
Abstract
We introduce a wrapper induction algorithm for
extracting information from tree-structured docu-
ments like HTML or XML. It derives XPath-
compatible extraction rules from a set of anno-
tated example documents. The approach builds a
minimally generalized tree traversal pattern, and
augments it with conditions. Another variant se-
lects a subset of conditions so that (a) the pattern
is consistent with the training data, (b) the pat-
tern’s document coverage is minimized, and (c)
conditions that match structures preceding the
target nodes are preferred. We discuss the ro-
bustness of rules induced by this selection strat-
egy and we illustrate how these rules exhibit
knowledge of the target concept.

1 Introduction
The internet is a huge source for almost any kind of in-

formation. Many web applications provide a view to a
database by encapsulating records of a single table in for-
matting HTML code. Our goal is to make the data behind
such pages accessible for machine processing. For a ma-
chine, however, the underlying structure is not obvious,
mostly due to ambiguities in the usage of tags for different
entities as well as lack of semantics in HTML tags. Even
though great efforts are taken to enrich the web with se-
mantics [Berners-Lee, et al., 2001], it is still necessary today
to hand-craft wrappers, which essentially consists of a
series of typical tasks: (1) Define the target schema to be
extracted and annotate portions of example documents as
belonging to the schema, (2) find patterns in or around the
annotated examples, (3) create a parser that recognizes
these patterns and (4) write a program to extract the con-
tents identified by them.

If the schema underlying the presented data is simple
enough and if the source is sufficiently regular, these tasks
can be transferred in part to a computer. If only task (1) is
left to the user, the automated part is referred to as “wrap-
per induction”.

2 Related Work
Information extraction is recognized as an application of
standard machine learning techniques to the problem of
classifying document fragments based on features derived
from their context [Finn & Kushmerick 2004]. As such,
Wrapper induction exists in supervised and unsupervised
flavours, even semi-supervised variants have been pre-
sented [Scheffer, et al., 2001].

Many wrapper induction systems use a high-level rep-
resentation for the wrapping task, so that the code genera-
tion in tasks (3) and (4) reduces to interpret the set of pat-

terns output by task (2) with a generic wrapper engine.
Depending on the flexibility of the wrapper engine, more
or less complex wrappers can be induced by the learning
component of the system. The complexity of rules that
can be learned by an algorithm is referred to as “expres-
siveness”.

Wrapper induction systems can also be divided up into
string-based, token-based and HTML-aware ones. String-
based and token-based wrapper induction systems regard
the document as a sequence of characters or tokens, re-
spectively. The algorithms behind these systems usually
search for delimiters, delimiter patterns or regular delim-
iter languages that suit the training data well. HTML-
aware systems are either designed like their token-based
counterparts, but use a tokenizer that is adapted to HTML,
or they try to exploit the tree-structure of HTML explic-
itly, with the expectation that the tree-view on the docu-
ment exhibits structure that would remain hidden other-
wise.

WIEN [Kushmerick, et al., 1998] by Nicholas
Kushmerick was the first wrapper induction system to our
knowledge. It is a string-based supervised learning proce-
dure that creates wrappers by finding the shortest prefix
and suffix that delimit all training examples in the exam-
ple documents and nothing else. Under not too pessimistic
assumptions, if such a pattern exists, the HLRT variant of
the algorithm will discover it in quadratic time with re-
spect to the document size [Kushmerick, 2000].

That algorithm and the derived classes HLRT, OCLR
and HOCLRT are somewhat limited because they only
consider regular delimiter patterns without variables. To
bypass this limitation, BWI [Freitag & Kushmerick, 2000]
was developed on top of these algorithms. It learns an set
of LR-wrappers using AdaBoost, combining rules by
weighted voting.

The STALKER-algorithm [Muslea, et al., 2000] from
the ARIADNE-Project [Ambite, et al., 1998] is a token-
based approach that also creates extraction patterns from
examples. It is more expressive than WIEN, because the
patterns it learns may contain wildcards and even disjunc-
tive rules. The learning component treats the documents
as a sequence of tokens, but it allows a hierarchical struc-
turing of the learning task: Multiple rules can be nested to
allow for recognition of complex structures such as lists of
tuples or lists of lists. The extraction result of one wrapper
is used as the input for the wrappers on the deeper level.
This nesting model also allows to represent parent-child
relationships analogous to the HTML structure of the
source, but the nesting structure must be defined manu-
ally.

SoftMealy [Hsu & Dung, 1999] is a token-oriented,
statistical approach that learns a markov model. In the
model, some states are associated with data fields, while
others are only used to skip document fragments. For ex-

XPath-Wrapper Induction by generalizing tree traversal patterns

Tobias Anton
Technical University of Darmstadt, Germany

tobias.anton@web.de

tracting data, the model is matched to a new document
and for each token, the most likely state defines whether
to skip it and otherwise into which field to extract it.

RoadRunner [Crescenzi, et al., 2001] is an unsuper-
vised, token-based learning system that learns target
schema based on the contents of two or more un-
annotated example documents. A wrapper is represented
as a sequence of tokens with wildcards, repetitions and
optional elements. Patterns can be learned incrementally.
Whenever a mismatch occurs, a generalization step is
done: Depending on the type of mismatch, the conflicting
tokens are replaced for a wildcard, a repetition or an op-
tional sequence of tokens.

