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So far, our agents believe that
logical statements are true or false (maybe unknown)
actions will always do what they think they do
Unfortunately, the real world is not like that

agents almost never have access to the whole truth about the
world

— agents must deal with uncertainty
Example:

We many different actions for getting us to the airport:
action 4; = leave for the airport r minutes before departure
Typical problems:
Will a given action 4; get me to the airport in time?
Which action is the best choice for getting me to the airport?
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Risks involved in the plan Agy will get me to the airport

partial observability (road state, other drivers' plans, etc.)
noisy sensors (traffic reports may be wrong)

uncertainty in action outcomes (flat tire, accident, etc.)
immense complexity of modeling and predicting traffic

A logically correct plan:

Agp will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc.

Impossible to model all things that can go wrong
— qualification problem
A more cautious plan:

Aj440 will get me to the airport

will certainly succeed, but clearly suboptimal
e.g., we have to pay for a night in a hotel
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Probabilities are one way of handling uncertainty

e.g. Agp will get me to the airport with probability 0.5

The probability summarizes effects that are due to

Laziness
| don't want to list all things that must not go wrong
Theoretical Ignorance

Some things just can't be known
e.g.. We cannot completely model the weather

Practical Ignorance

Some things might not be known about the particular situation
e.g. Is there a traffic jam at A5?
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Probabilities that are related to one's beliefs

a probability p attached to a statement means that | believe
that the statement will be true in p-100% of the cases

there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

it does not mean that it is true with p%

the traffic on the A5 is jammed with a degree of 10%
(meaning: there's a jam, but it could be worse...)

— Probability theory is about degree of belief
other techniques (e.g., Fuzzy logic) deal with degree of truth
Probabilities of propositions change with new evidence:
P(A,s gets me there in time | no reported accidents) = 0.06
in 6% of the days | get there in 25 mins if no accidents reported
P(A,s gets me there in time | no reported accidents, 5 a.m.) =0.15
chances are higher at 5 in the morning...
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Suppose | believe the following:

P(A,s gets me there on time | ...) =0.04
P(Ay, gets me there ontime | ...) =0.70
P(A,, gets me there on time | ...) =10.95
P(A 4 gets me there on time | ...) =0.9999

Which action should | choose?

The choice depends on my preferences
how bad is to miss the flight?
how bad is it to wait for an hour at the airport?

Utility theory is used to represent and infer preferences
Decision theory = probability theory + utility theory
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Probability Basics

Begin with a set ()—the sample space
e.g., 6 possible rolls of a die.
w € () is a sample point/possible world /atomic event

A probability space or probability model is a sample space
with an assignment /’(w) for every w € () s.t.

0 < P(;,:;} <1

M, P(w) =1
eg., P(1)=P(2)=P3)=P(4)=P(5)=P(6)=1/6.

An event A is any subset of (?
P(A) = XeayP(w)
E.g., P(dieroll <4)=P(1)+ P(2)+ P(3)=1/6+1/6+1/6=1/2
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All probabilities are between 0 and 1
0<P(a)<l

Necessarily true propositions have probability 1, necessarily
false propositions have probability O

P( false)=0  P(true)=1 A A a‘ B
—— |
The probability of a disjunction is — mllb
P(avb)=P(a)+P(b)—P(anb) — i

These axioms restrict the set of probabilistic beliefs that an
agent can (reasonably) hold

similar to logical constraints like 4 and = A4 can't both be true
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Violation of Axioms of Probability

Bruno de Finetti (1931)

an agent who bets according to probabilities that violate the
axioms of probability can be forced to bet so as to lose money
regardless of outcome!

