
   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz1

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Uninformed Search
 Problem-solving agents

 Single-State Problems
 Tree search algorithms

 Breadth-First Search
 Depth-First Search
 Limited-Depth Search
 Iterative Deepening

 Extensions
 Graph search algorithms
 Search with Partial Information



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz2

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Problem-Solving Agents
 Simple reflex agents 

 have a direct mapping from states to actions
 typically too large to store
 would take too long to learn

 Goal-Based agents 
 can consider future actions and the desirability of their 

outcomes
 Problem-Solving Agents

 special case of Goal-Based Agents
 find sequences of actions that lead to desirable states

 Uninformed Problem-Solving Agents
 do not have any information except the problem definition

 Informed Problem-Solving Agents
 have knowledge where to look for solutions



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz3

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Formulate-Search-Execute Design
 Formulate:

 Goal formulation:
 A goal is a set of world states that the agents wants to be in 

(where the goal is achieved)
 Goals help to organize behavior by limiting the objectives that the 

agent is trying to achieve
 Problem formulation:

 Process of which actions and states to consider, given a goal
 Search:

 the process of finding the solution for a problem in the form of 
an action sequence
an agent with several immediate options of unknown value can 
decide what to do by examining different possible sequences of 
actions that lead to states of known value, and then choosing the best 

 Execute:
 perform the first action of the solution sequence



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz4

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Simple Problem-Solving Agent



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz5

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Romania
 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest
 Formulate problem:

 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Rimnicu Vilcea, Pitesti

 Assumption:
 agent has a map of Romania, i.e., it can use this information to 

find out which of the three ways out of Arad is more likely to go 
to Bucharest



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz6

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Romania



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz7

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Single-state Problem Formulation
A problem is defined by four items:
 initial state 

 e.g., "at Arad"
 description of actions and their effects

 typically as a successor function that maps a state s to a set 
S(s) of action-state pairs

 e.g., S(„at Arad“) = {<„goto Zerind“, „at Zerind“>, … }
 goal test, can be

 explicit, e.g., s = "at Bucharest"
 implicit, e.g., Checkmate(s), NoDirt(s)

 path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(s1, a, s2) are the costs for one step (one action), 
 assumed to be ≥ 0



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz8

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Single-State Problems
Yes
 8-queens puzzle
 8-puzzle
 Towers of Hanoi
 Cross-Word puzzles
 Sudoku
 Chess, Bridge, Scrabble 

puzzles
 Rubik's cube
 Sobokan
 Traveling Salesman 

Problem

No
 Tetris

 dynamic not static
 Solitaire

 only partially observable



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz9

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

State Space of a Problem
 State Space

 the set of all states reachable from the initial state
 implicitly defined by the initial state and the successor function



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz10

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

State Space of a Problem
 State Space

 the set of all states reachable from the initial state
 implicitly defined by the initial state and the successor function

 Path
 a sequence of states connected by a sequence of actions

 Solution
 a path that leads from the initial state to a goal state

 Optimal Solution
 solution with the minimum path cost



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz11

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Romania



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz12

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Selecting a State Space
Real world is absurdly complex 

→ state space must be abstracted for problem solving
 (Abstract) state

 corresponds to a set of real states
 (Abstract) action

 corresponds to a complex combination of real actions
 e.g., "go from Arad to Zerind" represents a complex set of 

possible routes, detours, rest stops, etc. 
 for guaranteed realizability, any real state "in Arad“ must get to 

some real state "in Zerind"
 each abstract action should be "easier" than the original 

problem
 (Abstract) solution 

 corresponds to a set of real paths that are solutions in the real 
world



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz13

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Romania – State Space



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz14

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: The 8-puzzle

 states?
 location of tiles 

 ignore intermediate 
positions during sliding

 goal test?
 situation corresponds to goal state

 path cost?
 number of steps in path 

(each step costs 1)

 actions?
 move blank tile 

(left, right, up, down)
 easier than having 

separate moves for 
each tile

 ignore actions like 
unjamming slides if 
they get stuck



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz15

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: The 8-Queens Problem

 states?
 any configuration of 8 

queens on the board
 goal test?

 no pair of queens can 
capture each other

 actions?
 move one of the queens to 

another square
 path cost?

 not of interest here

inefficient complete-state formulation
→ 64 ∙ 63 ∙ ... ∙ 57 ≈ 3 ∙ 1014 states 

conflict no
conflict



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz16

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: The 8-Queens Problem

 states?
 n non-attacking queens in 

the left n columns
 goal test?

