Measures that measure the quality of a clustering by 
average distances to cluster centers are easy to optimize
 the optimum is always the largest K 

● see convergence proof
● limiting case: for K = N, we have G = 0

● Strategy: Combine quality measures with a penalty for high 
number of clusters
 For each cluster, we have a Cost C.
 Thus for a clustering with K clusters, the Total Cost is KC.
 Define the Value of a clustering to be = 

Average Distances + Total Cost.
 Find the clustering of lowest value, over all choices of K.

● Total benefit increases with increasing K. But can stop when it 
doesn’t increase by “much”. The Cost term enforces this.
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KK-means issues, variations, etc.-means issues, variations, etc.

● Recomputing the centroid after every assignment (rather 
than after all points are re-assigned) can improve speed of 
convergence of K-means

● Assumes clusters are spherical in vector space
 Sensitive to coordinate changes, weighting etc. 

● Disjoint and exhaustive
 Doesn’t have a notion of “outliers”

Manning and Raghavan
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Hierarchical ClusteringHierarchical Clustering

● Produces a tree hierarchy of clusters
 root: all examples
 leaves: single examples
 interior nodes: subsets of examples

● Two approaches
 Top-down: 

● start with maximal cluster (all examples)
● successively split existing clusters

 e.g., recursive application of k-means Clustering
 Bottom-up: 

● start with minimal clusters (single examples)
● successively merge existing clusters
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Hierarchical Agglomerative ClusteringHierarchical Agglomerative Clustering

● Assumes a similarity function for determining 
 the similarity of two instances

(and more generally the similarity of two clusters)
● Bottom-up strategy:

 Starts with all instances in a separate cluster
 then repeatedly joins the two clusters that are most similar
 until there is only one cluster.

● The history of merging forms a binary tree 
or hierarchy or dendrogram
 a clustering can be obtained by cutting

the dendrogram at a given level
 all connected components form a cluster

Manning and Raghavan
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1. Start with one cluster for each example: C = {Ci} = {{oi} | oi ∈ O }

2. compute distance d(Ci , Cj )  between all pairs of Cluster Ci , Cj

3. Join clusters Ci und Cj with minimum distance into a 
    new cluster Cp; make Cp the parent node of Ci and Cj : 

    Cp = {Ci , Cj}
    C = (C \ {Ci , Cj}) ∪ {Cp}

4. Compute distances between Cp and other clusters in C

5. If  |C| > 1, goto 3.

Hierarchical Agglomerative ClusteringHierarchical Agglomerative Clustering

→ We need a method for
     computing distances 
     between clusters!
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Similarity between ClustersSimilarity between Clusters

ways of computing a similarity/distance between clusters C1 and C2

● Single-link:
 minimum distance between two elements of C1 and C2

d(C1, C2) = min{ d(x, y) | x ∈ C1 , y ∈ C2 }
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Similarity between ClustersSimilarity between Clusters

ways of computing a similarity/distance between clusters C1 and C2

● Complete-link:
 maximum distance between two elements of C1 and C2

d(C1, C2) = max{ d(x, y) | x ∈ C1 , y ∈ C2 }
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Similarity between ClustersSimilarity between Clusters

ways of computing a similarity/distance between clusters C1 and C2

● Average-link:
 average distance between two elements of C1 and C2

d(C1, C2) = ∑{ d(x, y) | x ∈ C1 , y ∈ C2 } / |C1| / |C2|
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Bottom-up clustering (average-link):
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min distance = 2.00000 ( 8 ) ( 0 )
min distance = 2.82843 ( 2 ) ( 1 )
min distance = 2.82843 ( 4 ) ( 3 )
min distance = 2.82843 ( 6 ) ( 5 )
min distance = 2.82843 ( 10 ) ( 9 )
min distance = 2.82843 ( 12 ) ( 11 )
min distance = 2.82843 ( 14 ) ( 13 )
min distance = 3.16228 ( 7 ) ( 3 4 )
min distance = 3.16228 ( 15 ) ( 11 12 )
min distance = 4.73756 ( 3 4 7 ) ( 1 2 )
min distance = 4.73756 ( 11 12 15 ) ( 9 10 )
min distance = 4.74131 ( 1 2 3 4 7 ) ( 5 6 )
min distance = 4.74131 ( 9 10 11 12 15 ) ( 13 14 )
min distance = 5.57143 ( 0 8 ) ( 5 6 1 2 3 4 7 )
min distance = 9.90476 ( 13 14 9 10 11 12 15 ) ( 5 6 1 2 3 4 7 0 8 )

0 81 2 3 4 5 6 9 10 11 12 13 147 15
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Computational ComplexityComputational Complexity

● In the first iteration, all HAC methods need to compute 
similarity of all pairs of n individual instances
 complexity is O(n2).

