
Uncertainty                                                                                                    

   TU Darmstadt, SS 2009                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz1

Outline
 Uncertainty
 Probability
 Syntax and Semantics
 Inference
 Independence and Bayes' Rule

Include s m
any  slides b y R

uss ell &
 N

orvig



Uncertainty                                                                                                    

   TU Darmstadt, SS 2009                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz2

Uncertain Actions
 So far, our agents believe that

 logical statements are true or false (maybe unknown)
 actions will always do what they think they do

 Unfortunately, the real world is not like that
 agents almost never have access to the whole truth about the 

world
→ agents must deal with uncertainty

 Example:
 We many different actions for getting us to the airport:

 action At = leave for the airport t minutes before departure
 Typical problems:

 Will a given action At get me to the airport in time?
 Which action is the best choice for getting me to the airport?
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Problems with Uncertainty
 Risks involved in the plan  A90 will get me to the airport

 partial observability (road state, other drivers' plans, etc.)
 noisy sensors (traffic reports may be wrong)
 uncertainty in action outcomes (flat tire, accident, etc.)
 immense complexity of modeling and predicting traffic

 A logically correct plan:
A90 will get me to the airport as long as my car doesn't break down,
I don't run out of gas, no accident, the bridge doesn't fall down, etc. 

 impossible to model all things that can go wrong 
 → qualification problem

 A more cautious plan:
A1440 will get me to the airport

 will certainly succeed, but clearly suboptimal 
 e.g., we have to pay for a night in a hotel



Uncertainty                                                                                                    

   TU Darmstadt, SS 2009                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz4

Probabilities
 Probabilities are one way of handling uncertainty

 e.g. A90 will get me to the airport with probability 0.5

 The probability summarizes effects that are due to
 Laziness

 I don't want to list all things that must not go wrong
 Theoretical Ignorance

 Some things just can't be known
 e.g.: We cannot completely model the weather

 Practical Ignorance
 Some things might not be known about the particular situation

 e.g. Is there a traffic jam at A5?
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Probabilities and Beliefs
 Probabilities that are related to one's beliefs

 a probability p attached to a statement means that I believe 
that the statement will be true in p∙100% of the cases

 there is traffic jam on the A5 in 10% of the cases
(meaning: there might be jam, but usually there is none)

 it does not mean that it is true with p%
 the traffic on the A5 is jammed with a degree of 10%

(meaning: there's a jam, but it could be worse...)
→ Probability theory is about degree of belief

 other techniques (e.g., Fuzzy logic) deal with degree of truth
 Probabilities of propositions change with new evidence:

 P(A25 gets me there in time | no reported accidents) = 0.06
 in 6% of the days I get there in 25 mins if no accidents reported

 P(A25 gets me there in time | no reported accidents, 5 a.m.) = 0.15
 chances are higher at 5 in the morning...
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Making Decisions under Uncertainty
 Suppose I believe the following:

 P(A25 gets me there on time | …) = 0.04 
 P(A90 gets me there on time | …) = 0.70 
 P(A120 gets me there on time | …) = 0.95 
 P(A1440 gets me there on time | …) = 0.9999 

Which action should I choose?

 The choice depends on my preferences 
 how bad is to miss the flight?
 how bad is it to wait for an hour at the airport? 

 Utility theory is used to represent and infer preferences
 Decision theory = probability theory + utility theory
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Probability Basics
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Kolmogorov's Axioms of Probability
1. All probabilities are between 0 and 1

2. Necessarily true propositions have probability 1, necessarily 
false propositions have probability 0

3. The probability of a disjunction is

These axioms restrict the set of probabilistic beliefs that an 
agent can (reasonably) hold
 similar to logical constraints like A and ¬ A can't both be true

0≤P a ≤1

P  false =0 P true=1

P a∨b=P a P b−P a∧b
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Violation of Axioms of Probability
Bruno de Finetti (1931)
 an agent who bets according to probabilities that violate the 

axioms of probability can be forced to bet so as to lose money 
regardless of outcome!

Example:
 suppose Agent 1 believes the following

 Agent 2 can now select a set of events and bet on them according 
to these probabilities so that she cannot loose 

P a =0.4 P b=0.3 P a∨b=0.8

Agent 1 Agent 2 Outcome for Agent 1

proposition belief bet stakes a ∧  b a ∧ ¬b ¬ a ∧  b ¬ a ∧ ¬b
a 0.4 a 4:6 -6 -6 4 4

b 0.3 b 3:7 -7 3 -7 3

a  ∨ b 0.8 ¬(a  ∨ b) 2:8 2 2 2 -8

-11 -1 -1 -1

P a∨bP aP b

axioms of probability 
are violated because
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Random Variables
 A random variable is a function from atomic events to some 

range of values
 Example: Roulette

 atomic events: numbers 0-36 
 random variables with outcomes true or false

 rouge / noir, pair / impair, passe / manque
 transversale, carre, cheval
 douzaines premier/milieu/dernier
 etc.