XWrap Elite [Han, et al., 2001] discovers tree-patterns
in an unsupervised manner. The user presents a page and
chooses a heuristic. Based on the result, which is a list of
extracted elements, she may impose further constraints on
the number of results or choose another heuristics. After
some refinement, a piece of java source code is generated
that represents the learned concept. However, since no
annotated documents are accepted as examples, no consis-
tency constraints can be imposed to the system.

A few interactive programming approaches were found
that explicitly exploit the tree structure of HTML:

W4F [Sahuguet & Azavant, 1999] requires the user to
write a valid extraction rule in a language called “HEL”,
which can be seen as a hybrid between XPath and SQL. It
assists the user only in discovering the “tree path” that
leads to a target node. The tree path is the sequence of tag
names of all ancestor tags from the document root to the
target node, each decorated with a serial number. The user
can generalize this path manually by substituting serial
numbers for variables and defining relationships between
these variables in an SQL-style “WHERE”-clause.

Lixto [Baumgartner, et al., 2001], in contrast, has a
convenient user interface for selecting one starting node.
Based on the selection, a path is generated, but in contrast
to W4F, the path is a sequence of tag names or wildcards
derived from the sequence of nodes preceding the selec-
tion. Further constraints can then be defined interactively
by the user.

ANDES [Myllymaki & Jackson, 2002] is an informa-
tion extraction system from IBM. It is completely based
on open standards. It consists of a web crawler whose
configuration files are stored in XML and a wrapper shell
that uses XSLT scripts as extraction patterns. These
scripts require XPath expressions to identify target ele-
ments that must be hand-crafted by the user. Even though
[Myllymaki & Jackson, 2002] describe in detail how ro-
bust extraction rules should be written, no learning com-
ponent is presented.

In fact, no html-aware tools were found that induce
wrappers from examples specified by the user. The pur-
pose of our paper is to fill this gap and to provide a pro-
posal for a learning algorithm suited for XSLT-based in-
formation extraction. Due to the close relation to the ap-
proach presented here, we will outline the concepts from
[Myllymaki & Jackson, 2002], but before, we will provide
a short introduction to XPath in the next section.

3 DOM and XPath
XPath [W3C, 1999] is a language for traversing DOM
trees, where a DOM tree is a representation for a well-
formed XML document.

A DOM tree is an ordered tree, where every node has
assigned a name and a value. We distinguish two types of
nodes: Element nodes and text nodes. Text nodes may
only occur as leaves. Their name is constantly “#text”,
their node value is an arbitrary string. The name of an
element node E can be chosen arbitrarily, while its value
is constrained to be the concatenated value of its text node
descendants, if any. Additionally, every element node is
also associated to a set of attribute-value pairs.

Figure 1 shows a small DOM tree that result from pars-
ing the following XML document:

<BODY>

 <H1>Playing tonight:</H1>
 <P>
 Star Wars
 <HR/>
 </P>
</BODY>

For simplicity, only node names are shown, while node
values as well as the attribute-value pairs are omitted.

#text

IMG H1 P

BODY

#text HR

Figure 1 – a sample DOM tree
Now, an XPath statement (or path, synonymously) defines
a traversal through a DOM tree. We will only provide a
quick overview, while we refer to [W3C, 1999] for the
details. A path is a sequence of steps, separated by
slashes. Each step consists of three parts: A search direc-
tion (also called “axis”), followed by “::”, a node filter
and a (possibly empty) sequence of predicates.
The axis describes the direction of document traversal,
e.g. to the parent, to the child, to following or preceding
neighbours. Node filters restrict the set of applicable
nodes along the search direction. Finally, predicates are
XPath expressions in square brackets that are used to re-
strict the set of results further. Examples for XPath state-
ments are:
1. /descendant-or-self::H1
2. /child::BODY/child::H1
3. /child::BODY/child::H1[following-sibling::P[child::HR]]
4. /descendant-or-self::H1[preceding-sibling::IMG

[@src=’filename.gif’]]/child::text()
Each step is evaluated on a set of DOM nodes and yields a
set of DOM nodes as its result. A path is then evaluated
by evaluating the first step on the initial set of nodes and
using each step’s result as the input for the following step.

For example, statement 1 evaluates to a set of nodes
containing all H1 elements in the document. When ap-
plied to the sample DOM tree from Figure 1, statements 1,
2 and 3 result in the set consisting of the single H1 ele-

ment. Statement 4 yields the text node inside the same H1
element.

In general, every step in an XPath statement is evalu-
ated with respect to a set of input nodes as follows:

1. Let Output be an empty set of DOM nodes.
2. For each node N in the input node set:

• Let ResultN be the sequence of nodes that are
on the current search direction relative to N

• remove from ResultN all elements that don’t
match the current node filter

• remove from ResultN every element for
which any predicate is not satisfied.

• add ResultN to Output.
3. return Output

For the understanding of the constructs used in the fol-
lowing, it is necessary to mention the following details:
Node filters match elements whose tag name corresponds
to the value of the node filter. Special node filters are the
“*”, which matches all element nodes, but no text nodes;
“text()”, which matches all text nodes, but no element
nodes, and finally “node()”, which matches both.
If the node filter is a tag name, the axis and the double
colon may be dropped. In that case, the axis of the step is
assumed to be “child”.

