Separate and Conquer Framework und disjunktive Regeln

Matthias Thiel

Überblick

- Begriffe und Notation
- CN2 und BEXA
- Ausgangsproblem als Motivation f
 ür SeCo-Framework
- Beschreibung des SeCo-Framework
- Fallstudie: Hypothesensprache

Ein Lernproblem

Training Set

Zu erlernender Be	egriff:					
"Es wird morgen	nicht mehr regnen."	#	outlook	autumn	temp class	
		1	sunny	yes	17	-
		2	overcast	no	18	-
<u>Attribute</u>		3	rain	yes	16	-
		4	sunny	yes	22	-
Name Type	Domain	5	sunny	no	29	-
outlook nominal	{Sunny, overcast, rain}	6	overcast	yes	30	-
autumn nominal	{yes,no}	7	overcast	no	35	-
temp linear	{1535}	8	rain	yes	23	-
		9	rain	no	27	-
Extension/Umfa	ng	10	sunny	yes	28	+
$X_{TS}(sunny) = \{$	1,4,5,10,12}	11	overcast	no	23	+
15 () (12	sunny	no	27	+
		13	rain	no	23	+

Klassische Verfeinerung (CN2)

Beginne	mit	$[] \Rightarrow +$

$$X_{TS}()=\{1...13\}$$

Wähle Attribut autumn=no

$$X_{TS}(autumn=no)=\{2,5,7,9,11,12,13\}$$

Wähle Attribut temp=23

$$X_{TS}(no,23) = \{11,13\}$$

Gelernte Regel

$$[autumn=no][temp=23] \Rightarrow +$$

Training Set

#	outlook	autumn	temp class	
1	sunny	yes	17	-
2	overcast	no	18	-
3	rain	yes	16	-
4	sunny	yes	22	-
5	sunny	no	29	-
6	overcast	yes	30) -
7	overcast	no	35	-
8	rain	yes	23	-
9	rain	no	27	4
10	sunny	yes	28	+
11	overcast	no	23	+
12	sunny	no	27	+
13	rain	no	23	+

Verfeinerung im BEXA

<u>Spezialisierungsprozeß</u>

Konjunktion	Xn	Хр
$[A \in \{a, b, c\}][B \in \{x, y\}]$	{2,5}	{1,3,4,6}
$[A \in \{b,c\}][B \in \{x,y\}]$	{5}	{3,4,6}
$[A \in \{b,c\}][B = y]$	{}	{4,6}

Training Set

#	A	В	Class
1	Α	X	+
2 3	Α	У	
3	b	X	+
4 5	b	у	+ ///
5	С	X	033 (234)
6	С	У	+

$$A \in \{a, b, c\}$$
$$B \in \{x, y\}$$

Unterschiede zwischen CN2 und BEXA

- Hauptunterschied: Hypothesensprache
- Andere Unterschiede:
 - Restriktionen bei Bedingungssuche
 - prevent-empty-conjunction
 - uncover-new-negative
 - irredundancy-restriction
 - stop-growth-test
 - Übergeneralisierung, Kompensation von "Rauschen"
 - Post processing

Problemstellung für Vergleich

- Ziel: Vergleich der Hypothesensprachen
- CN2 und BEXA unterscheiden sich in mehreren Punkten
- Art der Implementationen ist verschieden und könnte Meßergebnisse verfälschen.
- => Benötigt wird eine Implementation, die sich nur im interessierenden Punkt unterscheidet.

SeCo-Komponenten

RuleInitializer

RuleEvaluator

CandidateSelector

RuleRefiner

StoppingCriterion

RuleFilter

RuleStoppingCriterion

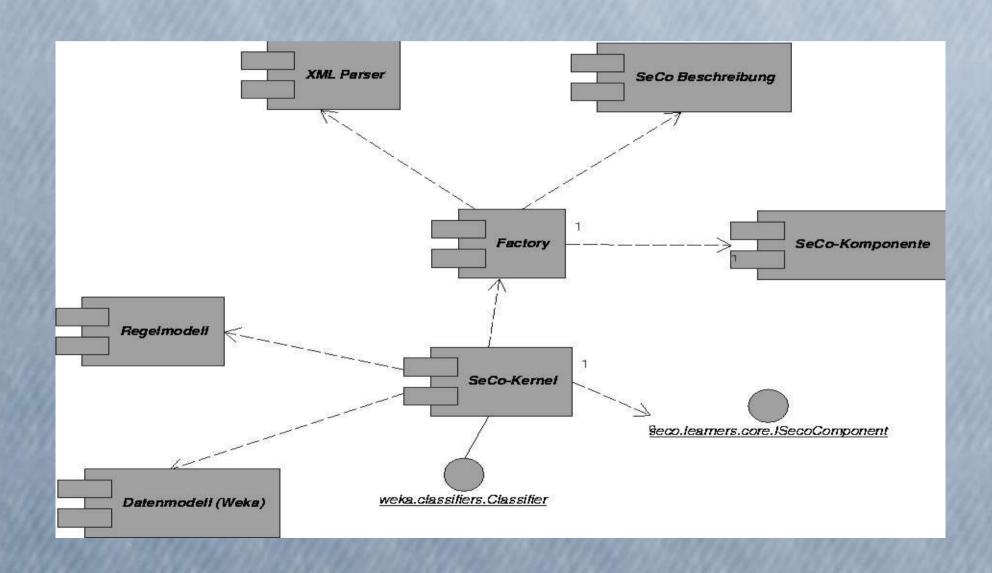
PostProcessor (optional)

