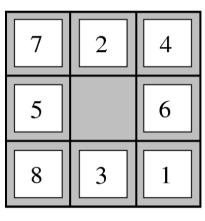
# Outline

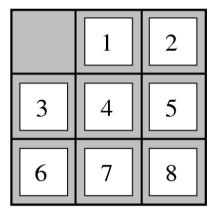
#### Best-first search

- Greedy best-first search
- A\* search
- Heuristics
- Local search algorithms
  - Hill-climbing search
  - Beam search
  - Simulated annealing search
  - Genetic algorithms
- Constraint Satisfaction Problems

# **Motivation**

- Uninformed search algorithms are too inefficient
  - they expand far too many unpromising paths
- Example:
  - 8-puzzle









- Average solution depth = 22
- Breadt-first search to depth 22 has to expand about 3.1 x 10<sup>10</sup> nodes

 $\rightarrow$  try to be more clever with what nodes to expand

# **Best-First Search**

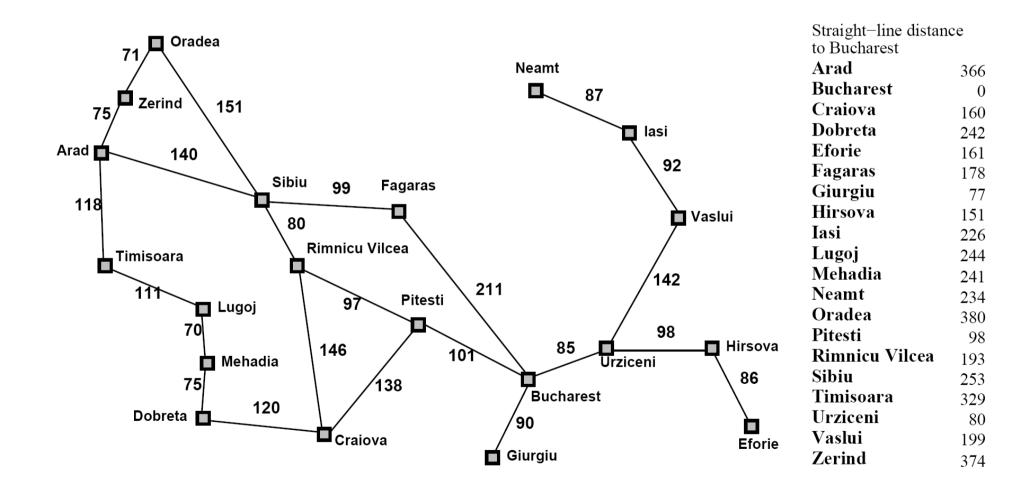
#### Recall

- Search strategies are characterized by the order in which they expand the nodes of the search tree
- Uninformed tree-search algorithms sort the nodes by problemindependent methods (e.g., recency)
- Basic Idea of Best-First Search
  - use an evaluation function f(n) for each node
    - estimate of the "desirability" of the node's state
  - expand most desirable unexpanded node
- Implementation
  - use Game-Tree-Search algorith
  - order the nodes in fringe in decreasing order of desirability
- Algorithms
  - Greedy best-first search
  - A\* search

# Heuristic

- Greek "heurisko" (εὑρίσκω) → "I find"
  - cf. also "Eureka!"
- informally denotes a "rule of thumb"
  - i.e., knowledge that may be helpful in solving a problem
  - note that heuristics may also go wrong!
- In tree-search algorithms, a heuristic denotes a function that estimates the remaining costs until the goal is reached
- Example:
  - straight-line distances may be a good approximation for the true distances on a map of Romania
  - and are easy to obtain (ruler on the map)
    - but cannot be obtained directly from the distances on the map

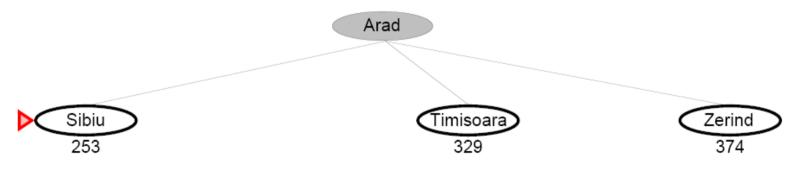
# Romania Example: Straight-line Distances