Example: axioms of probability
suppose Agent 1 believes the following are violated because
P(a)=04  P(b)=03  P(aVvb)=0.8 P(avb)>P(a)+P(b)

Agent 2 can now select a set of events and bet on them according
to these probabilities so that she cannot loose

Agent 1 Agent 2 Outcome for Agent 1

_-------
b 0.3 3 -7
aV b 0.8 2 2
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Random Variables

= A random variable is a function from atomic events to some
range of values

= Example: Roulette
= atomic events: numbers 0-36

= random variables with outcomes true or false

= rouge / noir, pair / impair, passe / manque
= transversale, carre, cheval

= douzaines premier/milieu/dernier
= etc.

e.g. rouge(36) = true
= The probablity function P over atomic events induces a
probability distribution over all random variables X

P(X:xl.):z[w:)((w):xi} P(w)

B 11 18
a = — — Tt T T -
P (Rouge=true)=P(1)+P(3)+...+P(34)+P(36) 37 37 37 37 37

V2.0| © J. Furnkranz
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Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event o = set of sample points where A(w)="1rue
event —a = set of sample points where A(w)= false
event a A\ O = points where A(w)=true and B(w)=true

Often in Al applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
eg., A=true, B= false, or a N —b.
Proposition = disjunction of atomic events in which it is true
e.g., (aVb) =(-anb)V(iaN-=b)V(aAb)

N P[H \/ h:] _ p(_”_ A 3{} 1 P(” A —h;} —+ P(rf AN h;}
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Uncertainty

Propositional or Boolean random variables
e.g., Cavity (do | have a cavity?)
C'avity =true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., l'ernp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

12 V2.0 | © J. Flirnkranz
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P denotes a
probability distribution

Prior or unconditional probabilities of propositions
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P denotes a probability

e.g., P(Cavity=true) = 0.1 and P|Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
»®”?r=uﬂsr'r'] = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather = |sunny rain cloudy snow

Cavity =true [0.144 0.02 0.016 0.02
C'avity = false|0.576  0.08 0.064 0.08

Uncertainty 13

Note: If we know the joint
probability for a set of
random variables, we can
answer all questions,
because each event is a
union of sample points
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Probability for Continuous Variables

Express distribution as a parameterized function of value:
P(X =)= U[18,26](xr) = uniform density between 18 and 26

)

0.1257

18 26

Here 7 is a density; integrates to 1.
P(X =20.5) = 0.125 really means

lim P(20.5 < X <205+ dx)/dr =0.125

dr—0
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Marginalization (aka Summing Out)
For any set of variables Y and Z

P(Y)=2 P(Y,z)

In particular, this means that given the joint probability
distribution, the probability distribution of any random
variable can be computed by summing out

the resulting distribution is then also called marginal
distribution and its probabilities the marginal probabilities

Conditioning
A variant of the above rule that uses conditional probabilities

P(Y)=2. P(Y|z)-P(z)
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Start with the joint distribution:

foothache =1 foothache

catch| — catchl catch| — carch
cavity | .108] .012 0721 .008
—1cavity | .016] .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:
P(¢) = 2ueeP(w)

Uncertainty 16 V2.0 | © J. Firnkranz
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Start with the joint distribution:

foothache = toothache

catch| —catchl catch| — catch
cavity | .108] .012 .0721 .008
—1cavity | .016] .064 1441 576

For any proposition ¢, sum the atomic events where it is true:
P(d) = X g P(w)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Uncertainty 17 V2.0 | © J. Firnkranz
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Start with the joint distribution:

foothache

Einflhrung in die Kinstliche Intelligenz

= toothache

catch ‘ =1 catch
cavity | .108| .012 I
—1cavity | .016] .064

catch| — catch
0721 .008
144 576

For any proposition ¢, sum the atomic events where it is true:

P(o) = Eﬁ_.:w.lz, Plw)

PlecavityVtoothache) = 0.1084-0.0124-0.07240.0084-0.016+0.064 = 0.28

Uncertainty 18
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P(Cavity, Toothache)  toothache = toothache

Conditional or posterior probabilities GO 0.12 0.08
e.g., P(cavity|toothache) = 0.8 = cavity 0.08 0.72
.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