Expressions inside predicates are evaluated in a boo-
lean context. Particularly, path expressions are true for
non-empty result sets, arithmetic expressions and func-
tions are true if they have a nonzero value. A number con-
stant C is a shortcut to select the C’th node in ResultN, e.g.
the predicate “[2]” would filter out all but the second
element of ResultN. Finally, expressions starting with “@”
are interpreted as accesses to attributes.

4 Traversal graphs
In this section, we introduce traversal graphs as a formal
representation of tree traversal patterns that can generally
be expressed as XPath statements.

4.1 Linear traversal graphs in ANDES
[Myllymaki & Jackson, 2002] proposes traversal se-
quences to represent extraction rules. A traversal sequence
is a linear directed graph whose nodes are called “an-
chors”, connected by “hops”. Hops that specify the de-
scendant axis as their search direction are called “search”,
others are “path”s. On every anchor, one condition is
evaluated and all nodes that don’t comply are removed
from the list of targets.

The ANDES authors propose three different types of
anchors: Depending on whether the anchor imposes a
constraint on text content, on attribute content or on the
existence of related elements with a certain node name, it
is called a “content”, “attribute” or “structure” anchor.

Such traversal sequences can be expressed as XPath
statements. This is done by converting each hop into one
XPath step, appending the condition of the following an-
chor as a predicate and concatenating all steps by delimit-
ing slashes.

4.2 Extending traversal graphs
The machine learning algorithms presented here will

use a similar, but more general pattern representation.
First, we allow an anchor to impose multiple constraints
on the previous hop’s result set, or equivalently, we allow

multiple predicates to be added to one XPath search step.
Next, we extended the “search”-hops by also allowing
them to search the “following-sibling” or “preceding-
sibling” axis. Last, we extended the traversal graph to be
able to express branched extraction patterns.

The last extension probably needs some explanation.
The XPath representation of a branched extraction pattern
can only be expressed using a sub-path inside a predicate
to filter nodes depending on the existence of the branch. A
document traversal along the branch, however, would lead
away from the destination node. Figure 1, for example,
shows the traversal graph for the XPath statement
/BODY/P[preceding-sibling::H1]/child::text()
[count(preceding-sibling::node())=0].
The target anchor is the #text-node at the bottom. The
tree path to it leads from the root node over /BODY/P to the

text node, but it has two
additional structural constraints:
First, the node traversed during
the second step must have a
preceding H1 element. Second,
the #text node reached in the
third step must not have any
preceding siblings. Both
constraints require a
subordinate path to be
evaluated. In such a case, the
path can simply be written as a
predicate behind the step, as

shown in the XPath representation. When the XPath
interpreter evaluates the second step, it will recursively
evaluate the sub-path “preceding-sibling::H1” relative
to each node of the intermediate result set. A sub-path in
an XPath predicate thus corresponds to a branch in the
traversal graph. This makes the traversal graph a tree, but
still, the existence of a sequential “stem” can be supposed
that spans all anchors and hops between an arbitrarily
chosen root and the target node. However, throughout this
paper, we will always select an ancestor of the target node
as the root.

5 Wrapper induction
In the next section, we will introduce the setting in which
the wrapper induction algorithms work, as well as the
algorithms themselves.

5.1 The wrapper induction scenario
Documents are seen as collections of DOM nodes con-
nected through parent-child and following-preceding-
sibling relations. A set of nodes, chosen by the user, is
considered the positive training data. Another set of
nodes, disjoint to the positive training data, is considered
the negative training data. All documents that contain any
positive or negative training example are called the train-
ing documents, or example documents. Another set of
documents that contain neither positive nor negative train-
ing examples is referred to as the set of test documents.
Positive examples are provided by the user in an interac-
tion sequence: After annotating one or more DOM nodes
as positive training examples, the user may run the algo-
rithm on the set of training documents and/or test docu-
ments. Depending on the result, she may choose to anno-
tate another example from the training or test documents
or accept the generated pattern.

BODY

PH1

#text
[no left neighbors]

Figure 1:
 An extended traversal graph
with a target, one branch
and one anchor condition.

The learning task
The learning task is formulated
as a search problem for a gener-
alized tree traversal pattern that,
when evaluated on all training
documents, will have a result
set that contains all positive
examples and no negative ones.

The hypothesis language
We introduce augmented tra-
versal graphs as a representation
for the extraction rules gener-
ated by the learning algorithms.
An augmented traversal graph,
or ATG for short, is an acyclic,
undirected graph. To avoid confusion with nodes in DOM
trees, we call its nodes “anchors” and its edges “hops”.