 no pair of queens can 
capture each other

 actions?
 add queen in column n + 1
 without attacking the others

 path cost?
 not of interest here

more efficient incremental formulation
→ only 2057 states 

conflict no
conflict



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz17

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Tree Search Algorithms
 Treat the state-space graph as a tree
 Expanding a node

 offline, simulated exploration of state space by generating 
successors of already-explored states (successor function)

 Search strategy 
 determines which node is expanded next

 General algorithm:



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz18

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Tree Search Example
 Initial state: start with node Arad



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz19

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Tree Search Example
 Initial state: start with node Arad
 expand node Arad



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz20

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Tree Search Example
 Initial state: start with node Arad
 expand node Arad
 expand node Sibiu

fringe of the
search tree

depth of the
search tree



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz21

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

States vs. Nodes
 State  

 (representation of) a physical configuration
 Node 

 data structure constituting part of a search tree
 includes 

 state
 parent node
 action
 path cost g(x)
 depth

 Expand
 creates new nodes
 fills in the various fields
 uses the successor function to create the corresponding states



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz22

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Implementation: General Tree Search



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz23

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Search Strategies
 A search strategy is defined by picking the order of node 

expansion
 implementation in a queue

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of 
 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz24

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Search Strategies

 Uninformed (blind) search strategies use only the 
information available in the problem definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search

 Informed (heuristic) search strategies have knowledge
that allows to guide the search to promising regions

 Greedy Search
 A* Best-First Search



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz25

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its 

successors is expanded (depth)
 Implemetation: 

 expand the shallowest unexpanded node 
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz26

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its 

successors is expanded (depth)
 Implemetation: 

 expand the shallowest unexpanded node 
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz27

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its 

successors is expanded (depth)
 Implemetation: 

 expand the shallowest unexpanded node 
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz28

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its 

successors is expanded (depth)
 Implemetation: 

 expand the shallowest unexpanded node 
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz29

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Properties of Breadth-First Search
 Completeness

 Yes (if b is finite)
 Time Complexity

 each depth has b times as many nodes as the previous
 each node is expanded
 except the goal node in level d 

 worst case: goal is last node in this level

 Space Complexity
 every node must remain in memory

 it is either a fringe node or an ancestor of a fringe node
 in the end, the goal will be in the fringe, and its ancestors will be 

needed for the solution path
⇒ O(bd+1)

 Optimality
 Yes, for uniform costs (e.g., if cost = 1 per step)

⇒1bb2b3...bdbd1−b=O bd1



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz30

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Combinatorial Explosion
 Breadth-first search

 branching factor b = 10, 10,000 nodes/sec, 1000 bytes/node

 Space is the bigger problem
 can easily generate nodes at 100MB/sec ⇒ 24hrs = 8640 GB

Depth Nodes Time Memory
2 1100 .11 secs 1 MB
4 111 100 11 secs 106 MB
6 19 mins 10 GB
8 31 hours 1 TB
10 129 days 101 TB
12 35 years 10 PetaBytes
14 3523 years 1 ExaByte

107

109

1011

1013

1015



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz31

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Uniform-Cost Search
 Breadth-first search can be generalized to cost functions

 each node now has associated costs
 costs accumulate over path
 instead of expanding the shallowest path, 

expand the least-cost unexpanded node
 breadth-first is special case where all costs are equal

 Implementation
 fringe = queue ordered by path cost

 Completeness
 yes, if each step has a positive cost (cost ≥ ε)
 otherwise infinite loops are possible

 Space and Time complexity
 number of nodes with costs < costs of optimal solution C*

 Optimality
 Yes – nodes expanded in increasing order of path costs

b1O ⌊C */⌋



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz32

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz33

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz34

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz35

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz36

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz37

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz38

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz39

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz40

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz41

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz42

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz43

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its 

neighbors is expanded (breadth)
 Implemetation: 

 expand the deepest unexpanded node 
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz44

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Properties of Depth-First Search
 Completeness

 No, fails in infinite-depth search spaces and spaces with loops
 complete in finite spaces if modified so that repeated states 

are avoided
 Time Complexity

 has to explore each branch until maximum depth m
 terrible if m > d (depth of goal node)
 but may be faster than breadth-first if solutions are dense

 Space Complexity
 only nodes in current path and their unexpanded siblings need 

to be stored 
⇒ only linear complexity                

 Optimality
 No, longer (more expensive) solutions may be found before 

shorter (cheaper) ones

⇒O bm

O m⋅b



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz45

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Backtracking Search
Even more space-efficient variant
 does not store all expanded nodes, but only the current path