● In each of the subsequent n−2 merging iterations, it must 
compute the distance between the most recently created 
cluster and all other existing clusters.
 Since we can just store unchanged similarities

● In order to maintain an overall O(n2) performance, 
computing similarity to each other cluster must be done in 
constant time.
 can be obtained if, e.g., each cluster is represented with a 

single representative (a centroid)
● Else O(n2 log n) or O(n3) if done naively

Manning and Raghavan
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How to Label ClustersHow to Label Clusters

● Show titles of typical documents
 Titles are easy to scan
 Authors create them for quick scanning!
 But you can only show a few titles which may not fully 

represent cluster
● Show words/phrases prominent in cluster

 More likely to fully represent cluster
 naïve approach:

● use the 5-10 most frequent words in each cluster
● Problem: clusters might have a uniform topic (e.g., computers)

 Use distinguishing words/phrases
● that appear more frequently in one class than in other classes
● e.g., significance tests

Manning and Raghavan
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Learning with Labelled and  Learning with Labelled and  
Unlabelled DataUnlabelled Data

● Supervised learning
 Assign each example to a group (class)
 Given: Training set with class labels

● Unsupervised learning
 Find groups of examples that "belong together"
 No class information is given in the training set

● On the Web
 many tasks are supervised (require labeled examples)
 there are many unlabeled documents
 but labeling them is expensive

→ semi-supervised learning
 augment unlabeled data with a (small) set of labeled data
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Semi-Supervised LearningSemi-Supervised Learning

● Goal:
 Reduce the amount of labelled data needed by letting 

classifiers make use of additional unlabelled data

● Some Techniques:
 Active Learning: 

● Classifier chooses examples that should be labelled
 Self-Training:

● Classifier labels its own examples
 Co-Training:

● Two classifier label each others examples
● Multi-View Learning: Special case where the classifiers are 

identical, but trained on different features sets
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Uncertainty Sampling Uncertainty Sampling 
(Lewis, Catlett/Gale, 1994)  (Lewis, Catlett/Gale, 1994)  

● The Learner decides which examples the teacher should 
label

● Properties:
 Needs classifiers with (good) confidence estimates in its 

predictions
 Reduces work-load for teacher
 may oversample certain classes

1. Train a classifier on the labeled training set
2. Let the learner predict for each example in the unlabeled set
3. Choose the n examples where it has the least confidence in its 

predictions (is most uncertain about the classification)
4. Let the teacher label these examples
5. Goto 1. unless no improvement

1. Train a classifier on the labeled training set
2. Let the learner predict for each example in the unlabeled set
3. Choose the n examples where it has the least confidence in its 

predictions (is most uncertain about the classification)
4. Let the teacher label these examples
5. Goto 1. unless no improvement
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Results Uncertainty SamplingResults Uncertainty Sampling
 data: AP newswire articles
 results show that uncertainty sampling (999 examples) is 

more efficient than random selection (10,000 examples)
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Self-Training Self-Training 
(Nigam, McCallum, Thrun &Mitchell, 2000)  (Nigam, McCallum, Thrun &Mitchell, 2000)  

● Using EM (Expectation Maximization) algorithm 

● Properties:
 Works well for classifiers that use all of the features 

(e.g., Naïve Bayes)
● Unlabelled data help to estimate the word probabilities

 Does not work well for classifiers that use only a few 
features (e.g., decision trees, rule learners)
● Subsequent iterations only reinforce the use of the same 

features as in the concept constructed in step 1.

1. Train an initial classifier on the labeled documents
2. E-Step: Assign class labels to the unlabeled documents 
3. M-Step: Train a classifier from all examples
4. Goto 2. unless no significant changes

1. Train an initial classifier on the labeled documents
2. E-Step: Assign class labels to the unlabeled documents 
3. M-Step: Train a classifier from all examples
4. Goto 2. unless no significant changes
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Self-Training: PerformanceSelf-Training: Performance

unlabelled documents 
improve performance

the more unlabelled 
documents the better
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Co-Training Co-Training 
(Blum & Mitchell, 1998)  (Blum & Mitchell, 1998)  

● Using two classifier to label each other's data

● Properties:
 Works well if the two classifiers

● provide (good) confidence estimates in their own predictions
● are diverse (tend to be correct on different regions of the 

example space)
 Could be generalized to more than 2 classifiers

1. Train Classifiers 1 and 2 on labelled data
2. Let Classifier i pick the n examples where it has the highest 

confidence in its predictions
3. Add the examples labelled by classifier 2 to the training set 

of classifier 1 and vice versa
4. Goto 2. as long as there is some improvement

1. Train Classifiers 1 and 2 on labelled data
2. Let Classifier i pick the n examples where it has the highest 

confidence in its predictions
3. Add the examples labelled by classifier 2 to the training set 

of classifier 1 and vice versa
4. Goto 2. as long as there is some improvement
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Multi-View LearningMulti-View Learning
● To obtain diverse and independent classifiers for co-

training, use two different feature sets (two views)
 TD = bag of words in document D
 TA = bag of anchor texts from HREF tags that target D
 alternatively, two random subsets of all available features 

could be used
● Co-training with multiple views reduces the error of each 

individual view (classifier)
● Further reduction can be obtained by combining the 

predictions of the two classifiers
 e.g., pick a class c by maximizing p(c|TD) p(c|TA)

(assumes independence of TA and TD)
● Multi-View Learning is still a hot research topic
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Results Multi-View LearningResults Multi-View Learning

Co-training Co-training 
reduces reduces 

classification classification 
errorerror

Shown is the Shown is the 
reduction in reduction in 
error against error against 

the number of the number of 
mutual mutual 
training training 
rounds.rounds.
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