Definition 1: augmented traversal graph

An augmented traversal graph ATG is a tuple (A,
H, t, D), where A is a set of anchors, H is a set of
hops, t is one element of A, D is a partial map-
ping from A×A X, and N is a partial mapping
from A×A IN. An anchor is a tuple (NF, P),
where NF can take any value the name of a DOM
node can take and P is a vector of XPath predi-
cates. A hop is a 2-elemented set (F, T) where F
and T are elements from A. t is called the “tar-
get” of ATG. D is called the traversal direction
function, where X is an XPath axis. For every
h=(Afrom,Ato) ∈ H, both D(Afrom,Ato) and
D(Ato,Afrom) exist and are opposed to each other.
N is called the max-skip function and its domain
equals that of the traversal direction function. Its
default value is 0. A sequence A0, H1, A1, H2, …
An-1,Hn with Ai≠Aj for all i≠j, (Ai,Ai+1)∈H for all
0≤i<n and Hi∈A for all 0<i<n is called a path of
ATG. For every pair of anchors of A, there is ex-
actly one path to every other anchor of A. A hop
in the context of a path is said to be an X-hop iff
D(Ai-1,Ai)=X. Additionally, it is said to be an
immediate X-hop iff N(Ai-1,Ai)=0.

Conversion to XPath
Every augmented traversal graph can be transformed into
an XPath statement and be applied to a DOM tree. Thus,
T is said to extract a node N from a DOM tree D iff an
XPath generated from T and evaluated on D has a result
set that contains N. The equivalent XPath predicate for an
anchor A1 is “[self::”, followed by the value of A1’s
NF, followed by all elements A1’s P in square brackets. If
N(A1,A2)=0 and D(A1,A2)=”descendant”, the XPath
equivalent step for a pair of anchors A1, A2 is “child::”
followed by A2’s NF, followed by A2’s predicates, oth-
erwise it is the string D(A1,A2) “::node()”, followed by
“[1]“ if N(A1,A2) = 0, followed by the equivalent XPath
predicate for A2.

The complete procedure for converting an ATG into an
XPath works as follows: Choose any anchor as the start-
ing anchor. Let TP=(A0,H1,A1,…HN,AN) be the path be-
tween the starting anchor and the target. Create an empty
XPath X and append “/descendant-or-self::node()”
as well as the equivalent XPath predicate for A0. Then,
for each 0<i<N, append to X a slash and equivalent XPath

step for Ai-1,Ai. If there any
hops connect Ai to any nodes
that are not part of TP, do for
each maximal tree BR that does
not contain Ai: Let Abr be a
node of BR adjacent to Ai and
choose a new target node tbr.
Append to X a predicate con-
taining the XPath equivalent
step of (Ai, Abr) followed by all
but the first step of this function
evaluated recursively on
(A,H\{Ai,Abr},tbr,D) with Abr as
the new starting node.

5.2 Deriving STTs
For every root of a DOM tree, one can construct an aug-
mented traversal graph that extracts exactly the root node.
We call such an extended traversal graph a “sequential
tree test”, or STT for short. Constructing an STT is done
as follows: Start at the root of the subtree in question. In
the example from Figure 1, this would be the “BODY”-
element. Construct an anchor A0. Let its N be the name of
the current node, “BODY” in our example. If the node is
an element node, add one predicate to P for each attribute.
Then, if the current node is a leaf, create a predicate that
defines the leaf node content: For elements, add to P the
expression “[count(child::node())=0]”, and for text
nodes, add “[self::text()=’value’]”, where value is
the current node’s node value. Otherwise, do for all chil-
dren Ci of the current node: Construct a new anchor Ai, let
its NF be the name of the Ci and execute this procedure
recursively for Ci. Remove the target node from the set of
anchors and replace all references to t in H, D, and N for
Ai. If i=1, insert into H and D a “descendant”-hop from
Ai-1 to Ai, otherwise insert a “following-sibling” hop.
When the first or last child nodes are processed, add to the
current anchor the predicate “[count(preceding-
sibling::node()=0)]” or “[count(following-
sibling::node())=0]”, respectively.

As an example, Figure 2 shows the resulting augmented
traversal graph of applying this procedure to the DOM
tree from Figure 1. The equivalent XPath would be:
/body[child::node()[1]
[self::IMG[@src=’filename.gif’]
/following-sibling::node()[1]
[self::H1[child::node()[1]
[self::text()=’Playing tonight:’]
[count(following-sibling::node())
=0]]/following-sibling::node()[1]
[self::P[child::node()[1]
[self::text()=’Star Wars’]
/following-sibling::node()[1]
[self::HR][count(following-sibling::node()=0]]]

5.3 Creating CCPs from the flipped tree
Even though STTs can readily be used to identify nodes
within documents by means of XPath statements, their
expressive power does not exceed that of a sequential
token-matching algorithm, because DOM trees are still
traversed strictly in document order. In order to produce
traversal graphs that reflect and exploit the tree structure
of a document, we aim for traversal graphs whose paths
between root and target node consist exclusively of child-
and descendant-hops. We call such a traversal graph a
“constrained child path”:

BODY

IMG
[@src=‘filename.gif‘]
[no left neighbours]

H1
P

[no right neighbours]

#text
[self::text()=‘Playing tonight:‘]

[no left neighbors]
[no right neighbors]

#text
[no left neighbours]

HR
[no right neighbours]

Figure 2: sequential node test for the DOM tree from Figure 1

Definition 2: constrained child path

A constrained child path is a tuple (A, H, t, D, r),
where A, H, t, and D are defined as in Definition
1. r is called the “root” and is an element of A.
The path from r to t is called the stem. The stem
consists solely of “descendant”-hops. Every
maximal tree of anchors and hops that does not
contain any stem anchors is called a branch and
every stem node to which at least one branch is
connected, is called a forking anchor. Every path
that has no stem nodes except for a forking an-
chor starts with a series of one or more “preced-
ing-sibling”-hops or with a series of “following-
sibling”-hops. Eventually, these hops may be fol-
lowed by a series of “descendant”-hops.