Bestimmung der Startregel

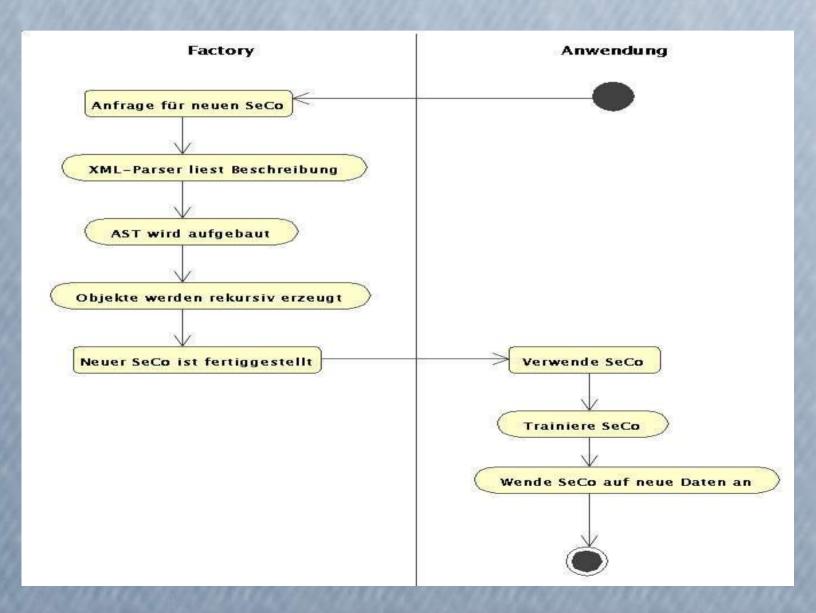
Bewertung der Regeln

Auswahl für Verfeinerung

Verfeinerung einer Regel

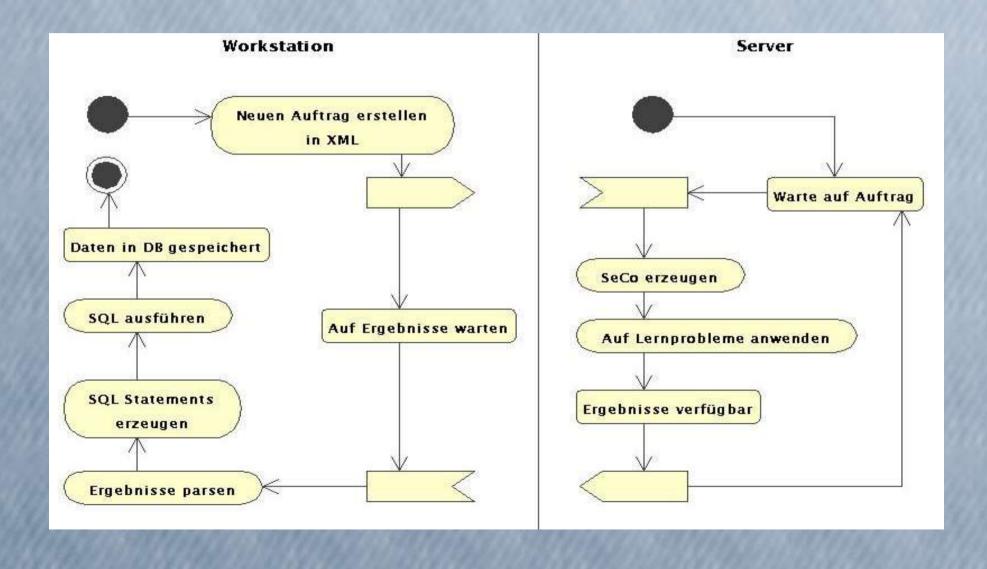

Verfeinerung stoppen?