P(Cavity|Toothache)=((0.6,0.4), <O.1,0.9>>

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors) __ 4

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but i1s not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache, 49ersWin) = P(cavity toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial
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Definition of Conditional Probability

Definition of conditional probability:

Pla ND) . _
' (b)) #£ 0
20 if P(b) #(

P(alb) =

Product rule gives an alternative formulation:

P(anb) = Pla|b)P(b) = P(bla)P(a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather |Cavity)P(Cauvity)

(View as a 4 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:

P(J{I ----- Yn — ( igt1 Yﬂ 1]' ( Yn' ST Yn 1~]
— P(J{I- Coeey J{TE—EJ P( an En ?-‘ P( 1'i*.rz ----- Y-n—l:.]
=[II_ P(X;| Xy, ..., Xio1)

Uncertainty 20 V2.0 | © J. Firnkranz
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Start with the joint distribution:

toothache = foothache

catch| — catchl catch| — catch
.0721 .008
=1 cavity .016' .064 144 | 576

cavity

Can also compute conditional probabilities:

P(—=cavity N toothache)

P(toothache)
0.016 + 0.064 0.4
0108 +0.012+0.016 - 0.064

P(—cavity|toothache) =

Uncertainty 21 V2.0 | © J. Firnkranz
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Start with the joint distribution:

foothache = toothache

catch| — catchl catch| — catch
cavity §1.108[]1.012 0721 .008
=1 cavity |.016]]1.064 144 | .576

Denominator can be viewed as a normalization constant o

P(Cauvity|toothache) = o P(Cavity, toothache)
= [PI: C'avity, toothache, catch) + P(Cavity, toothache, —catch ;]]
= « [(0.108,0.016) + (0.012,0.064)]
= « (0.12,0.08) = (0.6,0.4)

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Uncertainty 22 V2.0 | © J. Firnkranz
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Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variablesbe H =X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(YI[E=¢e)=aP(Y E=e) = HE[]PI:Y. E=e H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity ()(d") to store the joint distribution
3) How to find the numbers for O(d") entries???

Uncertainty 23
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A and B are independent iff

P(AIB)=P(A) or P(B|A)=P(B) or P(A, B)=P(AP(B)
f________ T Cavity 2%2x2 = 8
Cavity q : T :
ecomposes into -1 00othache Catch  possible values
2x2x2x4 = 32 Toothach Catch ﬁ
possible values| ' @0thache atc ' -
\ Weather / 4 possible
Weather values

Pl oothache, Catch, Cavity, Weather)
= P(1'oothache, Catch, Cavity)P(W eather)

32 entries reduced to 12; for n independent biased coins, 2" — n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional Independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't depend

on whether | have a toothache:
(1) P(catchltoothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, —cavity) = P(catch|—cavity)

C('atch is conditionally independent of Toothache given Clavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Cateh|Cavity)

Analogous to:
P(A|B)=P(A) or P(B|/A)=P(B) or P(A B)=P(A)P(B)
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Conditional Independence (Ctd.)

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(T oothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(T oothache|Cavity)P(Catch|Cavity)P(Cavity)

"

le., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes Rule

Product rule P(a A D) = Plalb)P(b) = P(bla)P(a)

= Bayes' rule P’(alb) = I .Z":(Jii;(”}
or in distribution form
vy PANY)PY) | - p
P(YX)= PY) = aP(XY)P(Y)

Useful for assessing diagnostic probability from causal probability:

P(Effe :rff‘ Cause)P(Cause)
P(E f fect)

E.g., let M/ be meningitis, S be stiff neck:

P(sim)P(m) 0.8 x 0.0001
P(s) B 0.1

P(C(.’.-H..‘-;rf‘ E}[J[H'H —

= 0.0008

P(m]s) =

Note: posterior probability of meningitis still very smalll

Uncertainty 27
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Uncertainty

event Aids = a person has Aids or not
event Positive = a person has a positive test result

The test has the following characteristics:

P ( positive|aids)=0.99 The test makes 1% mistakes
P (negative|aids)=0.01 for people that have aids

P ( positive|-aids)=0.005 The test makes 0,5% mistakes
P (negative|aids)=0.995 for people that don't have aids

Looks like a pretty reliable test?

