
Abstract 
We introduce a wrapper induction algorithm for 
extracting information from tree-structured docu-
ments like HTML or XML. It derives XPath-
compatible extraction rules from a set of anno-
tated example documents. The approach builds a 
minimally generalized tree traversal pattern, and 
augments it with conditions. Another variant se-
lects a subset of conditions so that (a) the pattern 
is consistent with the training data, (b) the pat-
tern’s document coverage is minimized, and (c) 
conditions that match structures preceding the 
target nodes are preferred. We discuss the ro-
bustness of rules induced by this selection strat-
egy and we illustrate how these rules exhibit 
knowledge of the target concept. 

1 Introduction 
The internet is a huge source for almost any kind of in-

formation. Many web applications provide a view to a 
database by encapsulating records of a single table in for-
matting HTML code. Our goal is to make the data behind 
such pages accessible for machine processing. For a ma-
chine, however, the underlying structure is not obvious, 
mostly due to ambiguities in the usage of tags for different 
entities as well as lack of semantics in HTML tags. Even 
though great efforts are taken to enrich the web with se-
mantics [Berners-Lee, et al., 2001], it is still necessary today 
to hand-craft wrappers, which essentially consists of a 
series of typical tasks: (1) Define the target schema to be 
extracted and annotate portions of example documents as 
belonging to the schema, (2) find patterns in or around the 
annotated examples, (3) create a parser that recognizes 
these patterns and (4) write a program to extract the con-
tents identified by them. 

If the schema underlying the presented data is simple 
enough and if the source is sufficiently regular, these tasks 
can be transferred in part to a computer. If only task (1) is 
left to the user, the automated part is referred to as “wrap-
per induction”. 

2 Related Work 
Information extraction is recognized as an application of 
standard machine learning techniques to the problem of 
classifying document fragments based on features derived 
from their context [Finn & Kushmerick 2004]. As such, 
Wrapper induction exists in supervised and unsupervised 
flavours, even semi-supervised variants have been pre-
sented [Scheffer, et al., 2001]. 

Many wrapper induction systems use a high-level rep-
resentation for the wrapping task, so that the code genera-
tion in tasks (3) and (4) reduces to interpret the set of pat-

terns output by task (2) with a generic wrapper engine. 
Depending on the flexibility of the wrapper engine, more 
or less complex wrappers can be induced by the learning 
component of the system. The complexity of rules that 
can be learned by an algorithm is referred to as “expres-
siveness”. 

Wrapper induction systems can also be divided up into 
string-based, token-based and HTML-aware ones. String-
based and token-based wrapper induction systems regard 
the document as a sequence of characters or tokens, re-
spectively. The algorithms behind these systems usually 
search for delimiters, delimiter patterns or regular delim-
iter languages that suit the training data well. HTML-
aware systems are either designed like their token-based 
counterparts, but use a tokenizer that is adapted to HTML, 
or they try to exploit the tree-structure of HTML explic-
itly, with the expectation that the tree-view on the docu-
ment exhibits structure that would remain hidden other-
wise. 

WIEN [Kushmerick, et al., 1998] by Nicholas 
Kushmerick was the first wrapper induction system to our 
knowledge. It is a string-based supervised learning proce-
dure that creates wrappers by finding the shortest prefix 
and suffix that delimit all training examples in the exam-
ple documents and nothing else. Under not too pessimistic 
assumptions, if such a pattern exists, the HLRT variant of 
the algorithm will discover it in quadratic time with re-
spect to the document size [Kushmerick, 2000].  

That algorithm and the derived classes HLRT, OCLR 
and HOCLRT are somewhat limited because they only 
consider regular delimiter patterns without variables. To 
bypass this limitation, BWI [Freitag & Kushmerick, 2000] 
was developed on top of these algorithms. It learns an set 
of LR-wrappers using AdaBoost, combining rules by 
weighted voting. 

The STALKER-algorithm [Muslea, et al., 2000] from 
the ARIADNE-Project [Ambite, et al., 1998] is a token-
based approach that also creates extraction patterns from 
examples. It is more expressive than WIEN, because the 
patterns it learns may contain wildcards and even disjunc-
tive rules. The learning component treats the documents 
as a sequence of tokens, but it allows a hierarchical struc-
turing of the learning task: Multiple rules can be nested to 
allow for recognition of complex structures such as lists of 
tuples or lists of lists. The extraction result of one wrapper 
is used as the input for the wrappers on the deeper level. 
This nesting model also allows to represent parent-child 
relationships analogous to the HTML structure of the 
source, but the nesting structure must be defined manu-
ally. 

SoftMealy [Hsu & Dung, 1999] is a token-oriented, 
statistical approach that learns a markov model. In the 
model, some states are associated with data fields, while 
others are only used to skip document fragments. For ex-
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tracting data, the model is matched to a new document 
and for each token, the most likely state defines whether 
to skip it and otherwise into which field to extract it. 