⇒ O(m)
 if no further expansion is possible, go back to the predecessor
 each node is able to generate the next successor

 only needs to store and modify one state
 actions can do and undo changes on this one state



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz46

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Depth-limited Search
 depth-first search is provided with a depth limit l

 nodes with depths d > l are not considered → incomplete
 if d < l it is not optimal (like depth-first search)
 time complexity O(bl), space complexity O(bl)



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz47

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Iterative Deepening Search
 Main problem with depth-limited search is setting of l

 Simple solution:
 try all possible l = 0, 1, 2, 3, ...

 costs are dominated by the last iteration, thus the overhead is 
marginal



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz48

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Iterative Deepening Search



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz49

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Iterative Deepening Search



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz50

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Properties of 
Iterative Deepening Search

 Completeness
 Yes (no infinite paths)

 Time Complexity
 first level has to be searched d times
 last level has to be searched once
 

 Space Complexity
⇒ only linear complexity O(bd)               

 Optimality
 Yes, the solution is found at the minimum depth

⇒ combines advantages of depth-first and breadth-first search

⇒d⋅bd−1b2...1⋅bd=∑
i=1

d

d−i1⋅bi



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz51

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Comparison of Time Complexities
Worst-case (goal is in right-most node at level d)  

 Depth-Limited Search

 Iterative Deepening

Example: b = 10, d = 5

N IDS=d⋅bd−1b2...1⋅bd=∑
i=1

d

d−i1⋅bi

N DLS=bb2...bd=∑
i=1

d

bi

N IDS=50400300020,000100,000=123,450

N DLS=10100100010,000100,000=111,110 Overhead of
IDS only ca. 10%



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz52

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Bidirectional Search
 Perform two searches simultaneously

 forward starting with initial state
 backward starting with goal state
check whether generated node is in fringe of the other search

 Properties
 reduction in complexity 
 only possible if actions can be reversed
 search paths may not meet for depth-first bidirectional search

bd /2bd /2≪bd 



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz53

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Summary of Algorithms
 Problem formulation usually requires abstracting away real-

world details to define a state space that can feasibly be 
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not 
much more time than other uninformed algorithms



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz54

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Repeated States
 Failure to detect repeated states can turn a linear problem 

into an exponential one!

Ribbon Example
 two connections from each state to the next
                      d states                          but state space is 2d



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz55

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Repeated States
 Failure to detect repeated states can turn a linear problem 

into an exponential one!

(more realistic) Grid Example

 each square on grid has 
4 neighboring states in

 thus, game tree w/o repetitions
has 4d nodes

 but only about 2d 2 different
states are reachable in d steps

                  



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz56

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Graph Search
 remembers the states that have been visited in a list closed

 Note: the fringe list is often also called the open list

 Example:
 Dijkstra's algorithm is the graph-search variant of uniform cost search



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz57

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Assumptions about the Environment
 static

 we do not pay attention to possible changes in the 
environment

 observable 
 we can at least observe our initial state

 discrete
 possible actions can be enumerated

 deterministic
 the expected outcome of an action is always identical to the 

true outcome
 once we have a plan, we can execute it „with eyes closed“

→ easiest possible scenario



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz58

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Problems with Partial Information
 Single-State Problem

deterministic, fully observable
 agent knows exactly which state it will be in
 solution is a sequence

 Conformant Problem (sensorless problem)
non-observable

 agent may have no idea where it is
 solution (if any) is a sequence

 Contingency Problem
nondeterministic and/or partially observable

 percepts provide new information about current state
 solution is a contingent plan (tree) or a policy
 search and execution often interleaved

 Exploration Problem
state-space is not known → Reinforcement Learning



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz59

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Single-state Problem
 start in #5
 goal

 no dirt
 Solution

 [Right, Suck]



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz60

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Conformant Problem
 start in any state

(we can't sense)
 start ← {1,2,3,4,5,6,7,8}

 actions
 e.g., Right 

goes to {2,4,6,8}
 goal

 no dirt
 Solution

 [Right, Suck, Left, Suck]



   Problem-Solving by Uninformed Search                                                                       V2.0 ©  J. Fürnkranz61

   TU Darmstadt, WS 2010/11                                                                                                                                                  Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Contingency Problem
 start in #5
 indeterministic actions

 Suck can dirty a 
clean carpet

 sensing
 dirt at current 

location?
 goal

 no dirt
 Solution

 [Right, if dirt then Suck]


