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Web < Libraries

Quality of a library

m completeness

m accessibility of the information
The Web Is

= more and more complete

m hardly accessible
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Web < Libraries

Accessibility in a library
m Classification by themes
m Alphabetical sort
m Ask the librarian
Accessibility on the Web
= No general Web Directory
= No global URLs list
m Search engines and Web Directories



Search engines

Boolean query — list of web pages

Brief history
m 1990 Emtag (FTP filenames)
m 1994 Web crawler (first web search engine)
m 1998 Google (PageRank)
m 2003 Start of the Nutch project (Open source)




Web directory

m Links to other web sites
m Categorizes those links

m Historically collected by hand
= Manual categorization is slow and costly
= Categorization Is subjective

m Automated Wed pages categorization

m Understand both the document and the
category
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Categorization

m Task of predicting if a given document is
related to a given category

m subfield of the information systems discipline
m born Iin the early '60s

m first approach: ask a human expert to define
manually a set of rules encoding his
knowledge

m late '80s, Machine Learning paradigm
(extracting inductive knowledge from
pre-classified documents)



Text Categorization

m indexing of digital libraries
m filing of newspaper articles
m Spam Filtering

m word sense disambiguation for polysemous
words (just, stand)




Automated
categorization

Documents’ set

Categories’ set
Target function /
| oD x =TT, F)

_®:DxC—{T,F}
classifier or hypothesis

Approximate ¢ by means of a function &
such that & and ® coincide as much as possible.

Diplomandenseminar - 14/04/2005 — p. 11/133



Automated
categorization

Search engines

= polysemy
m response time
' Web directories
m number of references
m Update frequency
m COSt
m same accuracy as manually designed models
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Automated
categorization

Probabillistic classifiers

m Decision Rules

m Decision Trees
= Neural Networks
m Support Vector Machines
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Hypertext
classification

Text categorization on the web

m big heterogeneousness
= many authors
= many languages
= variety of topics

m irrelevant content
m pictures
= Page under construction



Hypertext
classification

New Information sources

= intern HTML structure
= keywords

= headings

m lists

m Graph structure of the web
= Predecessors or in-neighbors
m Successors or out-neighbors
= co-cited neighbors
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Categorization using
hyperlinks

Soumen Chakrabarti, 1998

m append the text of the neighbors — increase
of the error rate

m relaxation labeling classifier using the class
prediction of the neighbors — error rate
reduced by 70%
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Link Mining

Lise Getoor and King Lu, 2003

= Feature mining
= |ocal features: words
= non-local features: statistics about the
category distribution of the neighbors

m Support Vector Machine




Link Mining

Initialisation
(Local features)

#

Calculate the
link statistics

Classification
(Local and
non-local features)
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Link Mining

m Flat model: the local features and the
non-local ones were concatenated into a
common vector

m 2-step model: a local and a non-local
prediction are computed independently and
combined

The 2-step model outperforms the flat model
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Categorization
without the Web Page

Min-Yen Kan, 2004

m \Web crawlers collect more URLS than
classifiers can process

m Feature mining:

= split the URL (scheme:://host/path-
elements/document.extension)

= expand the abbreviations

m results
0 % as effective as text-based classifiers

= outperforms title or anchor words
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m Our model
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Overview

m Getoor and Chakrabarti showed that using
the class predication of the neighbors
Increases the performances

= We believe that more than the categories of
the neighbors, we should identify the
category of each link




Mine local

Overview

and link-specific non-local features

m Local features: the text content of the
document

m Link-specific non-local features
= anchor description

m \WOIC
m Neagd

s neighboring the anchor
Ings structurally preceding the link

m Neagd

iIng of the list of link

= paragraph surrounding the link
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Learning from
various predecessors

= Traditional classification problems: one
features set per example

m Hyperlink-based Classification: one
ensemble of features set per example




Classifier

-Prediction




Meta Predecessor

External Link

The Erasmus action is concerned

with [...] faculties across Europe. .. .
. : . European Commision Erasmus website
More information from the European Commission
Erasmus Student Network

Predecessor 1 Predecessor 2

More, information, from, the,
European, Commission, European,
Commision, Erasmus, website

Meta Predecessor
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Classifier 1

Stacking

/ CCLtQ
lassifier §

ACCLtl

> Catg

Example

Class¥ier 4

Classifier 5

Vote

\ CCLQ

CCLt5

Prediction
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Hyperlink Ensembles

Classifier

Vote

-~ Cbtl
Classifier
S 6t2 - CLtQ
Classifi
S@tg assifier R Catg
Classifier
S 6t4 > - Clt4
Classifi
Set5 assifier R CCLt5

Prediction
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Multiclass
binarization
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One against all

Answer | English | German | French
Is it English ? No 0 1 1
Is it German ? No 1 0 1
Is it French ? Yes 0 0 1
Sum 1 1 3
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Round Robin
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Round Robin