Constructing a CCP can be done by changing the algo-
rithm slightly: Informally speaking, we create the stem
whilst traversing the DOM tree from the target node up to
the root and connect one branch for the left and right
neighbours on each level. During the traversal, a cursor is
used to keep track of the current node. Thus, we define a
cursor to be a reference to a DOM node.
This is the exact algorithm:

1. Let cursor C be the target node.
2. Let A be an anchor.
3. If C is an element node, create a STT for C and replace

its target node for A. Otherwise, insert a predicate into
A that describes C’s content.

4. Let A’s NF be the name of C. If C is an element node,
insert one predicate into A for each attribute of C.

5. Set CL = C and AL=A.
6. Repeatedly, let CL be the next left neighbour of CL and

do:
a. create an anchor ALnew and connect it to AL

by a “preceding-sibling”-hop.
b. repeat steps 3 and 4 for CL and AL.
c. set AL = ALnew

7. Insert into AL the predicate
“[count(preceding-sibling::node() = 0]”.

8. Process the left neighbours analogously.
9. If C is the document root, return P
10. Let C be the parent node of C
11. Let Anew be an anchor. Connect A to Anew with a “par-

ent”-hop.
12. go to (4)

Applying this procedure to the text child of the H1 ele-
ment in the DOM tree of Figure 1 would yield the XPath:
/body
/child::node()[self::H1]
[preceding-sibling::node()
[self::IMG][@src=’filename.gif’]
[count(preceding-sibling::node())=0]]
[following-sibling::node()[self::P]
[child::node()[1][self::text()=’Star Wars’]
/following-sibling::node()[1] [self::HR]]
[count(following-sibling::node())=0]]
/child::node() [self::text()=’Playing tonight:’]
[count(preceding-sibling::node())=0]
[count(following-sibling::node())=0]

Note that, although this expression is equivalent to the
sequential tree pattern from the previous section when
evaluated under a Boolean context, their structure is quite
different. Figure 2 shows the order of document traversal
of the STT compared to the CCP. The important differ-
ence between these variants is the connection from a node

to its child: In the sequential tree test, a parent is always
connected its first child. The constrained child path, on the
other hand, defines a straight traversal from the root node
to the target and imposes conditions to the left and right
neighbour chains along its stem.

STT

target

…

CCP

target

…

Figure 2: Structure of a sequential tree test (STT) and a constrained

child-path (CCP). The CCP has a stem that leads from the root to
the target node. Branches check the document structure to the left
and to the right of the stem. The STT, on the other hand, just trav-
erses the DOM tree in document order. Branches of the CCP are
sequential tree tests.

5.4 Generalizing constrained child-paths on
multiple target nodes

In this section, we will introduce the first of two extrac-
tion algorithms as a modification to the procedure de-
scribed above that we call “F-GCP”, which stands for Full
Generalized Child-path Pattern. F-GCP is essentially iden-
tical to the algorithm that derives a CCP, but works on a
set of target nodes instead on a single one. It creates a path
that will match all at least all target nodes. Generalization
is done by ignoring content and attributes that differ
among the cursor nodes, as well as by skipping non-
matching nodes and adapting the traversal pattern accord-
ingly. These are the modifications compared to the algo-
rithm for finding a CCP:

First, the cursor C is enhanced to contain a set of nodes
instead of merely a single one. Thus, we define the gener-
alized cursor C as a set of DOM nodes with equal name.

Second, a heuristic is introduced to find a generalized
description of the common structures under a cursor posi-
tion to replace step 3. Specifically, instead of creating an
STT in step 3, all possible child-paths (i.e. paths that con-
sist of a series of immediate descendant-hops) that match
at least one DOM node from every element of C are found
and appended to A.

Third, step 4 is modified to insert only predicates for at-
tributes that are satisfied for every element of C.

Fourth, the cursor movements of step 6 and 10 are re-
placed for a search algorithm that yields the nearest
matching cursor position in a given search direction. The
operation takes a cursor C and yields another cursor Cnew
that may be empty if no matching neighbours were found.
This is the search algorithm:
1. Start with a cursor C and an axis a. Let n be 1.
2. terminate if no element of C has an n’th neighbour

along axis a.
3. for each element e of C, do:
4. find the n’th element along the axis a
5. If that neighbour can be matched (by name for ele-

ments and by value for text nodes) to any neighbour
of all other elements in C with a distance of at most n,
return that set of neighbours as the new cursor.

6. increase n by 1 and go to 2.

Fifth, during the steps 6a and 11, we additionally set the
value of the max-skip function for N(A,Anew) or
N(AL,ALnew) to n-1, where n is the last value assigned to n
during the search procedure above.

Last, step 7 is skipped if the search failed with n>1.

This algorithm yields a heuristic approximation for the
least general generalization of a set of completely con-
strained paths. Intuitively speaking, it tries to match the
trees around the positive training examples to each other
and computes an intersection of all those subtrees, aug-
mented with information about gaps between the hops that
are reflected by the values of the max-skip function and
by predicates indicating the absence of structure in a di-
rection.