e.g. rouge(36) = true
 The probablity function P over atomic events induces a 

probability distribution over all random variables X

 P Rouge=true =P 1P 3...P 34P 36= 1
37

 1
37

... 1
37

 1
37

=18
37

P  X=xi=∑{ : X = xi } P 



Uncertainty                                                                                                    

   TU Darmstadt, SS 2009                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz11

Propositions
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Syntax for Propositions
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Prior Probabilities

Note: If we know the joint 
probability for a set of 
random variables, we can 
answer all questions, 
because each event is a 
union of sample points

P denotes a probability

P denotes a 
probability distribution
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Probability for Continuous Variables
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Marginalization (Summing Out)
Marginalization (aka Summing Out)
 For any set of variables Y and Z

 In particular, this means that given the joint probability 
distribution, the probability distribution of any random 
variable can be computed by summing out

 the resulting distribution is then also called marginal 
distribution and its probabilities the marginal probabilities

Conditioning
 A variant of the above rule that uses conditional probabilities

PY =∑z
P Y , z

PY =∑z
P Y∣z⋅P  z 
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Marginalization
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Marginalization
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Inference by Enumeration
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Conditional Probabilities
P(Cavity,Toothache) toothache ¬ toothache
cavity 0.12 0.08

¬ cavity 0.08 0.72

PCavity∣Toothache =〈 〈0.6,0.4 〉 , 〈0.1,0.9 〉 〉
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Definition of Conditional Probability
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Inference by Enumeration
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Normalization
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Inference by Enumeration (Ctd.)



Uncertainty                                                                                                    

   TU Darmstadt, SS 2009                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 |  ©  J. Fürnkranz24

Independence

2x2x2x4 = 32 
possible values

2x2x2 = 8 
possible values

4 possible
values
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Conditional Independence

Analogous to:
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Conditional Independence (Ctd.)
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Bayes Rule
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Example: AIDS-Test
 event Aids = a person has Aids or not
 event Positive = a person has a positive test result

 The test has the following characteristics:








 Looks like a pretty reliable test?

P  positive∣aids=0.99

P  positive∣¬aids=0.005
P negative∣¬aids=0.995

P negative∣aids=0.01
The test makes 1% mistakes 
for people that have aids

The test makes 0,5% mistakes 
for people that don't have aids

Modified from slides by David Kriegman, 2001
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Example: AIDS-Test
 event Aids = a person has Aids or not
 event Positive = a person has a positive test result

 The test has the following characteristics:








 Now suppose you are in a low-risk group (low a priori probability 
of having Aids, say P(aids) = 0.0001) and have a positive test 
result. Should you panic?

P  positive∣aids=0.99

P  positive∣¬aids=0.005
P negative∣¬aids=0.995

P negative∣aids=0.01
The test makes 1% mistakes 
for people that have aids

The test makes 0,5% mistakes 
for people that don't have aids

Modified from slides by David Kriegman, 2001

P a∣p= P  p∣a⋅P a
P  p

=
P  p∣a⋅P a

P  p∣a⋅P aP  p∣¬a⋅P ¬a
= 0.99⋅0.0001

0.99⋅0.00010.005⋅0.9999
=0.0194
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Bayes Rule and Independence
The model is naïve 
because it assumes that 
all effects are independent 
given the cause 
(which is often not true)
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Example: Wumpus World
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Example: Wumpus World
Current knowledge of the agent about the world

 the agent has visited the squares [1,1], [1,2], [2,1]
 it found a breeze in [1,2] and one in [2,1]. 
 therefore, no safe explorative step is possible

 all yellow squares might contain a pit
→ Which of the yellow squares is the safest?
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Example: Wumpus World
Specifying the Probability Model
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Example: Wumpus World
Observations and Queries

 

What is the probability distribution for a pit on [1,3]?
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Example: Wumpus World
Using Conditional Independence

 

The square [4,4] will not have an
influence on whether the agent has
noticed a breeze on [1,2] or not.

In fact, none of the squares in the
Other region may have influenced
the observations in [1,1], [1,2] and [2,1].
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Example: Wumpus World
Computation

 

The query P(P1,3|known,b) is now transformed 
in a way so that we can use the equation from 
the previous slide
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Example: Wumpus World
Computation

 

PP1,3∣known , b= ' P P1,3∑ fringe
P b∣known , P1,3 , fringeP  fringe

(by analogous computation)

is 1 if the breeze observations b
are consistent with the fringe,
0 otherwise
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Summary
 Probability is a rigorous formalism for uncertain 

knowledge

 Joint probability distribution specifies probability of every 
atomic event

 Queries can be answered by summing over atomic 
events

 For nontrivial domains, we must find a way to reduce the 
joint size

 Independence and conditional independence provide 
the tools