Answer | English | German | French
Is it English or German ? | English 1 -1 0
Is it English or French ? French -1 0 1
Is it German or French ? | French 0 -1 1
.| Sum 0 -2 2
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Feature patterns

m PredLinkTags The anchor description

m PredLinkHeadings The headings structurally
oreceding the link

m PredLinkParagraph The paragraph
surrounding the link

m PredListHeadings The heading of the list of
links

m PredNWordsAroundAnchor n words
preceding or following the anchor

m OwnText content of the target page
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Merging

PredHeadings

My link
collection
Merged
My Link Collection Spice Girls
. Forever
PredLinkTags

Spice Girls
Forever
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Tagging

PredHeadings

. Tagged
My link _
. PredHeadings.My
collection _ _
PredHeadings.link
PredHeadings.collection
: PredLinkTags.Spice
PredLinkTags PredLinkTags.Girls
Spice Girls PredLinkTags.Forever

Forever

Diplomandenseminar - 14/04/2005 — p. 45/133



Presentation

m Hypertext Classification
m Related Work

= Our Model

= [mplementation

m Results

= Conclusion

Diplomandenseminar - 14/04/2005 — p. 46/133



Presentation

= [mplementation
= The Benchmark Collections
= Support Vector Machines
= Preprocessing
= Mining the features
= Cross validation

Diplomandenseminar - 14/04/2005 — p. 47/133



The benchmark
collections

m Allesklar
= strongly connected
= specifically mined for this study

= WebKB
= weakly connected
= already tested by other researchers




The Allesklar dataset

m German generic web directory

m http://www.allesklar.de

m About 3 million of German web sites
referenced

m 16 main categories (between 30 000 and
1 000 000 sites per main category)

Diplomandenseminar - 14/04/2005 — p. 49/133



The Allesklar Dataset

We chose 5 main categories
m Arbeit und Beruf (Work and Jobs)

= Bildung und Wissenschaft (Education and
Science)

m Freizeit und Lifestyle (Hobbies and Lifestyle)
m Gesellschaft und Politik (Society and Politics)
= Immobilien und Wohnen (Accommodation)
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The Allesklar dataset

Crawling

m Breadth-first traversal of each category

m Altavista predecessors reguest
(ex:l 1 nk: eur opa. eu. 1 nt)

m Proxy

m URL — filename
m_Classification

m Graph structure: _Pr edecessors
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Categories

distribution
Category Examples
Arbeit&Beruf 578
Bildung&Wissenschaft 809
Freizeit&Lifestyle 752
Gesellschaft&Politik 833

Immobilien&Wohnen

793
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Classification

aaa-botzke.de , Immobilien-Wohnen |, aaa-botzke.de
aaonline.dkf.de’bb"p109.htm |, Arbeit-Beruf , aaonline.dkf.de/bb/p109.htm
abb-angermuende.de , Immobilien-Wohnen |, abb-angermuende.de
action5.toplink.de . Gesellschaft-Politik , action5.toplink.de

i agenturohnegrenzen.de , Freizeit-Lifestyle , agenturohnegrenzen.de

! aib-backnang.de , Arbeit-Beruf , aib-backnang.de
akzente-zuelpich.de , Immobilien-Wohnen | akzente-zuelpich.de
allschutz.de , Immobilien-Wohnen , allschutz.de
anahato.bei.t-online.de , Freizeit-Lifestyle . anahato.bei.t-online.de
anderswelt.com’kreiszeit , Freizeit-Lifestyle , anderswelt.com/kreiszeit
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Predecessors

from aaonline.dkf.de”bb"p109.htm : www.ralf-bales.de"gesamt.ntm ; www.open-skies.org"h
from berufenet.arbeitsamt.de : www.studienwahl.de”fmg.htm ; www.was-werden.de ; ...
from home.degnet.de’koller_stefan’lyrics’ly_start.htm : lyrics.berger-rangers.de ; elcapitan:

from home.t-online.de”"home”schmidt.re : www.lyrik.ch’lyrik“links.htm ; www.lyrik.de ; www.
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In-degree on
Allesklar

Immobilien—Wohnen
Bildung—Wissenschaft
Gesellschaft-Politik - ;
200 L Freizeit-Lifestyle
Arbeit—-Beruf v
150 —wmwwwwwmwmwwwwwmwmwwwmwmwwwwwmwmwwwwwmwmwwwmwmwwwwwmwf~

examples
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The WebKB dataset

m Web pages collected from computer science
departments

= Cornell

= Washington
= Wisconsin
= [exas

m MISC

m used as test set in numerous papers
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The WebKB dataset

m / categories
= student
= faculty
= course
= project
= department
= staff
m other (=~ 75% of the examples)
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The WebKB Dataset

category Examples

other 3756
student 1639
faculty 1121
course 926
project 506

department 181
staff 135
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In-degrees on
WebKB

other
1000 L lstodeet |
F | faculty - :
. \course
roject

100 b '

LTI
examples

10

0 5 10 15 20 25 30
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Support Vector
Machines

\ ~
\ ~
~
\ ~
\ S
\ ~
~
\ ~
\ S
\ ~
~
\ ~
\ Sl
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Support Vector
Machines

Set of examples: z;€ R" withi = 1,2, ..., N.
Vi, z;€ y; € {—1,1}
Jwe R",bER

(1) yi(w - i +b) > 1,4 =1,2,..., N
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Support Vector
Machines

(w, b) : hyperplane of equation w - x; +b = 0
named separating hyperplane.