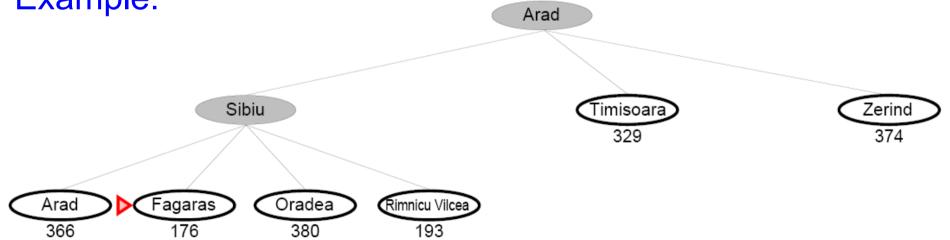
- Evaluation function f(n) = h(n) (heuristic)
  - estimates the cost from node *n* to *goal*
  - e.g.,  $h_{SLD}(n)$  = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
  - according to evaluation function
- Example:



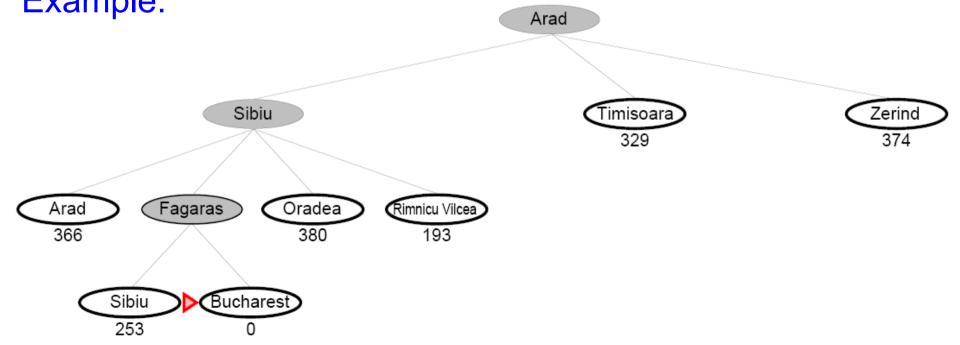
- Evaluation function f(n) = h(n) (heuristic)
  - estimates the cost from node n to goal
  - e.g.,  $h_{SLD}(n)$  = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
  - according to evaluation function
- Example:



- Evaluation function f(n) = h(n) (heuristic)
  - estimates the cost from node n to goal
  - e.g.,  $h_{SLD}(n)$  = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
  - according to evaluation function
- Example:



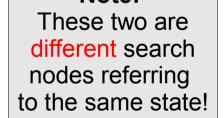
- Evaluation function f(n) = h(n) (heuristic)
  - estimates the cost from node n to goal
  - e.g.,  $h_{SLD}(n)$  = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
  - according to evaluation function
- Example:

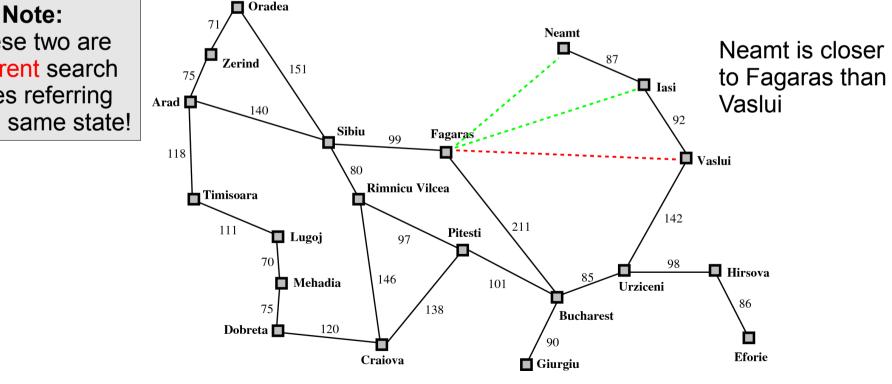


# **Properties of Greedy Best-First Search**

#### Completeness

- No can get stuck in loops
- Example: We want to get from lasi to Fagaras
  - lasi  $\rightarrow$  Neamt  $\rightarrow$  lasi  $\rightarrow$  Neamt  $\rightarrow$  ...