When the F-GCP is converted into an XPath statement,
this information is reflected by three kinds of expressions:

1. The first predicate on a “preceding-sibling”- or
“following-sibling”-step is “[1]” (i.e. “consider
only the first resulting element”), if there is no gap
between the two adjacent anchors.

2. Vertical path steps on the stem of the child-path
pattern use the “child”-axis instead of the “descen-
dant”-axis if the max-skip function of the corre-
sponding hop is zero.

3. The last predicate on a “preceding-sibling” or on a
“following-sibling”-step is “[count(preceding-
sibling::node() = 0]” or “[count(following-
sibling::node() = 0]”, if the search for the cor-
responding cursor position failed with n=1.

Limitations
Since every additional example in the positive training set
may shrink the generalized pattern, the number of avail-
able conditions decreases as the number of training exam-
ples increases. If the positive examples are too diverse,
over-simplification will occur. This tendency to over-
simplify is a severe limitation of the learning algorithm: If
a negative example matches all conditions of the pattern,
the concept can no longer be learned.

In practice, however, we found the extraction rules
generated by this software to be highly precise. In fact,
when applying the system to automatically generated
pages, we encountered really large generalized child-path
patterns. More than 50 conditions were not unusual, so, in
the one-per-document experiments, we did not encounter
any problems with over-simplification. The lack of ro-
bustness was a greater problem: Frequently, conditions in
extraction rules were only found because the training ex-
amples are not drawn independently. For example, some
rules contained a test for the following condition:
/HTML/BODY[preceding-sibling::HEAD
[child::TITLE=”Meldung vom 27.08.2004”]]
Obviously, this condition will produce a wrapper that fails
after at most one day. Many other examples like this could
be found. This problem gets even worse if beside the con-
tents, also the structure of an HTML template changes
slightly over time.

Robustness
For generating robust wrappers, it is thus necessary to
keep the number of features used in the rule as small as
possible. However, the F-GCP learner selects all condi-
tions it possibly can, from which only a small fraction
contributes to the precision of the resulting extraction rule.

According to [Myllymaki & Jackson, 2002], robustness
can be achieved by “relying less on page structure and
more on content.” In other words, by preferring content
and attribute search patterns over structure search pat-
terns. We think that in addition to this, the total number of
hops should be minimized because every additional hop
increases the risk of failure. Anyhow, minimizing the
number of anchors is equivalent to the proposal of
[Myllymaki & Jackson, 2002], because every additional
hop essentially is a constraint on page structure.

5.5 Incorporating negative training data
In order to create more robust wrappers, we will now in-
troduce the second algorithm “M-GCP”, which is based
on the F-GCP algorithm, but it additionally uses negative
examples to minimize the number of conditions and hops
in the generalized child-path pattern. Therefore, we con-
sidered all nodes of all training documents as negative
examples unless they were labelled positive.

For explaining M-GCP, let us recall that F-GCP incor-
porates all conditions into the augmented traversal pattern
that match all positive training examples. This can be
thought of as “growing” the tree from the target anchor.
M-GCP, in contrast, checks whether a particular condition
has any discriminative power before adding it to the pat-
tern. This is done by calculating the false positive rate of
the traversal graph before and after adding another predi-
cate. If the false positive rate is not influenced, the predi-
cate is rejected.

Provided that the GCP is large enough to separate all
positive from all negative examples, this feature selection
strategy will reject every new candidate condition once a
consistent set of conditions has been found. But still, can-
didate conditions added later might imply the truth value
of any candidate condition added earlier. For that reason,
irrelevant conditions are pruned away in a second pass.

5.6 Discussion of M-GCP’s selection strategy
The order of creation of hops and anchors, as well as the
matching strategy for cursor elements defines the search
bias of M-GCP towards certain hypotheses. Since M-GCP
traverses the documents the same way as F-GCP does,
conditions whose containing anchor’s path towards the
target anchor contains fewer descendant-hops are always
preferred over those with more. Among those conditions
with an equal number of descendant-hops, conditions pre-
ceding the stem are preferred to those following it.
Among each of those, anchors that are nearer, i.e. whose
path to the stem has fewer hops in total, are preferred.
Among those, again, tests for text content is preferred
over tests for attribute content, and those are preferred
over tests for attribute existence. But every condition that
is not completely irrelevant is picked up in the rule. This
is a major difference to most other rule learning systems
that usually maximize the discriminative power of condi-
tions. M-GCP, however, focuses on another quality of the
available conditions, which is their document coverage.
Since robustness is strongly correlated to small document
coverage and the robustness considerations from [Mylly-
maki & Jackson, 2002] were also respected by this selec-
tion strategy, we think that this system is ideally biased
for creating robust extraction rules in the XPath language.

6 Experiments and Results
To evaluate robustness and expressiveness, we tested both
algorithms on automatically generated web pages from
two content providers. To retrieve the content pages, we
configured a web crawler for each web site. For the ex-
traction task, we used only pages with exactly one record
per page.

The tests were conducted incrementally, by repeatedly
running the algorithm and labelling one example docu-
ment on which the extraction rule failed, until a consistent
extraction rule had been learnt, but we waived to run the
algorithms on a single example page. The number of
manually labelled example pages is shown in Table 1.