We rescale the pair (w, b) in (wy, b') so that the
distance of the closest point, say z;, to the

| hyperplane equals —

5
lwo |




Support Vector
Machines

The signed distance d; of a point z; is given by

(2) d; = —

(3) Va; € S, yid; 2> ——=
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Support Vector
Machines

1
D)
o

Minimize || wy ||
Minimize % wy - wp.

Maximize

Diplomandenseminar - 14/04/2005 — p. 65/133



Support Vector
Machines

= Not linearly separable datasets

= Glve a weight to each example

= 1629
m1/97
m 1951

Plerre de Fermat
_agrange

Kuhn and Tucker extended the

Lagrangian theory in 1951
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Support Vector
Machines

The problem of minimizing 3 wy - wy subject to
the correct classification constraint

Vi € [1, N],vy;(wy - z; +b) > 1 becomes with the
relative weight «; granted to each example z; the

| problem of finding the saddle point of the
function L.



Support Vector
Machines
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Support Vector
Machines

At the saddle point,

oL XN
5 — =)y =
(5) a0 ;y a; =0
g aL — N —
| (6) — =w — )y ;=0
0w i=1
with
0L oL OL 0L
(7) a—— ( ; R —)
0w W Wo (N




Support Vector
Machines

The hyperplane coordinates (w, b)

W = ity Vit z;
b = ArgMax(SY, asyi(w - 23 —1))
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Support Vector
Machines

Classifying d

( > +1 Zi is positive
o - c 10:1 d is probably positive
w - d +b+ h | 5{ P Y P
€ |—1;0] d is probably negative
< -1 Zi IS negative

s, =

Decision function D(ﬁ) = sign(w - d +b)




Comparison

m Support vector machines and boosting-based
classifier committees

m Neural networks and on-line linear classifiers

m Rocchio classifiers and naive Bayes
classifiers
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Preprocessing

Remove the HTML tags
m Lower case the text
m Remove the diacritic signs

m Replace the remaining non alphanumeric
characters by a

m Replace the numbers by a single D
m Stop words list

m Document frequency based dimensionality
reduction
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Mining the features

Tidy
s HTML >XHTML

m XHTML — DOM tree
m XPath patterns
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XPath patterns

PredLinkTags [l a[\ @ref= Target SURL’]
PredLinkParagraph [l a[\ @ref= Target SURL’]/ancestor:
[/a[\ @ref=" Target SURL’]/ precedi ng
PredLinkHeadings [l a[\@ref=" Target SURL’']/ precedi ng
[l a[\ @ref=" Target SURL’']/ precedi ng
[/a[\ @ref=" Target SURL’]/ancest or
cul/preceding::hl[last()]
PredListHeadings [l a[\ @ref= Target SURL']/ancest or

/] a

c:ul/preceding::h2[last()]
[\@ref="Target SURL’]/ancestor
c.ul/preceding::h3[last()]
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Stratifled cross
validation

Fold 1

Dataset aq,

by ,az2,c¢1, a3 Cat. b Fold 2
, C2 , ba, aq,

bs , c3 , as

Cat. b Fold 3
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Stratifled cross
validation

Cat. a a1, ao, Fold 1
Dataset [ 43, d4, 95
b, a Cat. b Fold 2
, C2 , bo ,
bs , c3

Cat. b Fold 3
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Stratifled cross
validation

Cat. a a1, as, Fold 1
Dataset 43, d4, U5
— Cat. b by, b9, Fold 2
y C2 b3
, C3
Cat. b Fold 3
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Stratifled cross
validation

Dataset

Cat. a ai, a9,

as, a4, as

Fold 1

Cat. b b1, bo,

bs

Fold 2

Cat. b c1, Co,

C3

Fold 3
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Stratifled cross
validation

Dataset
Cat. b by, b9, Fold 2
b3
Cat. b c¢q, c9, Fold 3
C3
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Stratified cross
validation

Cat. a A9y Fold1 a;
Dataset 43, 44, A5 \\\

Cat. b by, by, Folde2. a5

b3

Cat. b c¢q, c9, Fold 3

C3
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Stratified cross

validation

Dataset

Cat. a Fold1 a,
A3y, a5

~
Cat. b by, b Fold 2 ay
b3 \
Cat. b c1, Co, ma?)
C3
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Stratified cross
validation

ﬁl_dé—aﬂ—w%

]
Dataset Q45—
Cat. b b1, bo, Fold 2 a
b3
Cat. b c¢q, c9, Fold 3 as
C3

Diplomandenseminar - 14/04/2005 — p. 79/133



Stratified cross
validation

Fold 1 ai , a4

Dataset a’5'\\
Cat. b by, bo, FOld S ~ts—r

Cat. b c¢q, c9, Fold 3 as

C3
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Stratified cross
validation

