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 Belongs to machine learning field

 Classification Problem: Given training and testing data

– Algorithmically find rules based on training data

– Rules can then be applied to new unlabeled testing data

– Rules are of the form R: <class label> := {cond
1
,cond

2
, … ,cond

n
}

– Rule fires when conditions apply to example's attributes

 Multiple ways to build a theory

– Decision list: Check rules in a set order, apply first one that fires

– Rule set: Combine all available rules for classification

– Here: decision lists

Separate-and-Conquer Rule Learning
Rule Learning
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 Algorithm used is Top-Down Hill-Climbing Rule Learner

 General Procedure

– Start with the universal rule <majority class> := {} and empty theory T

– Create set of possible refinements

• Refinements consist of one single condition, e.g. „age <= 22“ or „color = red“

• Adding refinements specializes the rule successively

• Decrease coverage, increase consistency (ideally)

– Evaluate refinements according to the heuristic used

– Add best condition, proceed to refine if applicable

– Add the best known rule to the theory T according to the heuristic used

• Else go back to the refining step

Separate-and-Conquer Rule Learning
Top-Down Rule Learning



Prof. Johannes Fürnkranz | Knowledge Engineering Group 5

 Idea:

– Conquer groups of training examples rule after rule...

– By separating already conquered rules...

• Into groups of rules that can be explained by one single rule

• Successively adding rules to a decision list

• Until we are satisfied with the theory learned

 Greedy approach

– Requires on-the-fly performance estimates

 Driven by rule learning heuristics

 Term coined by Pagallo / Haussler (1990)

– a.k.a. „covering strategy“

Separate-and-Conquer Rule Learning
Separate-and Conquer Rule Learning
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 Evaluating refinements and comparing whole rules:

– Requires on-the-fly performance assessment

– Solution: rule learning heuristics

 Generalized definition of heuristics

– h: Rule → [0,1]

– Rules provide statistics in the form of a confusion matrix

Separate-and-Conquer Rule Learning
Heuristic Rule Learning
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 Given a confusion matrix, the following visualization is applicable:

 ROC space is normalized

– false positive rate (fpr) on x-axis

– true positive rate (tpr) on y-axis

Separate-and-Conquer Rule Learning
Coverage Spaces and ROC Space
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 Precision :

 Laplace

 m- Estimate:

Separate-and-Conquer Rule Learning
Heuristics and Isometrics
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 Short 14 instances example (weather.nominal.arff dataset)

Separate-and-Conquer Rule Learning
Basic Algorithm
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 Short 14 instances example (weather.nominal.arff dataset)

Separate-and-Conquer Rule Learning
Basic Algorithm



Prof. Johannes Fürnkranz | Knowledge Engineering Group 18

 Outline:

– Change the way rule refinements are evaluated

– Use a secondary heuristic specifically for rule refinement

– Keep the heuristic used for rule comparison

 Goal:

– Select the best refinement based on minimal loss of positives

– Try to build rules that explain a lot of data (coverage)

• Preferably mostly positive data (consistency) 

• Coverage Space progression: go from n=N to n=0 in few meaningful steps

• Do not „loose“ too many positives in the process (keep height on p axis)

Optimization Approach
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General Procedure

– Start with the universal rule <majority class> := {} and empty theory T

– Create set of possible refinements

• Refinements consist of one single condition, e.g. „age <= 22“ or „color = red“

• Adding refinements specializes the rule successively

• Decrease coverage, increase consistency (ideally)

– Evaluate refinements according to the rule refinement heuristic

– Add best condition, proceed to refine if applicable

– Add the best known rule to the theory T according to the rule selection heuristic

• Else go back to the refining step

Optimization Approach
Modification of the Basic Algorithm
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 Modified precision :

 Modified laplace:

 Modified m- Estimate:

Separate-and-Conquer Rule Learning
Specialized Refinement Heuristics



Prof. Johannes Fürnkranz | Knowledge Engineering Group 21

 Example of the isometrics w.r.t. rule refinement (here: Precision) follows

 Rule selection: no changes

Separate-and-Conquer Rule Learning
Specialized Refinement Heuristics
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Experiments
Accuracy on 19 datasets
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Experiments
Accuracy on 19 datasets – Nemenyi Test



Prof. Johannes Fürnkranz | Knowledge Engineering Group 24

Experiments
#Rules / #Conditions for selected Algorithms
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Experiments
AUC on 7 datasets
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 Experiments w.r.t. the AUC suffer from certain problems

– Small testing folds

– Examples always grouped

– Small datasets

 Experiments w.r.t. Accuracy: some notable properties (next page)

– Modified Laplace appears to perform better than Precision or the m-Estimate

With the same rule selection heuristic applied

Concluding Remarks
General
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 Modified Precision causes very long rules (# of conditions)

 Mostly small steps in coverage space while learning rules

– Tends to overfit on the training data set

– Assessing refinements in a fictional example:

Concluding Remarks
Modified Laplace vs. Precision and m-Estimate



Prof. Johannes Fürnkranz | Knowledge Engineering Group 28

 Modified m- Estimate: Parameter m ~= 22,5 [Janssen/Fürnkranz 2010]

– Possibly no longer optimal in this case?

 Isometrics with m approaching infinity equal weighted relative accuracy

– WRA tends to over-generalize [Janssen 2012]

 Possible explanation for following m-Estimate result properties:

– Short rules

– More rules needed to reach stopping criterion (no positive examples left)

Concluding Remarks
Modified Laplace vs. Precision and m-Estimate
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 Distance of isometrics origin from (P,N):

– For precision: 0

– For laplace: sqrt(2)

– For the m-Estimate: Depending on P/N, but >= m

• Large for m = 22,5

 Possible further research?

Concluding Remarks
Modified Laplace vs. Precision and m-Estimate
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