Modified from slides by David Kriegman, 2001 28 V2.0 | © J. Furnkranz
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Uncertainty

event Aids = a person has Aids or not
event Positive = a person has a positive test result

The test has the following characteristics:

P ( positive|aids)=0.99 The test makes 1% mistakes
P (negative|aids)=0.01 for people that have aids

P ( positive|-aids)=0.005 The test makes 0,5% mistakes
P (negative|aids)=0.995 for people that don't have aids

Now suppose you are in a low-risk group (low a priori probability
of having Aids, say P(aids) = 0.0001) and have a positive test
result. Should you panic?

Plalp)=LLRla) Pla) P(pla)-P(a) _ 0.99-0.0001
W P(p) T P(pla)Pla)+P(plna)P(ma) ” 0.99:0.0001+0.005-0.9999

=0.0194

Modified from slides by David Kriegman, 2001 29 V2.0 | © J. Furnkranz
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The model is nalve
because it assumes that

; . . all effects are independent
P((-fri'f‘a‘fﬁ|fﬂ”fhrfr'hf' A catch ) given the cause P

= o Pltoothache N cateh|Cavity)P(Cauvity) | (which is often not true)

= « P(toothache|Cavity)P(catch|Cavity)P(Cauvity)

This is an example of a naive Bayes model:

P(Cause, Effecty,. ... Effect,) = P((-THHHr';}H;P(Effr‘f'?Lg‘(-TH.H.*-;(";}

Cem (o
ORNCS

Total number of parameters is linear in »

Uncertainty 30 V2.0 | © J. Firnkranz
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Performance measure
gold +1000, death -1000

-1 per step, -10 for using the arrow

4 |S&wnS ~ Brogze — Environment
Squares adjacent to wumpus are smelly
7~ Blogze — . :
. sV | Cooees P Squares adjacent to pit are breezy
™ \S\tercs:1 / = Glitter iff gold is in th
S itter iff gold is in the same square
Shooting kills wumpus if you are facing it
2 $sSS < Blegze = Shooting uses up the only arrow
Grabbing picks up gold if in same square
% P e Releasing drops the gold in same square
1 T—26ze = —20ze =
START Actuators Left turn, Right turn,
1 ) 3 . Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Uncertainty 31 V2.0 | © J. Firnkranz
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Current knowledge of the agent about the world

Uncertainty

24

34

a4

2.3

33

4.3

22

32

4.2

B
OK
1.1 2,1 3.1 4.1
B
OK OK

32
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the agent has visited the squares [1,1], [1,2], [2,1]
it found a breeze in [1,2] and one in [2,1].

therefore, no safe explorative step is possible
all yellow squares might contain a pit
— Which of the yellow squares is the safest?

V2.0 | © J. Furnkranz
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Example: Wumpus World

Specifying the Probability Mode
[ =true iff [7, j] contains a pit SN S T
B;; = true iff [1. j] is breezy T e A
Include only B . 3, 5. 351 in the probability model ok | L
The full joint distribution is P(/’ 1. .. .. Pi4. B 1, Bio, Bay)
Apply product FIJ|EZ P(Bl_l* Bllg. Bg_l | Pl.l ..... P44]P(P11 Ce e P;ﬂ

(Do it this way to get I’(E f fect|/Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(Piy,.... Pra) = I P(Py) = 02" x 0807

i
for n pits.

Uncertainty 33 V2.0 | © J. Firnkranz
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Uncertainty
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Example: Wumpus World

Observations and Queries

[ =true iff [7, j] contains a pit

B;; = true iff [1. j] is breezy
Include only B . 3, 5. 351 in the probability model

We know the following facts:
b= —=b11 ANbia /by
known = —p11 A —pra A —paq

14 24 34 44
13 23 33 4.3
1.2 22 3.2 42
B

OK

1.1 2.1 3.1 4.1
B
OK OK

Query is P (/7 s|known. h) <— What is the probability distribution for a pit on [1,3]?