We will now examine the initial extraction rules that
were chosen by M-GCP for the “author”-field on
www.heise.de. The author-field regularly follows every
news message on www.heise.de. Depending on the au-
thor’s name, affiliation and email address, the correspond-
ing HTML code could for example be (anw/c’t) or (jk/c’t). The user
can recognize the author-field as a pair of round braces at
the end of every article that contain the author’s initials
inside a link to his email address, followed by a slash and
the name of the magazine. We were interested in the link
itself, say, in the <A>-tag surrounding the author’s initials.
The following table shows the extraction rules generated
by M-GCP after the second, third and fourth example
page had been labelled:

2 2% //A[child::text() = "ad"]
3 99% //A[following-sibling::node()[1]

[self::text()][self::node()=”/c’t)”]]
4 100% //A[following-sibling::node()[1][self::text()]

/following-sibling::node()[1]
[self::BR][@CLEAR="all"]]

This sequence shows how M-GCP generalizes: The first
and the second example came from the same author, so
that the author’s initials were identical. For that reason,
the set of conditions common to the target anchors pro-
vided enough discriminative power to generate an extrac-
tion rule from text inside the link (“find an <A>-tag with
contents “ad”). The GUI we use for labelling assists the
user in discovering that this expression is not general
enough by presenting him the first page for which no ex-
traction result was found. So, the next example scheduled
for labelling did not come from the same author. This
made the common text “ad” disappear from the general-
ized traversal pattern, forcing the algorithm to find an-
other set of conditions to be consistent with the training
data. It chose a test for the following text node, so the rule
reads: “find an <A>-tag that is followed by the text
“/c’t)”. Since all but two pages in the training set come
from the magazine c’t, the following text node is identical
in nearly all example pages, so the extraction rule already
achieves 99% accuracy. However, the training set also

contained two news articles from another magazine, on
which that extraction rule did not work. So, the GUI pre-
sented one of the remaining two messages for manual
labelling. The final generalization step done by the system
was to skip over the text node after the target anchor and
to use the immediately following <BR clear=all>-tag in
the final rule. Indeed, this hypothesis is consistent with
heise’s page layout and did work 100% correct. Whether
that extraction rule is more satisfying than the previous
version is questionable, though.

Next, we will have a look at the hypotheses that M-
GCP found for the “parken”-field on www.burgenwelt.de.
The content pages on www.burgenwelt.de show informa-
tion on castles of Europe. For each castle, the authors are
supposed to contribute a piece of text for each of the cate-
gories history, gastronomy, parking lots, accommodation,
guided tours, and entry prices. We let F-GCP and M-GCP
generate extraction rules for each of them. Certainly, F-
GCP frequently required more examples for the extraction
task than M-GCP. In fact, extraction rules for name, ac-
commodation and entry prices were discovered by provid-
ing only two examples, we investigated the hardest case,
which is the “parken”-field. The intermediate and the final
extraction rules are shown below:

ex’s

Accu-
racy

hypothesized extraction rule

2 99,8% //TD[preceding-
sibling::node()[1][self::TD]/CENTER/IMG[@ALT =
"Parkmöglichkeiten"]]

3 99,9% //TD[preceding-
sibling::node()[1][self::TD]/CENTER/IMG[@SRC =
"../grafiken/314.gif"]]

4 79,2% //TR[count(preceding-sibling::node()) = 0]
 /TD[@WIDTH = "560"][@BACKGROUND =
"../grafiken/bglaufg2.jpg"]

5 79,3% //TR[count(preceding-sibling::node()) = 0]
 /TD[preceding-sibling::node()[position() = 1][self::TD]
 [attribute::BACKGROUND =
"../grafiken/bglaufg2.jpg"][attribute::WIDTH = "40"]]

6 57,8% //TR[count(preceding-sibling::node()) = 0]
 /TD[preceding-sibling::node()[position() =
1][self::TD][attribute::VALIGN]]

7 94,6% //TR[count(preceding-sibling::node()) = 0]
 /TD[preceding-sibling::node()[position() = 1][self::TD]
 [count(preceding-sibling::node()) =
0][attribute::BACKGROUND]]

8 100% //TR[count(preceding-sibling::node()) = 0]
 /TD[preceding-sibling::node()[position() = 1][self::TD]
 [count(preceding-sibling::node()) =
0]][count(following-sibling::node()) = 0]

During this test, we discovered that the pages from
www.burgenwelt.de are not automatically generated, but
hand-crafted with an HTML editor using a template page.
Even though their visual appearance is uniform, their
mark-up differed in only two of the 976 instances that
were part of the test. None of the two examples labelled
initially were irregular, so consequently, the first extrac-
tion rule induced by M-GCP did cover all but the two
irregular examples. The goal, however, was to achieve
100% accuracy, so we labelled the irregular pages, too. It

web site www.heise.de www.burgenwelt.de
total # of pages 191 976
field name Datum Headline Autor Name Eintritt Parken Gastronomie Geschichte
ex’s required by F-GCP 2 5 4 7 9 9 11 12
ex’s required by M-GCP 2 2 2 2 2 8 6 7

Table 1: overview over the experiments

worked, but it resulted in an XPath that spans a much lar-
ger portion of the document. As discussed above, this is
believed to result in low robustness, and indeed, we ob-
served the accuracy dropping to 57.8% in the following
rounds. This trend could only be stopped by replacing an
attribute anchor for the meta-node (“count(preceding-
sibling::node()) = 0”) in the seventh step, and in the
eighth step, 100% accuracy could only be achieved by
adding such a constraint on the following-sibling axis of
the same anchor, too. Again, the result is a 100% score in
the end, but – compared to the result achieved with two
training examples - at the cost of labelling six additional
pages, and of getting a much larger extraction pattern.