RoadRunner [Crescenzi, et al., 2001] is an unsuper-
vised, token-based learning system that learns target 
schema based on the contents of two or more un-
annotated example documents. A wrapper is represented 
as a sequence of tokens with wildcards, repetitions and 
optional elements. Patterns can be learned incrementally. 
Whenever a mismatch occurs, a generalization step is 
done: Depending on the type of mismatch, the conflicting 
tokens are replaced for a wildcard, a repetition or an op-
tional sequence of tokens. 

XWrap Elite [Han, et al., 2001] discovers tree-patterns 
in an unsupervised manner. The user presents a page and 
chooses a heuristic. Based on the result, which is a list of 
extracted elements, she may impose further constraints on 
the number of results or choose another heuristics. After 
some refinement, a piece of java source code is generated 
that represents the learned concept. However, since no 
annotated documents are accepted as examples, no consis-
tency constraints can be imposed to the system. 

A few interactive programming approaches were found 
that explicitly exploit the tree structure of HTML: 

W4F [Sahuguet & Azavant, 1999] requires the user to 
write a valid extraction rule in a language called “HEL”, 
which can be seen as a hybrid between XPath and SQL. It 
assists the user only in discovering the “tree path” that 
leads to a target node. The tree path is the sequence of tag 
names of all ancestor tags from the document root to the 
target node, each decorated with a serial number. The user 
can generalize this path manually by substituting serial 
numbers for variables and defining relationships between 
these variables in an SQL-style “WHERE”-clause.  

Lixto [Baumgartner, et al., 2001], in contrast, has a 
convenient user interface for selecting one starting node. 
Based on the selection, a path is generated, but in contrast 
to W4F, the path is a sequence of tag names or wildcards 
derived from the sequence of nodes preceding the selec-
tion. Further constraints can then be defined interactively 
by the user. 

ANDES [Myllymaki & Jackson, 2002] is an informa-
tion extraction system from IBM. It is completely based 
on open standards. It consists of a web crawler whose 
configuration files are stored in XML and a wrapper shell 
that uses XSLT scripts as extraction patterns. These 
scripts require XPath expressions to identify target ele-
ments that must be hand-crafted by the user. Even though 
[Myllymaki & Jackson, 2002] describe in detail how ro-
bust extraction rules should be written, no learning com-
ponent is presented. 

In fact, no html-aware tools were found that induce 
wrappers from examples specified by the user. The pur-
pose of our paper is to fill this gap and to provide a pro-
posal for a learning algorithm suited for XSLT-based in-
formation extraction. Due to the close relation to the ap-
proach presented here, we will outline the concepts from 
[Myllymaki & Jackson, 2002], but before, we will provide 
a short introduction to XPath in the next section. 

3 DOM and XPath 
XPath [W3C, 1999] is a language for traversing DOM 
trees, where a DOM tree is a representation for a well-
formed XML document.  

A DOM tree is an ordered tree, where every node has 
assigned a name and a value. We distinguish two types of 
nodes: Element nodes and text nodes. Text nodes may 
only occur as leaves. Their name is constantly “#text”, 
their node value is an arbitrary string. The name of an 
element node E can be chosen arbitrarily, while its value 
is constrained to be the concatenated value of its text node 
descendants, if any. Additionally, every element node is 
also associated to a set of attribute-value pairs. 

Figure 1 shows a small DOM tree that result from pars-
ing the following XML document: 

<BODY> 
 <IMG SRC=”filename.gif”/> 
 <H1>Playing tonight:</H1> 
 <P> 
  Star Wars 
  <HR/> 
 </P> 
</BODY> 

For simplicity, only node names are shown, while node 
values as well as the attribute-value pairs are omitted. 

#text

IMG H1 P

BODY

#text HR

 
Figure 1 – a sample DOM tree 
Now, an XPath statement (or path, synonymously) defines 
a traversal through a DOM tree. We will only provide a 
quick overview, while we refer to [W3C, 1999] for the 
details. A path is a sequence of steps, separated by 
slashes. Each step consists of three parts: A search direc-
tion (also called “axis”), followed by “::”, a node filter 
and a (possibly empty) sequence of predicates.  
The axis describes the direction of document traversal, 
e.g. to the parent, to the child, to following or preceding 
neighbours. Node filters restrict the set of applicable 
nodes along the search direction. Finally, predicates are 
XPath expressions in square brackets that are used to re-
strict the set of results further. Examples for XPath state-
ments are: 
1. /descendant-or-self::H1 
2. /child::BODY/child::H1 
3. /child::BODY/child::H1[following-sibling::P[child::HR]] 
4. /descendant-or-self::H1[preceding-sibling::IMG 

[@src=’filename.gif’]]/child::text() 
Each step is evaluated on a set of DOM nodes and yields a 
set of DOM nodes as its result. A path is then evaluated 
by evaluating the first step on the initial set of nodes and 
using each step’s result as the input for the following step. 

For example, statement 1 evaluates to a set of nodes 
containing all H1 elements in the document. When ap-
plied to the sample DOM tree from Figure 1, statements 1, 
2 and 3 result in the set consisting of the single H1 ele-



ment. Statement 4 yields the text node inside the same H1 
element. 