Fold 1 ai , a4 ,
Dataset / 01
Cat. b b—1t5, Fold 2 as , as
b3
Cat. b c¢q, c9, Fold 3 as
C3
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Stratified cross
validation

Fold 1 ai , a4 ,
b1

Dataset

Cat. b bo—~ Fold 2 as , as ,

b3 \"bz

Cat. b c¢q, c9, Fold 3 as

C3
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Stratified cross
validation

Fold 1 ai , a4 ,
Dataset b1
Cat. b Fold 2 a5, a5,
bB\ b2
Cat. b c¢q, c9, ?0@‘3‘@3—,»[93
C3
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Stratified cross
validation

Fold 1 ai , a4 ,
Dataset e
Cat. b Fold 2 a5, a5,
by
/
Cat. b c—, Fold 3 as , bs
C3
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Stratified cross

validation

Dataset

Fold 1 ai , a4 ,
b1, c1

Cat. b

Fold 2 as , as ,
/bszCQ

Cat. b

C3

Co1

/ Fold 3 as , b3
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Stratified cross
validation

Fold 1 ai , a4 ,
Dataset bL, &
Cat. b Fold 2 as , as ,
ba , c2
Cat. b Fold 3 as , bz,
C3 >C3
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Stratified cross
validation

Fold 1 ai , a4 ,
Dataset b1, &
Cat. b Fold 2 as , as ,
ba , C2
Cat. b Fold 3 as , bz,
C3
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Stratified cross
validation

YV e example,d ffold, e € f.test
V1, fo folds, f1 # fo = fi.test N fo.test =0
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Evaluation of a single
hypothesis

Category ¢; | Classified as positive | Classified as negative

Is positive a b
Is negative C d
= Accuracy A = —4+d_

m Precision 7 = -

m Recall p = -

__ (841
] Fﬁ Fﬁ — (527*2,:[0

lim (F3) =

— _ _
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Macro Averaging

as X asy as z
isx | 1213 | 1 1
isy | 352 | 33 0
isz | 421 | 1 41

as X as Ix
IS X 1213 2
IS IX 773 75

asy | asly
ISy 33 352
IS ly 2 1676

as z aslz
IS z 41 422
IS 1z 1 1599

Ty = 0.61
Ty = 0.94
e = 0.98

Tmacro = 0.84
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Micro Averaging

Tmicro — 0.62

asx | asy | asz
Isx | 1213 1 1
sy | 352 33 0
sz | 421 1 41

as+ | as-
IS+ | 1287 | 776
Is- | 776 | 3350
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Micro Fold Averaging

Compute the macro-averaging contingency table
for each fold, sum them and compute the
precision.
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Choice of the
evaluation function

= Finding documents relevant documents
= Find all the relevant documents
= Retrieved only relevant documents

= Huge number of Web documents

m Web crawlers index only a small subset of the
Web

m Precision

m Don’'t emphasize the WebKB hold all category
ot her

m Macro precision
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Pattern ranking
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Pattern ranking

Decision function
D(%) = sign(w - £+ b)

w . orthogonal vector of the separation hyperplane

k—1
W = E W; s
i=0

With (j;)*=} orthonormal base
The bigger the component w;. of the vector w, the stronger the
Influence of feature k£ on the classification.
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Pattern ranking

AOwnText.featurel

»"""""Support Vector

- PredLinkTags.featurel

PredLinkTag component
of the Support Vector

PredLinkTags.feature2
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Pattern ranking

E  the global vector space

E =M ®MyD---DOM,,withq n  number of mining methods
h

M, the subsets of features mined by the " methc

\

@ in (@), with & = S @iy, Vi € [1,n] ,10; € M

1
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Efficiency estimators

feature estimator e ¢(m) = elgj%b) Average information brought by one

feature mined by the method m

mining method estimator e, (m) = |w,,| = \/ZfEM wj% Information
brought by all the features mined by the method m
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Pattern ranking

Feature # features
PredLinkParagraph 79588
PredNWordsAroundLink 41513
OwnText 37898
PredHeadings 32832
PredLinkTags 4211
PredListHeadings 4118
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Pattern ranking

Feature Method component length
PredLinkParagraph 51831
PredNWordsAroundLink 14360
PredHeadings 13070

OwnText 12658
PredListHeadings 4319
PredLinkTags 2594
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pattern ranking

Feature average feature length

(method component length/features count)

PredListHeadings 1.05
PredNWordsAroundLink 0.65
PredLinkTags 0.62
PredHeadings 0.40
PredLinkParagraph 0.35

OwnText 0.33
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Pattern ranking

= PredLinkParagraph mines many features, but
they and rather spurious

m Owntext Is not targeted and thus mines
spurious words




Neighborhood of the
anchor
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micro precision
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Allesklar

= Allesklar.naround.gnuplot.data’

macro precision
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Allesklar
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Neighborhood of the
anchor

precision(Words) = precision(Before, After)