Define Unknown = I’;;s other than [’ 3 and A nown

For inference by enumeration, we have

P( P s|known,b) = Yiunknown P( P13, unknown, known, b)

Grows exponentially with number of squares!

34
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Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

-|r’r,,1______I_"n-_.l____I:1-_.1____J..1_a___._,"|I
* ‘1
"'-.
. |
The square [4,4] will not have an N 1
influence on whether the agent has ,P' ANN OTHER i
I E P ™ |
noticed a breeze on [1,2] or not. VAUERY IS |
~ / b
S — |_
In fact, none of the squares in the !;EH\ 5,'r*”‘“~~~..‘:;:h~ |
Other region may have influenced AN NN |
the observations in [1,1], [1,2] and [2,1]. | N\ b |
1,11, 11.2] [2,1] i = FHINEER“T:“\ 3
| KNOWN NN W |
I Hlﬁ » ] H"’\. ]
lL / FKH. ! N )
_____I____.-- — e —

Define Unknown = Fringe U Other
P(b| P 5, Known, Unknown) = P(b| P, 3, Known, Fringe)

Manipulate query into a form where we can use this!
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Example: Wumpus World
Computation

}_J _________ Aza _L.I_.l_.___.\
A\ |
5\ 1
N II
TL—H::Q“ OTHER i_
The query P(P, s|known,b) is now transformed 'Jj“E“‘fj . |
in a way so that we can use the equation from 1;5:' AN i
. . ~ ~
the previous slide BN NN i
' \\\%‘*\ FRINGE\:::*\ -
b known NS WS |
| N i
P(P s3|known,b) = « ;Z P( P, 3, unknown, known, b) S | | N R
= « ,az P(b| P 3, known, unknown)P( Py 3, known, unknown)
= a Y Y P(blknown, P 3, fringe, other)P(P, 3, known, fringe, other)
fringe other
= a Y ¥ P(blknown, P13, fringe)P (P, s, known, fringe, other)
fringe other
= o ¥ P(blknown, P, 3, fringe) ~ P(P, 3, known, fringe, other)
fringe other '
= a-'fz P(blknown, P, 3, fringe) ; P (P 3)P(known)P( fringe) P(other)
ringe other
= o P(known)P(P,3) ¥ P(blknown, P, 3, fringe)P(fringe) Y~ P(other)
~ fringe other
= o' P(P3) ¥ P(blknown, P; 3. fringe)P(fringe)

fringe
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Example: Wumpus World
COmpUtat|On is 1 if the breeze observations b

are consistent with the fringe,
/ 0 otherwise

P (b|known, P, 5, fringe) P ( fringe)

P(P, ,Jknown,b)=a'P(P,;)D,

fringe

1.3 I 13 I 1.3. 13 1.3
T2 737 T2 T2 Tz . T2 il T2 ]
B B B B B

0K . 0K . O DK . 0K .

11 21 EX] 1.1 21 ER] 11 Z1 R 5] 2.1 31 ] 2.1 31
B E B B B
DK DK . 0K OK O oK . DK DK . 0K OK
0.2x02=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x02=0.04 02x0.8=0.16

P(Ps3|known,b) = o' (0.2(0.04 +0.16 + 0.16), 0.8(0.04 +0.16))

~ (0.31,0.69)

P(Pss|known,b) ~ (0.86,0.14) (by analogous computation)
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Probability is a rigorous formalism for uncertain
knowledge

Joint probability distribution specifies probability of every
atomic event

Queries can be answered by summing over atomic
events

For nontrivial domains, we must find a way to reduce the
joint size

Independence and conditional independence provide
the tools

Uncertainty 38 V2.0 | © J. Firnkranz