In general, every step in an XPath statement is evalu-
ated with respect to a set of input nodes as follows:  

1. Let Output be an empty set of DOM nodes. 
2. For each node N in the input node set: 

• Let ResultN be the sequence of nodes that are 
on the current search direction relative to N 

• remove from ResultN all elements that don’t 
match the current node filter 

• remove from ResultN every element for 
which any predicate is not satisfied. 

• add ResultN to Output. 
3. return Output 

For the understanding of the constructs used in the fol-
lowing, it is necessary to mention the following details:  
Node filters match elements whose tag name corresponds 
to the value of the node filter. Special node filters are the 
“*”, which matches all element nodes, but no text nodes;  
“text()”, which matches all text nodes, but no element 
nodes, and finally “node()”, which matches both. 
If the node filter is a tag name, the axis and the double 
colon may be dropped. In that case, the axis of the step is 
assumed to be “child”. 

Expressions inside predicates are evaluated in a boo-
lean context. Particularly, path expressions are true for 
non-empty result sets, arithmetic expressions and func-
tions are true if they have a nonzero value. A number con-
stant C is a shortcut to select the C’th node in ResultN, e.g. 
the predicate “[2]” would filter out all but the second 
element of ResultN. Finally, expressions starting with “@” 
are interpreted as accesses to attributes.  

4 Traversal graphs 
In this section, we introduce traversal graphs as a formal 
representation of tree traversal patterns that can generally 
be expressed as XPath statements. 

4.1 Linear traversal graphs in ANDES 
[Myllymaki & Jackson, 2002] proposes traversal se-
quences to represent extraction rules. A traversal sequence 
is a linear directed graph whose nodes are called “an-
chors”, connected by “hops”. Hops that specify the de-
scendant axis as their search direction are called “search”, 
others are “path”s. On every anchor, one condition is 
evaluated and all nodes that don’t comply are removed 
from the list of targets. 

The ANDES authors propose three different types of 
anchors: Depending on whether the anchor imposes a 
constraint on text content, on attribute content or on the 
existence of related elements with a certain node name, it 
is called a “content”, “attribute” or “structure” anchor.  

Such traversal sequences can be expressed as XPath 
statements. This is done by converting each hop into one 
XPath step, appending the condition of the following an-
chor as a predicate and concatenating all steps by delimit-
ing slashes. 

4.2 Extending traversal graphs 
The machine learning algorithms presented here will 

use a similar, but more general pattern representation. 
First, we allow an anchor to impose multiple constraints 
on the previous hop’s result set, or equivalently, we allow 

multiple predicates to be added to one XPath search step. 
Next, we extended the “search”-hops by also allowing 
them to search the “following-sibling” or “preceding-
sibling” axis. Last, we extended the traversal graph to be 
able to express branched extraction patterns. 

The last extension probably needs some explanation. 
The XPath representation of a branched extraction pattern 
can only be expressed using a sub-path inside a predicate 
to filter nodes depending on the existence of the branch. A 
document traversal along the branch, however, would lead 
away from the destination node. Figure 1, for example, 
shows the traversal graph for the XPath statement 
/BODY/P[preceding-sibling::H1]/child::text() 
[count(preceding-sibling::node())=0]. 
The target anchor is the #text-node at the bottom. The 
tree path to it leads from the root node over /BODY/P to the 

text node, but it has two 
additional structural constraints: 
First, the node traversed during 
the second step must have a 
preceding H1 element. Second, 
the #text node reached in the 
third step must not have any 
preceding siblings. Both 
constraints require a 
subordinate path to be 
evaluated. In such a case, the 
path can simply be written as a 
predicate behind the step, as 

shown in the XPath representation. When the XPath 
interpreter evaluates the second step, it will recursively 
evaluate the sub-path “preceding-sibling::H1” relative 
to each node of the intermediate result set. A sub-path in 
an XPath predicate thus corresponds to a branch in the 
traversal graph. This makes the traversal graph a tree, but 
still, the existence of a sequential “stem” can be supposed 
that spans all anchors and hops between an arbitrarily 
chosen root and the target node. However, throughout this 
paper, we will always select an ancestor of the target node 
as the root. 

5 Wrapper induction 
In the next section, we will introduce the setting in which 
the wrapper induction algorithms work, as well as the 
algorithms themselves. 

5.1 The wrapper induction scenario 
Documents are seen as collections of DOM nodes con-
nected through parent-child and following-preceding-
sibling relations. A set of nodes, chosen by the user, is 
considered the positive training data. Another set of 
nodes, disjoint to the positive training data, is considered 
the negative training data. All documents that contain any 
positive or negative training example are called the train-
ing documents, or example documents. Another set of 
documents that contain neither positive nor negative train-
ing examples is referred to as the set of test documents. 
Positive examples are provided by the user in an interac-
tion sequence: After annotating one or more DOM nodes 
as positive training examples, the user may run the algo-
rithm on the set of training documents and/or test docu-
ments. Depending on the result, she may choose to anno-
tate another example from the training or test documents 
or accept the generated pattern.  