,with Words = After + Before
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m Results
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m Results
One pattern
Combining two features
Meta Predecessor and Hyperlink
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Allesklar WebKB
Words 83.40% 39.49%
Around 3664 3007
Pred 67.80% 33.62%
LinkTags 3653 2941
PredList 51.57% 21.78%
Headings 1870 1644
Pred 54.49% 22.65%
Headings 2672 2828
PredLink 66.90% 23.43%
Paragraph 2715 1144
Oown 58.15% 40.96%
Text 3831 8277

Using one feature
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Using one feature

Allesklar WebKB
Words 83.40% 39.49%
Around 3664 3007
Pred 67.80% 33.62%
LinkTags 3653 2941
PredList 51.57% 21.78%
Headings 1870 1644
Pred 54.49% 22.65%
Headings 2672 2828 /
PredLink 66.90% 23.43%
Paragraph 2715 114
Own 58.15% _,46.96% —

Text

3831

8277

OwnText covers more examples
than the other patterns. Non-local
features are more often mined on
Allesklar than on WebKB.
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Using one feature

Allesklar | WebKB
Words 83.40% _| 39.49%
Around 3664 07
Pred 67.80% _| 33.62%0
LinkTags 3653 M
PredList 5157% | 21.78%\
Headings 1870 1644
Pred 54.49% 22.65%
Headings 2672 2828
PredLink 66.90% 23.43%
Paragraph 2715 1144
Oown 58.15% 40.96%
Text 3831 8277

The good connectivity of Allesklar
confers to WordsAround and
PredLinkTags a fast as good
coverage as OwnText
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Using one feature

Allesklar | WebKB
Words 83.40% _| 39.49%
Around 3664 07
Pred 67.80% _| 33.62%0
LinkTags 3653 M
PredList 5157% | 21.78%\
Headings 1870 1644
Pred 54.49% 22.65%
Headings 2672 2828
PredLink 66.90% 23.43%
Paragraph 2715 1144
Oown 58.15% 40.96%
Text 3831 8277

The slight coverage difference be-
tween WordsAround and Predlink-
Tags shows that not all the anchors
have a description.
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Using one feature

. PredListHeadings is difficult to mine

because of its double condition.

Allesklar WebKB
Words 83.40% 39.49%
Around 3664 3007
Pred 67.80% 33.62%
LinkTags 3653 2941
PredList 51.57% _| 21.78% _
Headings 1870 W
Pred 54.49% 22.65%
Headings 2672 2828
PredLink 66.90% 23.43%
Paragraph 2715 1144
Oown 58.15% 40.96%
Text 3831 8277
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Using one feature

Allesklar WebKB
Words 83.40% _| 39.49%
Around 3664 07
Pred 67.80% 33.620
LinkTags 3653 2941
PredList 51.57% 21.78% \
Headings 1870 1644
Pred 54.49% 22.65%
Headings 2672 2828 /
PredLink 66.90% 23.43%
Paragraph 2715 114
Oown 58.15% _,A6.96%

Text

3831

8277

The classifier based on the neigh-
borhood of the link outperforms the
traditional text classifier by over
43%
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Combining two
features

m Antagonist effects
m iIncreases the amount of information

= Increases the dimensionality of the
classification problem

= Increases the number of examples to
classify
= Combination helpful with
= Nigh precisions
= Disjunct patterns
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Allesklar

Words
Around

Pred

Words
Around

85.83%
3664

LinkTags

PredList
Headings

Pred

Headings| Paragrap

PredLink

Pred 85.63% | 70.29%

LinkTags | 3678 3653

PredList | 86.19% | 71.96% | 52.68%

Headings| 3665 3653 1870

Pred 85.44% | 68.92% | 56.74% | 57.6%

Headings| 3665 3653 2744 2672

PredLink | 84.41% | 71.63% | 65.64% | 66.55% | 68.9%
Paragraplf 3667 3655 3013 3103 2715

Own 83.26% | 72.8% 67.94% | 69.87% | 70.53% | 65.72%
Text 3898 3898 3864 3879 3882 3831
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Words
Around

Pred

Words
Around

39.49%
3007

LinkTags

PredList
Headings

Pred

Headings| Paragrap

PredLink

Pred 46.62% | 33.62%

LinkTags | 3017 2941

PredList | 36.19% | 24.22% | 21.78%

Headings| 3008 2942 1644

Pred 36.05% | 30.5% 25.7% 22.65%

Headings| 3017 3002 2832 2828

PredLink | 42.35% | 32.86% | 28.91% | 26.15% | 23.43%
Paragraplf 3012 2955 2403 2912 1144

Own 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
Text 8277 8277 8277 8277 8277 8277
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Meta Predecessor and
Hyperlink Ensembles
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Allesklar