7 Lessons learnt
From these experiments, we conclude that M-GCP can
successfully be used to create precise extraction rules that
act on the level of DOM nodes. For wrapping similar
pages that are automatically generated from the same
source or at least generated by hand from the same tem-
plate page, disjunctive expressions (as for example in-
duced by the STALKER algorithm) are usually expend-
able. However, to find conjunctive expressions that can be
used for continuous information extraction, the usefulness
of generalization steps that are necessary to cover more
examples must be assessed individually. We have encoun-
tered two non-trivial cases where robustness is being
traded off for generality: When few examples are used,
the resulting wrapper may not be general enough. On the
other hand, when more examples are added, the expres-
sion tends to span a larger portion of the document, and
thus loses robustness with respect to changes in page lay-
out.

Common structures around the training examples are
often large enough to derive a good rule from it. Some-
times, the use of multiple conditions and the introduction
of structural constraints of the type
“count(SOME_AXIS::node()) = 0” is necessary. Thus,
the sequential traversal graph as pointed out by the
ANDES project is not expressive enough as a hypothesis
space for a machine learning algorithm. One can argue
that most trees could be converted into a sequential tra-
versal that would still be consistent with the training data,
but the concept of having multiple conditions match
document parts that are unrelated to each other and that
possibly reside in different relative positions to the target
anchor, is better represented by a tree than by a sequence.

References
[Ambite, et al., 1998] Ambite, J.-L.; Ashish, N.; Barish, G.;
Knoblock, C. A.; Minton, S.; Modi, P. J.; Muslea, I.; Philpot, A.;
and Tejada, S. Ariadne: A system for constructing mediators for
internet sources. Proc. ACM SIGMOD International Conference
on Management of Data, ACM Press, 1998.

[Baumgartner, et al., 2001] Robert Baumgartner, Sergio Flesca,
Georg Gottlob. Visual Web Information Extraction with Lixto.
Proc. 27th International Conference on Very Large Data Bases:
119 – 128, 2001

[Berners-Lee, et al., 2001] T. Berners-Lee, J. Hendler, O.Lassila,
The Semantic Web, Scientific American, May 2001

[Crescenzi, et al., 2001] Valter Crescenzi, Giansalvatore Mecca,
Paolo Merialdo. RoadRunner: Towards Automatic Data Extrac-
tion from Large Web Sites. Proc. 27th Intl. Conf. on Very Large
Data Bases, 2001.

[Finn & Kushmerick, 2004] Aidan Finn and Nicholas Kushme-
rick. Information Extraction by Convergent Boundary Classifi-
cation. Proc. Workshop Adaptive Text Extraction and Mining,
AAAI 2004.

[Freitag & Kushmerick, 2000] Dayne Freitag and Nicho-
las Kushmerick. Boosted wrapper induction. Proc. American
Nat. Conf. Artificial Intelligence, AAAI 2000.

[Han, et al., 2001] Wei Han and David Buttler and Calton Pu.
Wrapping web data into XML. Special section on advanced
XML data processing, 30(2): 33-38, ACM Press, 2001

[Hsu & Dung, 1998] Chun-Nan Hsu and Ming-Tzung Dung.
Generating Finite-State Transducers for Semi-Structured Data
Extraction from the Web. Information Systems, 23(8): 521-538,
1998.

[Kushmerick et al., 1998] Nicholas Kushmerick. Wrapper Induc-
tion for information extraction. Proc. 15th Intl. Conference on
Artifical Intelligence, ICAI 1998.

[Kushmerick, 2000] Nicholas Kushmerick. Wrapper Induction:
Efficiency and Expressiveness. Artificial Intelligence, 118(1-
2):15-68, 2000

[Muslea, et al., 2000] Ian Muslea, Steve Minton, Craig
Knoblock: Stalker: Learning extraction rules for semistructured,
web-based information sources, Proc. AAAI-98: Workshop on AI
and Information Integration. AAAI Press, 1998

[Myllymaki & Jackson, 2002] J. Myllymaki, J. Jackson. Robust
Web Data Extraction with XML Path Expressions. IBM Re-
search Report, May 2002.

[Sahuguet & Azavant, 1999] A. Sahuguet, F. Azavant. Building
light-weight wrappers for legacy Web data-sources using W4F.
Proc. 25th Intl. Conf. on Very Large Data Bases, ACM Press,
1999.

[Scheffer et al. 2001] Tobias Scheffer, Christian Decomain,
Stefan Wrobel. Active Hidden Markov Models for Information
Extraction. Proc. Intl. Symposium on Intelligent Data Analysis,
IDA 2001.

[W3C, 1999] World Wide Web Consortium. XML Path
Language (XPath) Recommendation.
http://www.w3c.org/TR/xpath/, 1999.