BODY

PH1

#text
[no left neighbors]

 

Figure 1: 
 An extended traversal graph 
with a target, one branch 
and one anchor condition. 



The learning task 
The learning task is formulated 
as a search problem for a gener-
alized tree traversal pattern that, 
when evaluated on all training 
documents, will have a result 
set that contains all positive 
examples and no negative ones. 

The hypothesis language 
We introduce augmented tra-
versal graphs as a representation 
for the extraction rules gener-
ated by the learning algorithms. 
An augmented traversal graph, 
or ATG for short, is an acyclic, 
undirected graph. To avoid confusion with nodes in DOM 
trees, we call its nodes “anchors” and its edges “hops”. 

Definition 1: augmented traversal graph 

An augmented traversal graph ATG is a tuple (A, 
H, t, D), where A is a set of anchors, H is a set of 
hops, t is one element of A, D is a partial map-
ping from A×A  X, and N is a partial mapping 
from A×A  IN. An anchor is a tuple (NF, P), 
where NF can take any value the name of a DOM 
node can take and P is a vector of XPath predi-
cates. A hop is a 2-elemented set (F, T) where F 
and T are elements from A. t is called the “tar-
get” of ATG. D is called the traversal direction 
function, where X is an XPath axis. For every 
h=(Afrom,Ato) ∈ H, both D(Afrom,Ato) and 
D(Ato,Afrom) exist and are opposed to each other. 
N is called the max-skip function and its domain 
equals that of the traversal direction function. Its 
default value is 0. A sequence A0, H1, A1, H2, … 
An-1,Hn with Ai≠Aj for all i≠j, (Ai,Ai+1)∈H for all 
0≤i<n and Hi∈A for all 0<i<n is called a path of 
ATG. For every pair of anchors of A, there is ex-
actly one path to every other anchor of A. A hop 
in the context of a path is said to be an X-hop iff 
D(Ai-1,Ai)=X. Additionally, it is said to be an 
immediate X-hop iff N(Ai-1,Ai)=0. 

Conversion to XPath 
Every augmented traversal graph can be transformed into 
an XPath statement and be applied to a DOM tree. Thus, 
T is said to extract a node N from a DOM tree D iff an 
XPath generated from T and evaluated on D has a result 
set that contains N. The equivalent XPath predicate for an 
anchor A1 is “[self::”, followed by the value of A1’s 
NF, followed by all elements A1’s P in square brackets. If 
N(A1,A2)=0 and D(A1,A2)=”descendant”, the XPath 
equivalent step for a pair of anchors A1, A2 is “child::” 
followed by A2’s NF, followed by A2’s predicates, oth-
erwise it is the string D(A1,A2) “::node()”, followed by 
“[1]“ if N(A1,A2) = 0, followed by the equivalent XPath 
predicate for A2. 

The complete procedure for converting an ATG into an 
XPath works as follows: Choose any anchor as the start-
ing anchor. Let TP=(A0,H1,A1,…HN,AN) be the path be-
tween the starting anchor and the target. Create an empty 
XPath X and append “/descendant-or-self::node()” 
as well as the equivalent XPath predicate for A0. Then, 
for each 0<i<N, append to X a slash and equivalent XPath 

step for Ai-1,Ai. If there any 
hops connect Ai to any nodes 
that are not part of TP, do for 
each maximal tree BR that does 
not contain Ai: Let Abr be a 
node of BR adjacent to Ai and 
choose a new target node tbr. 
Append to X a predicate con-
taining the XPath equivalent 
step of (Ai, Abr) followed by all 
but the first step of this function 
evaluated recursively on 
(A,H\{Ai,Abr},tbr,D) with Abr as 
the new starting node. 

5.2 Deriving STTs 
For every root of a DOM tree, one can construct an aug-
mented traversal graph that extracts exactly the root node. 
We call such an extended traversal graph a “sequential 
tree test”, or STT for short. Constructing an STT is done 
as follows: Start at the root of the subtree in question. In 
the example from Figure 1, this would be the “BODY”-
element. Construct an anchor A0. Let its N be the name of 
the current node, “BODY” in our example. If the node is 
an element node, add one predicate to P for each attribute. 
Then, if the current node is a leaf, create a predicate that 
defines the leaf node content: For elements, add to P the 
expression “[count(child::node())=0]”, and for text 
nodes, add “[self::text()=’value’]”, where value is 
the current node’s node value. Otherwise, do for all chil-
dren Ci of the current node: Construct a new anchor Ai, let 
its NF be the name of the Ci and execute this procedure 
recursively for Ci. Remove the target node from the set of 
anchors and replace all references to t in H, D, and N for 
Ai. If i=1, insert into H and D a “descendant”-hop from 
Ai-1 to Ai, otherwise insert a “following-sibling” hop. 
When the first or last child nodes are processed, add to the 
current anchor the predicate “[count(preceding-
sibling::node()=0)]” or “[count(following-
sibling::node())=0]”, respectively. 