Hyperlink Ensembles Meta Predecessor

Words Pred PredList | Pred PredLink | Own
Around LinkTags | Headings| Headings| Paragraph Text
Words 72.49% | 71.91% | 71.9% 61.54% | 70.33% | 67.15%
Around 85.83% | 85.63% | 86.19% | 85.44% | 84.41% | 83.26%
3664 3678 3665 3665 3667 3898
Pred 71.91% | 61.26% | 63.3% 57.15% | 59.51% | 60.17%
LinkTags 85.63% | 70.29% | 71.96% | 68.92% | 71.63% | 72.8%
3678 3653 3653 3653 3655 3898
PredList | 71.9% 63.3% 47.29% | 46.38% | 54.07% | 63.66%
Headings 86.19% | 71.96% | 52.68% | 56.74% | 65.64% | 67.94%
3665 3653 1870 2744 3013 3864
Pred 61.54% | 57.15% | 46.38% | 48.27% | 47.69% | 58.2%
Headings 85.44% | 68.92% | 56.74% | 57.6% 66.55% | 69.87%
3665 3653 2744 2672 3103 3879
PredLink | 70-33% | 59.51% | 54.07% | 47.69% | 58.23% | 60.84%
Paragraph 84.41% | 71.63% | 65.64% | 66.55% | 68.9% 70.53%
3667 3655 3013 3103 2715 3882
own 67.15% | 60.17% | 63.66% | 58.2% 60.84% | 65.72%
Text 83.26% | 72.8% 67.94% | 69.87% | 70.53% | 65.72%
3898 3898 3864 3879 3882 3831
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Hyperlink Ensembles Meta Predecessors

Words P_red Predl__ist Pred _ PredLink | Own
Around LinkTags | Headings| Headings| Paragraph Text
4 40% 53.7% 30.19% | 25.99% | 36.94% | 38.37%
%ghr?d 39.49% | 52.04% | 35.66% | 36.05% | 37.96% | 41.73%
3007 3017 3008 3017 3012 8277
Pred 53.7% 38.79% | 41.04% | 36.39% | 35.97% | 37.21%
LinkTags | 52:04% | 33.62% | 35.65% | 30.5% 30.13% | 41.68%
3017 2941 2942 3002 2955 8277
PredList | 30-19% | 41.04% | 24.1% 26.62% | 28.21% | 39.62%
: 35.66% | 35.65% | 21.78% | 25.7% 23.48% | 40.72%
Headings| 3003 2042 1644 2832 2403 8277
Pred 25.09% | 36.39% | 26.62% | 26.61% | 25.14% | 34.87%
Headings| 36:05% | 30.5% 25.7% 22.65% | 26.15% | 40.72%
3017 3002 2832 2828 2912 8277
PredLink | 36-94% | 35.97% | 28.21% | 25.14% | 27.73% | 41.01%
Paragraph 37:96% | 30.13% | 23.48% | 26.15% | 23.43% | 40.92%
3012 2955 2403 2912 1144 8277
own 38.37% | 37.21% | 39.62% | 34.87% | 41.01% | 40.96%
Tt 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
8277 8277 8277 8277 8277 8277
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Hyperlink Ensembles

m Disappointing result

m Apparent contradiction with Chakrabarti’'s and
Getoor’s results

m Reason for this poor efficiency

m Contradiction between the feature sets
sizes and the dimensionality of the learning
problem



Hyperlink Ensembles

Solutions

= Learn on Meta Predecessors to enlarge the
feature sets
m Reduce the dimensionality of the problem
= Stems
= Synonyms
= Abbreviations expansion




Allesklar

Learns with MP, classifies with HE Learns and classifies with MP

Words P_red Predl__ist Pred _ PredLink | Own
Around LinkTags | Headings| Headings| Paragraph Text
Words 87.49% | 75.64% | 74.32% | 69.64% | 71.93% | 68.66%
85.83% | 86.46% | 85.85% | 85.42% | 85.28% | 83.26%
Around | 3554 3678 3665 3665 3667 3898
Pred 75.64% | 71.44% | 58.11% | 55.04% | 56.9% 57.77%
: 86.46% | 70.29% | 72.91% | 68.92% | 72.75% | 72.8%
LinkTags | 3570 3653 3653 3653 3655 3898
Predlist | 74-32% | 58.11% | 51.53% | 40.61% | 47.27% | 62.71%
: 85.85% | 72.91% | 52.68% | 56.74% | 66.38% | 67.94%
Headings| sqce 3653 1870 2744 3013 3864
Pred 69.64% | 55.04% | 40.61% | 58.83% | 39.57% | 68.93%
Headings| 85:42% | 68.92% | 56.74% | 57.6% 66.54% | 69.87%
3665 3653 2744 2672 3103 3879
PredLink | 71-93% | 56.9% 47.27% | 39.57% | 69.6% 70.1%
Paragraph 85:28% | 72.75% | 66.38% | 66.54% | 68.9% 70.54%
3667 3655 3013 3103 2715 3882
own 68.66% | 57.77% | 62.71% | 68.93% | 70.1% 65.72%
ot 83.26% | 72.8% 67.94% | 69.87% | 70.54% | 65.72%
3898 3898 3864 3879 3882 3831
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WebKB-HE-LT-TS-merged-oneagainstall WebKB-MP-merge-oneagainstall