Filter für Kandidatenregeln


Lernprozeß beenden?

Nachbearbeitung der Regeln

Bestandteile des Frameworks


Verwendung der Factory

XML Beschreibung des BEXA

```
Quellt ext 5.2 Beschreibung des BEXA-Algorithmus
<Beco>
  <secomp interface="ruleevaluator"</pre>
    classname="DefaultRuleEvaluator">
     <jobject package="seco.heuristics" classname="Laplace"</pre>
       setter="heuristic"/>
 </secomp>
  <secomp interface="rulerefiner" classname="BexaRefinerTopDown"</pre>
  package="seco.learners.bexa"/>
  <secomp interface="selector" classname="DefaultSelector"/>
  <secomp interface="stopcriterion" classname="LikelihoodRatio">
    cproperty name="threshold" value="0.9"/>
  </secomp>
  <secomp interface="rulefilter" classname="MultiRuleFilter">
    <jobject classname="ChiSquareFilter" setter="filter">
      cproperty name="threshold" value="0.9"/>
    </jobject>
    <jobject classname="BeamWidthFilter" setter="filter">
      cproperty name="beamwidth" value="3"/>
    </jobject>
 </secomp>
</re>
```

SeCo-Factory im Serverbetrieb

Fallstudie: Hypothesensprache

- Ziel: Vergleich des konjunktiven Regellernens
 (=) mit disjunktivem Regellernen (!=).
- Was gemessen wird
 - Bekannte Kriterien
 - Korrektheit
 - Anzahl der Regeln
 - Neue Kriterien
 - Anzahl der referenzierten Attribute
 - Normalisierte Regellänge

Korrektheit

Problem	BEXA disj.	BEXA konj.	Diff.	LRS	χ^2
anneal	98.44	99.78	-1.34	0.9	0.99
anneal.ORIG	95.55	95.43	.12	0.995	0
audiology	69.91	69.03	.88	0.7	0.7
autos	76.1	80.98	-4.88	0	0.99
breast-cancer	74.83	73.43	1.40	0.99	О
breast-w	95.71	95.99	28	0	0.7
colic	78.8	79.62	82	0.99	0.99
colic.ORIG	81.25	74.46	6.79	0.99	0.99
credit-a	84.06	84.78	72	0.99	0.9
credit-g	72	74.4	-2.40	0.99	0.9
heart-c	76.57	77.89	-1.32	0.995	0.995
heart-h	77.21	79.25	-2.04	0.995	0.995
hepatitis	83.87	85.16	-1.29	0.99	0
hypothyroid	97.14	97.38	24	0.995	0.9
kr-vs-kp	99.19	99.31	12	0.99	0.7
labor	89.47	92.98	-3.51	0	0.7
lymph	86.49	81.76	4.73	0.9	0.995
mushroom	100	100	.00	О	0
primary-tumor	38.94	39.23	29	0.9	0.995
sick	97.75	97.48	.27	0.995	0.7
soybean	89.31	90.63	-1.32	0	0.7
splice	89.53	52.92	36.61	0.7	0.995
tic-tac-toe	98.54	98.33	.21	0.99	О
vote	96.55	96.09	.46	0.99	0.99
vowel	51.52	57.17	-5.65	0.7	0.995
zoo	92.08	87.13	4.95	0.9	O
Durchschnitt	84.26	83.10	1.16		
Gewonnen	10	15		3	

Anzahl der Regeln/Bedingungen

	Anza	zahl der Regeln		Anzahl der Bedingunge		ngungen
Problem	disj.	konj.	$\frac{disj.}{konj.}$	disj.	konj.	$\frac{disj.}{konj}$
anneal	27	31	0.87	62	51	1.21
anneal.ORIG	35	46	0.76	96	132	0.72
audiology	94	94	1.00	261	204	1.27
autos	69	65	1.06	141	122	1.15
breast-cancer	19	20	0.95	124	56	2.21
breast-w	37	39	0.94	95	102	0.93
colic	31	48	0.64	84	118	0.71
colic.ORIG	62	193	0.32	206	198	1.04
credit-a	64	72	0.88	203	209	0.97
credit-g	125	139	0.89	432	525	0.82
heart-c	28	25	1.12	71	60	1.18
heart-h	29	34	0.85	72	80	0.90
hepatitis	15	15	1.00	22	22	1.00
hypothyroid	61	52	1.17	177	142	1.24
kr-vs-kp	73	57	1.28	301	225	1.33
labor	10	12	0.83	18	18	1.00
lymph	18	15	1.20	55	35	1.57
mushroom	19	22	0.86	47	28	1.67
primary-tumor	63	77	0.81	315	294	1.07
sick	62	62	1.00	171	164	1.04
soybean	87	95	0.91	381	313	1.21
splice	55	2185	0.02	521	2202	0.23
tic-tac-toe	45	15	3.00	233	45	5.17
vote	17	14	1.21	49	39	1.25
vowel	250	324	0.77	616	743	0.82
zoo	11	26	0.42	22	29	0.75
Mittel ⁴⁸	54.07	145.26	0.78	183.65	236.76	1.08