As an example, Figure 2 shows the resulting augmented 
traversal graph of applying this procedure to the DOM 
tree from Figure 1. The equivalent XPath would be: 
/body[child::node()[1]     
[self::IMG[@src=’filename.gif’]       
/following-sibling::node()[1] 
[self::H1[child::node()[1]         
[self::text()=’Playing tonight:’] 
[count(following-sibling::node()) 
=0]]/following-sibling::node()[1] 
[self::P[child::node()[1]     
[self::text()=’Star Wars’]            
/following-sibling::node()[1] 
[self::HR][count(following-sibling::node()=0]]] 

5.3 Creating CCPs from the flipped tree 
Even though STTs can readily be used to identify nodes 
within documents by means of XPath statements, their 
expressive power does not exceed that of a sequential 
token-matching algorithm, because DOM trees are still 
traversed strictly in document order. In order to produce 
traversal graphs that reflect and exploit the tree structure 
of a document, we aim for traversal graphs whose paths 
between root and target node consist exclusively of child- 
and descendant-hops. We call such a traversal graph a 
“constrained child path”: 

BODY

IMG
[@src=‘filename.gif‘]
[no left neighbours]

H1
P

[no right neighbours]

#text
[self::text()=‘Playing tonight:‘]

[no left neighbors]
[no right neighbors]

#text
[no left neighbours]

HR
[no right neighbours]

Figure 2: sequential  node test for the DOM tree from Figure 1



Definition 2: constrained child path 

A constrained child path is a tuple (A, H, t, D, r), 
where A, H, t, and D are defined as in Definition 
1. r is called the “root” and is an element of A. 
The path from r to t is called the stem. The stem 
consists solely of “descendant”-hops. Every 
maximal tree of anchors and hops that does not 
contain any stem anchors is called a branch and 
every stem node to which at least one branch is 
connected, is called a forking anchor. Every path 
that has no stem nodes except for a forking an-
chor starts with a series of one or more “preced-
ing-sibling”-hops or with a series of  “following-
sibling”-hops. Eventually, these hops may be fol-
lowed by a series of “descendant”-hops. 

Constructing a CCP can be done by changing the algo-
rithm slightly: Informally speaking, we create the stem 
whilst traversing the DOM tree from the target node up to 
the root and connect one branch for the left and right 
neighbours on each level. During the traversal, a cursor is 
used to keep track of the current node. Thus, we define a 
cursor to be a reference to a DOM node. 
This is the exact algorithm:  

1. Let cursor C be the target node. 
2. Let A be an anchor. 
3. If C is an element node, create a STT for C and replace 

its target node for A. Otherwise, insert a predicate into 
A that describes C’s content. 

4. Let A’s NF be the name of C. If C is an element node, 
insert one predicate into A for each attribute of C. 

5. Set CL = C and AL=A. 
6. Repeatedly, let CL be the next left neighbour of CL and 

do: 
a. create an anchor ALnew and connect it to AL 

by a “preceding-sibling”-hop. 
b. repeat steps 3 and 4 for CL and AL. 
c. set AL = ALnew 

7. Insert into AL the predicate           
“[count(preceding-sibling::node() = 0]”. 

8. Process the left neighbours analogously. 
9. If C is the document root, return P 
10. Let C be the parent node of C 
11. Let Anew be an anchor. Connect A to Anew with a “par-

ent”-hop. 
12. go to (4) 

Applying this procedure to the text child of the H1 ele-
ment in the DOM tree of Figure 1 would yield the XPath: 
/body 
/child::node()[self::H1] 
[preceding-sibling::node() 
[self::IMG][@src=’filename.gif’] 
[count(preceding-sibling::node())=0]] 
[following-sibling::node()[self::P]  
[child::node()[1][self::text()=’Star Wars’] 
/following-sibling::node()[1] [self::HR]] 
[count(following-sibling::node())=0]] 
/child::node() [self::text()=’Playing tonight:’] 
[count(preceding-sibling::node())=0] 
[count(following-sibling::node())=0] 

Note that, although this expression is equivalent to the 
sequential tree pattern from the previous section when 
evaluated under a Boolean context, their structure is quite 
different. Figure 2 shows the order of document traversal 
of the STT compared to the CCP. The important differ-
ence between these variants is the connection from a node 

to its child: In the sequential tree test, a parent is always 
connected its first child. The constrained child path, on the 
other hand, defines a straight traversal from the root node 
to the target and imposes conditions to the left and right 
neighbour chains along its stem. 

STT

target

…

CCP

target

…

 
Figure 2: Structure of a sequential tree test (STT) and a constrained 

child-path (CCP). The CCP has a stem that leads from the root to 
the target node. Branches check the document structure to the left 
and to the right of the stem. The STT, on the other hand, just trav-
erses the DOM tree in document order. Branches of the CCP are 
sequential tree tests. 