Words Pred PredList | Pred PredLink | Own
Around LinkTags | Headings| Headings| Paragraph Text
Words 39.19% | 44.78% | 34.84% | 22.03% | 41.22% | 39.54%
Around 39.49% | 46.62% | 36.19% | 36.05% | 42.35% | 41.73%
3007 3017 3008 3017 3012 8277
Pred 44.78% | 30.35% | 24.63% | 29.29% | 33.22% | 40.44%
LinkTags 46.62% | 33.62% | 24.22% | 30.5% 32.86% | 41.68%
3017 2941 2942 3002 2955 8277
PredList | 34.84% | 24.63% | 21.46% | 25.21% | 29.77% | 39.54%
Headings 36.19% | 24.22% | 21.78% | 25.7% 28.91% | 40.72%
3008 2942 1644 2832 2403 8277
Pred 22.03% | 29.29% | 25.21% | 26.47% | 25.41% | 39.24%
Headings 36.05% | 30.5% 25.7% 22.65% | 26.15% | 40.72%
3017 3002 2832 2828 2912 8277
PredLink | 41.22% | 33.22% | 29.77% | 25.41% | 23.33% | 40.05%
Paragraph 42.35% | 32.86% | 28.91% | 26.15% | 23.43% | 40.92%
3012 2955 2403 2912 1144 8277
own 39.54% | 40.44% | 39.54% | 39.24% | 40.05% | 40.96%
Text 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
8277 8277 8277 8277 8277 8277
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Binarization

Allesklar-MP-notmerged-oneagainstall Allesklar-MP-notmerged-roundrobin

Words Pred PredList | Pred PredLink | Own
Around LinkTags | Headings| Headings| Paragraph Text
Words 85.83% | 85.63% | 86.19% | 85.44% | 84.41% | 83.26%
Around 83.4% 83.47% | 83.28% | 81.87% | 79.89% | 79.04%
3664 3678 3665 3665 3667 3898
Pred 85.63% | 70.29% | 71.96% | 68.92% | 71.63% | 72.8%
LinkTags 83.47% | 67.8% 68.11% | 64.67% | 67.31% | 65.47%
3678 3653 3653 3653 3655 3898
PredList | 86:19% | 71.96% | 52.68% | 56.74% | 65.64% | 67.94%
Headings 83.28% | 68.11% | 51.57% | 56.61% | 61.19% | 61.88%
3665 3653 1870 2744 3013 3864
Pred 85.44% | 68.92% | 56.74% | 57.6% 66.55% | 69.87%
Headings 81.87% | 64.67% | 56.61% | 54.49% | 59.52% | 63.17%
3665 3653 2744 2672 3103 3879
PredLink | 8441% | 71.63% | 65.64% | 66.55% | 68.9% 70.53%
Paragraph 79.89% | 67.31% | 61.19% | 59.52% | 66.9% 63.03%
3667 3655 3013 3103 2715 3882
own 83.26% | 72.8% 67.94% | 69.87% | 70.53% | 65.72%
Text 79.04% | 65.47% | 61.88% | 63.17% | 63.03% | 58.15%
3898 3898 3864 3879 3882 3831
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Binarization

WebKB-MP-notmerged-oneagainstall WebKB-MP-notmerged-roundrobin

Words Pred PredList | Pred PredLink | Own

Around LinkTags | Headings| Headings| Paragraph Text
Words | 39-49% | 52.04% | 35.66% | 36.05% | 37.96% | 41.73%
30.42% | 51.79% | 31.99% | 38.7% | 34.82% | 42.22%

Around | 3547 3017 3008 3017 3012 8277
ored 52.04% | 33.62% | 35.65% | 30.5% | 30.13% | 41.68%
- 51.79% | 32.1% | 37.43% | 32.72% | 31.41% | 42.46%
LinkTags | 3717 2941 2942 3002 2955 8277
oredList | 35:66% | 35.65% | 21.78% | 25.7% | 23.48% | 40.72%
- 31.99% | 37.43% | 22.67% | 22.65% | 25.03% | 41.65%
Headings| 350g 2042 1644 2832 2403 8277
ored 36.05% | 305% | 25.7% | 22.65% | 26.15% | 40.72%
- 38.7% | 32.72% | 22.65% | 24.89% | 26.72% | 41.54%
Headings| 5777 3002 2832 2828 2912 8277
oredLink | 37-96% | 30.13% | 23.48% | 26.15% | 23.43% | 40.92%
Paragraph 34.82% | 31.41% | 25.03% | 26.72% | 26.1% | 41.31%
3012 2055 2403 2912 1144 8277
own 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
o 42.22% | 42.46% | 41.65% | 41.54% | 41.31% | 41.88%
8277 8277 8277 8277 8277 8277
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Sticky classes
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Sticky classes

m class that is not as specific as the others
m most populated class
= hold on class
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Sticky classes of
Allesklar

source Al l eskl ar- MP-not ner ged-r oundr obi n/ Al | eskl ar-0-0-predlinktags-.