Normalisierte Regellänge

	Referenzierte Attribute		Normalisierte Regellänge			
Problem	disj.	konj.	$\frac{disj.}{konj.}$	disj.	konj.	$\frac{disj.}{konj.}$
anneal	52	48	1.08	62	51	1.21
anneal.ORIG	75	111	0.67	96	125	0.76
audiology	247	204	1.21	250	204	1.22
autos	128	120	1.06	141	122	1.15
breast-cancer	98	56	1.75	117	56	2.08
breast-w	90	97	0.92	95	102	0.93
colic	78	114	0.68	84	118	0.71
colic.ORIG	151	198	0.76	206	198	1.04
credit-a	167	185	0.90	203	209	0.97
credit-g	315	419	0.75	432	525	0.82
heart-c	69	58	1.18	71	60	1.18
heart-h	66	74	0.89	71	80	0.88
hepatitis	22	22	1.00	22	22	1.00
hypothyroid	149	119	1.25	177	142	1.24
kr-vs-kp	298	225	1.32	298	225	1.32
labor	18	18	1.00	18	18	1.00
lymph	50	35	1.42	53	35	1.51
mushroom	45	28	1.60	46	28	1.64
primary-tumor	308	294	1.04	308	294	1.04
sick	149	147	1.01	171	164	1.04
soybean	363	313	1.15	369	313	1.17
splice	367	2202	0.16	468	2202	0.21
tic-tac-toe	190	45	4.22	190	45	4.22
vote	49	39	1.25	49	39	1.25
vowel	465	597	0.77	616	743	0.82
zoo	22	29	0.75	22	29	0.75
Mittel ⁴⁹	155.03	222.96	1.00	178.26	236.50	1.06

Spezialfall: Splice

BEXA konj.:

```
Class = EI :- attribute_50 = N. [3|0] Val: 0.8

Class = EI :- Instance_name = HUMALBGC-DONOR-17044. [2|0]

Val: 0.75

Class = EI :- Instance_name = HUMMYLCA-DONOR-2559. [2|0]

Val: 0.75
```

BEXA disj.:

```
Class = EI :- attribute_35 != C, attribute_35 != T, attribute_35 != A, attribute_32 != C, attribute_34 != T, attribute_32 != G, attribute_32 != A, attribute_34 != G, attribute_31 != T, attribute_53 != A, attribute_2 != G, attribute_44 != A, attribute_17 != A. [216|0] Val: 0.995

Class = EI :- attribute_32 != A, attribute_32 != C, attribute_32 != G, attribute_31 != C, attribute_31 != A, attribute_31 != T, attribute_18 != T, attribute_35 != C, attribute_35 != T, attribute_35 != A, attribute_24 != C, attribute_6 != T, attribute_41 != A. [198|0] Val: 0.995
```

Ergebnisse der Experimente

- Korrektheit
 - BEXA disj. verliert bei meisten Problemen
 - Differenz ist bei meisten Problemen jedoch gering
- Größe der Regelmengen
 - BEXA disj. erzeugt tendenziell weniger Regeln
 - aber mit mehr Bedingungen
- BEXA konj. versagt bei Problem Splice, während BEXA disj. gute Ergebnisse liefert.

Schlußfolgerung

- SeCo-Framework ist für Umsetzung von SeCo Algorithmen geeignet
 - Wiederverwendbarkeit von Quelltext
 - Isolierte Betrachtung von Modifikationen
 - komfortable Konfiguration
 - Versuche sind besser nachvollziehbar
- Fallstudie: Hypothesensprache
 - Eignung der Sprache ist stark von Lernproblem abhängig
 - Man sollte Experimente nicht auf UCI Repository beschränken.
 - Eigenschaften von Lernproblemen sollten genauer untersucht und formal beschrieben werden.

Offene Punkte

- SeCo-Framework
 - Optimierung der Rechenzeit
 - Verallgemeinerung
 - Entwurf eines Meta-Algorithmus
- Fallstudie: Hypothesensprache
 - Leicht prüfbares Kriterium zur Wahl von disj/konj
 - Heuristik für BEXA mixed.
 - Gibt es eine Heuristik, welche die Schwäche von konj. bei kritischen Lernproblemen ausgleichen kann?