5.4 Generalizing constrained child-paths on 
multiple target nodes 

In this section, we will introduce the first of two extrac-
tion algorithms as a modification to the procedure de-
scribed above that we call “F-GCP”, which stands for Full 
Generalized Child-path Pattern. F-GCP is essentially iden-
tical to the algorithm that derives a CCP, but works on a 
set of target nodes instead on a single one. It creates a path 
that will match all at least all target nodes. Generalization 
is done by ignoring content and attributes that differ 
among the cursor nodes, as well as by skipping non-
matching nodes and adapting the traversal pattern accord-
ingly. These are the modifications compared to the algo-
rithm for finding a CCP: 

First, the cursor C is enhanced to contain a set of nodes 
instead of merely a single one. Thus, we define the gener-
alized cursor C as a set of DOM nodes with equal name. 

Second, a heuristic is introduced to find a generalized 
description of the common structures under a cursor posi-
tion to replace step 3. Specifically, instead of creating an 
STT in step 3, all possible child-paths (i.e. paths that con-
sist of a series of immediate descendant-hops) that match 
at least one DOM node from every element of C are found 
and appended to A. 

Third, step 4 is modified to insert only predicates for at-
tributes that are satisfied for every element of C. 

Fourth, the cursor movements of step 6 and 10 are re-
placed for a search algorithm that yields the nearest 
matching cursor position in a given search direction. The 
operation takes a cursor C and yields another cursor Cnew 
that may be empty if no matching neighbours were found. 
This is the search algorithm: 
1. Start with a cursor C and an axis a. Let n be 1. 
2. terminate if no element of C has an n’th neighbour 

along axis a. 
3. for each element e of C, do: 
4. find the n’th element along the axis a 
5. If that neighbour can be matched (by name for ele-

ments and by value for text nodes) to any neighbour 
of all other elements in C with a distance of at most n, 
return that set of neighbours as the new cursor. 

6. increase n by 1 and go to 2. 



Fifth, during the steps 6a and 11, we additionally set the 
value of the max-skip function for N(A,Anew) or 
N(AL,ALnew) to n-1, where n is the last value assigned to n 
during the search procedure above. 

Last, step 7 is skipped if the search failed with n>1. 

This algorithm yields a heuristic approximation for the 
least general generalization of a set of completely con-
strained paths. Intuitively speaking, it tries to match the 
trees around the positive training examples to each other 
and computes an intersection of all those subtrees, aug-
mented with information about gaps between the hops that 
are reflected by the values of the max-skip function and 
by predicates indicating the absence of structure in a di-
rection. 

When the F-GCP is converted into an XPath statement, 
this information is reflected by three kinds of expressions: 

1. The first predicate on a “preceding-sibling”- or 
“following-sibling”-step is “[1]” (i.e. “consider 
only the first resulting element”), if there is no gap 
between the two adjacent anchors. 

2. Vertical path steps on the stem of the child-path 
pattern use the “child”-axis instead of the “descen-
dant”-axis if the max-skip function of the corre-
sponding hop is zero. 

3. The last predicate on a “preceding-sibling” or on a 
“following-sibling”-step is “[count(preceding-
sibling::node() = 0]” or “[count(following-
sibling::node() = 0]”, if the search for the cor-
responding cursor position failed with n=1. 

Limitations 
Since every additional example in the positive training set 
may shrink the generalized pattern, the number of avail-
able conditions decreases as the number of training exam-
ples increases. If the positive examples are too diverse, 
over-simplification will occur. This tendency to over-
simplify is a severe limitation of the learning algorithm: If 
a negative example matches all conditions of the pattern, 
the concept can no longer be learned. 

In practice, however, we found the extraction rules 
generated by this software to be highly precise. In fact, 
when applying the system to automatically generated 
pages, we encountered really large generalized child-path 
patterns. More than 50 conditions were not unusual, so, in 
the one-per-document experiments, we did not encounter 
any problems with over-simplification. The lack of ro-
bustness was a greater problem: Frequently, conditions in 
extraction rules were only found because the training ex-
amples are not drawn independently. For example, some 
rules contained a test for the following condition: 
/HTML/BODY[preceding-sibling::HEAD 
[child::TITLE=”Meldung vom 27.08.2004”]] 
Obviously, this condition will produce a wrapper that fails 
after at most one day. Many other examples like this could 
be found. This problem gets even worse if beside the con-
tents, also the structure of an HTML template changes 
slightly over time. 

Robustness 
For generating robust wrappers, it is thus necessary to 
keep the number of features used in the rule as small as 
possible. However, the F-GCP learner selects all condi-
tions it possibly can, from which only a small fraction 
contributes to the precision of the resulting extraction rule. 

According to [Myllymaki & Jackson, 2002], robustness 
can be achieved by “relying less on page structure and 
more on content.” In other words, by preferring content 
and attribute search patterns over structure search pat-
terns. We think that in addition to this, the total number of 
hops should be minimized because every additional hop 
increases the risk of failure. Anyhow, minimizing the 
number of anchors is equivalent to the proposal of 
[Myllymaki & Jackson, 2002], because every additional 
hop essentially is a constraint on page structure. 

5.5 Incorporating negative training data 
In order to create more robust wrappers, we will now in-
troduce the second algorithm “M-GCP”, which is based 
on the F-GCP algorithm, but it additionally uses negative 
examples to minimize the number of conditions and hops 
in the generalized child-path pattern. Therefore, we con-
sidered all nodes of all training documents as negative 
examples unless they were labelled positive. 