1 : Cesellschaft-Politik
2 . Bildung- Wssenschaft
3 : Imuobilien-Whnen
4 . Freizeit-Lifestyle
5 : Arbeit-Beruf

as 1 as 2 as 3 as 4 as 5 recall F1
s 1 584 84 126 16 8 0.713 0. 643
is 2 132 504 122 24 10 0. 636 0. 649
is 3 115 52 525 42 12 0. 703 0. 587
s 4 69 55 138 474 5 0. 639 0.7
is 5 95 65 128 55 213 0. 383 0. 529

Prec. 0. 586 0. 663 0. 505 0.775 0. 858

macro_precision : 0.678006900282544
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Allesklar

Allesklar-MP-merged-oneagainstall Allesklar-MP-notmerged-oneagainstall

Words Pred PredList | Pred PredLink | Own
Around | LinkTags | Headings| Headings| Paragraph Text
Words 85.83% | 86.46% | 85.85% | 85.42% | 85.28% | 83.26%
Around | 89:83% | 85.63% | 86.19% | 85.44% | 84.41% | 83.26%
3664 3678 3665 3665 3667 3898
Pred 86.46% | 70.29% | 72.91% | 68.92% | 72.75% | 72.8%
LinkTags | 82:63% | 70.29% | 71.96% | 68.92% | 71.63% | 72.8%
3678 3653 3653 3653 3655 3898
PredList | 82:85% | 72.91% | 52.68% | 56.74% | 66.38% | 67.94%
Headings| 86:19% | 71.96% | 52.68% | 56.74% | 65.64% | 67.94%
3665 3653 1870 2744 3013 3864
85.42% | 68.92% | 56.74% | 57.6% 66.54% | 69.87%
Pred
Headings| 82:44% | 68.92% | 56.74% | 57.6% 66.55% | 69.87%
3665 3653 2744 2672 3103 3879
PredLink | 89:28% | 72.75% | 66.38% | 66.54% | 68.9% 70.54%
Paragraph 84:41% | 71.63% | 65.64% | 66.55% | 68.9% 70.53%
3667 3655 3013 3103 2715 3882
own 83.26% | 72.8% 67.94% | 69.87% | 70.54% | 65.72%
Text 83.26% | 72.8% 67.94% | 69.87% | 70.53% | 65.72%
3898 3898 3864 3879 3882 3831
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WebKB-MP-merge-oneagainstall WebKB-MP-notmerged-oneagainstall

Words Pred PredList | Pred PredLink | Own
Around | LinkTags | Headings| Headings| Paragraph Text
Words 39.49% | 46.62% | 36.19% | 36.05% | 42.35% | 41.73%
Around | 39:49% | 52.04% | 35.66% | 36.05% | 37.96% | 41.73%
3007 3017 3008 3017 3012 8277
Pred 46.62% | 33.62% | 24.22% | 30.5% 32.86% | 41.68%
LinkTags | 22:04% | 33.62% | 35.65% | 30.5% 30.13% | 41.68%
3017 2941 2942 3002 2955 8277
PredList | 36-19% | 24.22% | 21.78% | 25.7% 28.91% | 40.72%
Headings| 32.66% | 35.65% | 21.78% | 25.7% 23.48% | 40.72%
3008 2942 1644 2832 2403 8277
Pred 36.05% | 30.5% 25.7% 22.65% | 26.15% | 40.72%
Headings| 36:0°% | 30.5% 25.7% 22.65% | 26.15% | 40.72%
3017 3002 2832 2828 2912 8277
PredLink | 42.35% | 32.86% | 28.91% | 26.15% | 23.43% | 40.92%
Paragraph 5/.96% | 30.13% | 23.48% | 26.15% | 23.43% | 40.92%
3012 2955 2403 2912 1144 8277
own 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
Text 41.73% | 41.68% | 40.72% | 40.72% | 40.92% | 40.96%
8277 8277 8277 8277 8277 8277
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Merge or Tag ?

m Merging outperforms Tagging

= when the feature patterns may mine the
same features

= |t reinforces the weight of a feature mined
by two different patterns
m Tagging outperforms Merging

= when the feature patterns mine on disjunct
fields of the data

= when the patterns mine features of similar
purities
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features

= Anchor group
= PredLinkTags
= WordsAround

= Headings group
= PredHeadings
= PredListHeadings

m Simple words group
= OwnText
= PredLinkParagraph

Combination of the
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Combination of the
features

m Allesklar
m precision:85.46%

= precision of the text only classifier:65.72%
(+30.5%)

= of Around Anchor alone: 85.83% (-0.5%)

= \WebKB
m precision:84.73%

= precision of the text only classifier:40.96%
(+106.9%)

= Of Around Anchor alone: 39.49%
(+114.6%) omandensen o Lou005 . 129155
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Conclusion

m We proposed a model of hypertext classifiers
based on both local and non-local features.

= Our model outperforms by up to 115%
traditional text classifiers.
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Conclusion

m Despite negative results with Hyperlink
ensembles, we believe that this model would
outperform the Meta Predecessor with a
powerful dimension reduction.

= The Round Robin binarization should prevall
when the problem doesn’t contain a sticky
class.

= The best method between Merging and
Tagging depends on the nature of the
features to mutualize.
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