For explaining M-GCP, let us recall that F-GCP incor-
porates all conditions into the augmented traversal pattern 
that match all positive training examples. This can be 
thought of as “growing” the tree from the target anchor. 
M-GCP, in contrast, checks whether a particular condition 
has any discriminative power before adding it to the pat-
tern. This is done by calculating the false positive rate of 
the traversal graph before and after adding another predi-
cate. If the false positive rate is not influenced, the predi-
cate is rejected. 

Provided that the GCP is large enough to separate all 
positive from all negative examples, this feature selection 
strategy will reject every new candidate condition once a 
consistent set of conditions has been found. But still, can-
didate conditions added later might imply the truth value 
of any candidate condition added earlier. For that reason, 
irrelevant conditions are pruned away in a second pass. 

5.6 Discussion of M-GCP’s selection strategy 
The order of creation of hops and anchors, as well as the 
matching strategy for cursor elements defines the search 
bias of M-GCP towards certain hypotheses. Since M-GCP 
traverses the documents the same way as F-GCP does, 
conditions whose containing anchor’s path towards the 
target anchor contains fewer descendant-hops are always 
preferred over those with more. Among those conditions 
with an equal number of descendant-hops, conditions pre-
ceding the stem are preferred to those following it. 
Among each of those, anchors that are nearer, i.e. whose 
path to the stem has fewer hops in total, are preferred. 
Among those, again, tests for text content is preferred 
over tests for attribute content, and those are preferred 
over tests for attribute existence. But every condition that 
is not completely irrelevant is picked up in the rule. This 
is a major difference to most other rule learning systems 
that usually maximize the discriminative power of condi-
tions. M-GCP, however, focuses on another quality of the 
available conditions, which is their document coverage. 
Since robustness is strongly correlated to small document 
coverage and the robustness considerations from [Mylly-
maki & Jackson, 2002] were also respected by this selec-
tion strategy, we think that this system is ideally biased 
for creating robust extraction rules in the XPath language. 



6 Experiments and Results 
To evaluate robustness and expressiveness, we tested both 
algorithms on automatically generated web pages from 
two content providers. To retrieve the content pages, we 
configured a web crawler for each web site. For the ex-
traction task, we used only pages with exactly one record 
per page. 

The tests were conducted incrementally, by repeatedly 
running the algorithm and labelling one example docu-
ment on which the extraction rule failed, until a consistent 
extraction rule had been learnt, but we waived to run the 
algorithms on a single example page. The number of 
manually labelled example pages is shown in Table 1. 

We will now examine the initial extraction rules that 
were chosen by M-GCP for the “author”-field on 
www.heise.de. The author-field regularly follows every 
news message on www.heise.de. Depending on the au-
thor’s name, affiliation and email address, the correspond-
ing HTML code could for example be (<a 
href=’mailto:anw@ct.heise.de’>anw</a>/c’t) or (<a 
href=’mailto:jk@ct.heise.de’>jk</a>/c’t). The user 
can recognize the author-field as a pair of round braces at 
the end of every article that contain the author’s initials 
inside a link to his email address, followed by a slash and 
the name of the magazine. We were interested in the link 
itself, say, in the <A>-tag surrounding the author’s initials. 
The following table shows the extraction rules generated 
by M-GCP after the second, third and fourth example 
page had been labelled: 

2 2% //A[child::text() = "ad"] 
3 99% //A[following-sibling::node()[1] 

[self::text()][self::node()=”/c’t)”]] 
4 100% //A[following-sibling::node()[1][self::text()] 

/following-sibling::node()[1] 
[self::BR][@CLEAR="all"]] 

This sequence shows how M-GCP generalizes: The first 
and the second example came from the same author, so 
that the author’s initials were identical. For that reason, 
the set of conditions common to the target anchors pro-
vided enough discriminative power to generate an extrac-
tion rule from text inside the link (“find an <A>-tag with 
contents “ad”). The GUI we use for labelling assists the 
user in discovering that this expression is not general 
enough by presenting him the first page for which no ex-
traction result was found. So, the next example scheduled 
for labelling did not come from the same author. This 
made the common text “ad” disappear from the general-
ized traversal pattern, forcing the algorithm to find an-
other set of conditions to be consistent with the training 
data. It chose a test for the following text node, so the rule 
reads: “find an <A>-tag that is followed by the text 
“/c’t)”. Since all but two pages in the training set come 
from the magazine c’t, the following text node is identical 
in nearly all example pages, so the extraction rule already 
achieves 99% accuracy. However, the training set also 

contained two news articles from another magazine, on 
which that extraction rule did not work. So, the GUI pre-
sented one of the remaining two messages for manual 
labelling. The final generalization step done by the system 
was to skip over the text node after the target anchor and 
to use the immediately following <BR clear=all>-tag in 
the final rule. Indeed, this hypothesis is consistent with 
heise’s page layout and did work 100% correct. Whether 
that extraction rule is more satisfying than the previous 
version is questionable, though. 

Next, we will have a look at the hypotheses that M-
GCP found for the “parken”-field on www.burgenwelt.de. 
The content pages on www.burgenwelt.de show informa-
tion on castles of Europe. For each castle, the authors are 
supposed to contribute a piece of text for each of the cate-
gories history, gastronomy, parking lots, accommodation, 
guided tours, and entry prices. We let F-GCP and M-GCP 
generate extraction rules for each of them. Certainly, F-
GCP frequently required more examples for the extraction 
task than M-GCP. In fact, extraction rules for name, ac-
commodation and entry prices were discovered by provid-
ing only two examples, we investigated the hardest case, 
which is the “parken”-field. The intermediate and the final 
extraction rules are shown below: 
# 
ex’s

Accu-
racy 

hypothesized extraction rule 

2 99,8% //TD[preceding-
sibling::node()[1][self::TD]/CENTER/IMG[@ALT = 
"Parkmöglichkeiten"]] 

3 99,9% //TD[preceding-
sibling::node()[1][self::TD]/CENTER/IMG[@SRC = 
"../grafiken/314.gif"]] 

4 79,2% //TR[count(preceding-sibling::node()) = 0] 
 /TD[@WIDTH = "560"][@BACKGROUND = 
"../grafiken/bglaufg2.jpg"] 

5 79,3% //TR[count(preceding-sibling::node()) = 0] 
 /TD[preceding-sibling::node()[position() = 1][self::TD]
       [attribute::BACKGROUND = 
"../grafiken/bglaufg2.jpg"][attribute::WIDTH = "40"]] 

6 57,8% //TR[count(preceding-sibling::node()) = 0] 
 /TD[preceding-sibling::node()[position() = 
1][self::TD][attribute::VALIGN]] 

7 94,6% //TR[count(preceding-sibling::node()) = 0] 
 /TD[preceding-sibling::node()[position() = 1][self::TD]
       [count(preceding-sibling::node()) = 
0][attribute::BACKGROUND]] 

8 100% //TR[count(preceding-sibling::node()) = 0] 
 /TD[preceding-sibling::node()[position() = 1][self::TD]
       [count(preceding-sibling::node()) = 
0]][count(following-sibling::node()) = 0] 

During this test, we discovered that the pages from 
www.burgenwelt.de are not automatically generated, but 
hand-crafted with an HTML editor using a template page. 
Even though their visual appearance is uniform, their 
mark-up differed in only two of the 976 instances that 
were part of the test. None of the two examples labelled 
initially were irregular, so consequently, the first extrac-
tion rule induced by M-GCP did cover all but the two 
irregular examples. The goal, however, was to achieve 
100% accuracy, so we labelled the irregular pages, too. It 

web site www.heise.de www.burgenwelt.de 
total # of pages 191 976 
field name Datum Headline Autor Name Eintritt Parken Gastronomie Geschichte 
ex’s required by F-GCP 2 5 4 7 9 9 11 12 
ex’s required by M-GCP 2 2 2 2 2 8 6 7 

Table 1: overview over the experiments 



worked, but it resulted in an XPath that spans a much lar-
ger portion of the document. As discussed above, this is 
believed to result in low robustness, and indeed, we ob-
served the accuracy dropping to 57.8% in the following 
rounds. This trend could only be stopped by replacing an 
attribute anchor for the meta-node (“count(preceding-
sibling::node()) = 0”) in the seventh step, and in the 
eighth step, 100% accuracy could only be achieved by 
adding such a constraint on the following-sibling axis of 
the same anchor, too. Again, the result is a 100% score in 
the end, but – compared to the result achieved with two 
training examples - at the cost of labelling six additional 
pages, and of getting a much larger extraction pattern. 

7 Lessons learnt 
From these experiments, we conclude that M-GCP can 
successfully be used to create precise extraction rules that 
act on the level of DOM nodes. For wrapping similar 
pages that are automatically generated from the same 
source or at least generated by hand from the same tem-
plate page, disjunctive expressions (as for example in-
duced by the STALKER algorithm) are usually expend-
able. However, to find conjunctive expressions that can be 
used for continuous information extraction, the usefulness 
of generalization steps that are necessary to cover more 
examples must be assessed individually. We have encoun-
tered two non-trivial cases where robustness is being 
traded off for generality: When few examples are used, 
the resulting wrapper may not be general enough. On the 
other hand, when more examples are added, the expres-
sion tends to span a larger portion of the document, and 
thus loses robustness with respect to changes in page lay-
out. 

Common structures around the training examples are 
often large enough to derive a good rule from it. Some-
times, the use of multiple conditions and the introduction 
of structural constraints of the type 
“count(SOME_AXIS::node()) = 0” is necessary. Thus, 
the sequential traversal graph as pointed out by the 
ANDES project is not expressive enough as a hypothesis 
space for a machine learning algorithm. One can argue 
that most trees could be converted into a sequential tra-
versal that would still be consistent with the training data, 
but the concept of having multiple conditions match 
document parts that are unrelated to each other and that 
possibly reside in different relative positions to the target 
anchor, is better represented by a tree than by a sequence. 
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