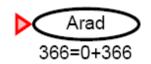
# Properties of Greedy Best-First Search

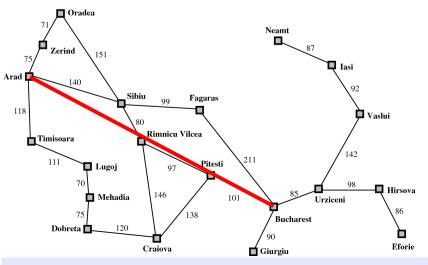
#### Completeness

- No can get stuck in loops
- can be fixed with careful checking for duplicate states
- $\rightarrow$  complete in finite state space with repeated-state checking
- Time Complexity
  - $O(b^m)$ , like depth-first search
  - but a good heuristic can give dramatic improvement
    - optimal case: best choice in each step  $\rightarrow$  only d steps
    - a good heuristic improves chances for encountering optimal case
- Space Complexity
  - has to keep all nodes in memory  $\rightarrow$  same as time complexity
- Optimality
  - No
  - Example:
    - solution Arad  $\rightarrow$  Sibiu  $\rightarrow$  Fagaras  $\rightarrow$  Bucharest is not optimal

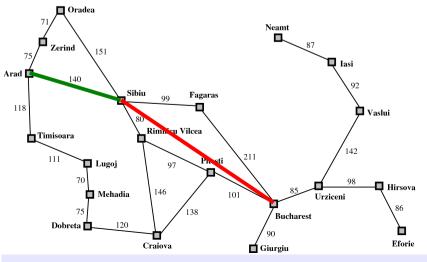
### A\* Search

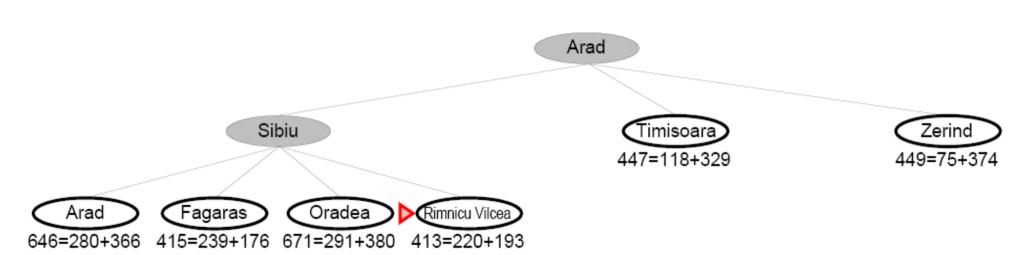
- Best-known form of best-first search
- Basic idea:
  - avoid expanding paths that are already expensive
  - $\rightarrow$  evaluate complete path cost not only remaining costs
- Evaluation function: f(n)=g(n)+h(n)
  - g(n) = cost so far to reach node n
  - h(n) = estimated cost to get from n to goal
  - f(n) = estimated cost of path to goal via n

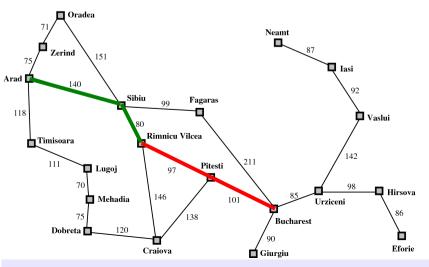


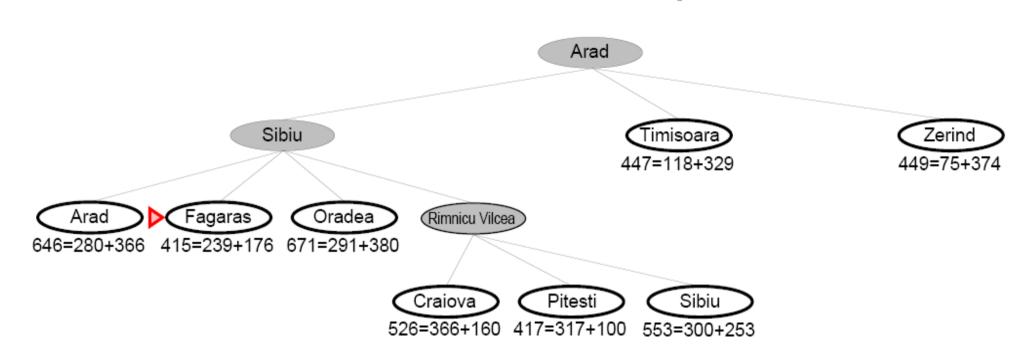


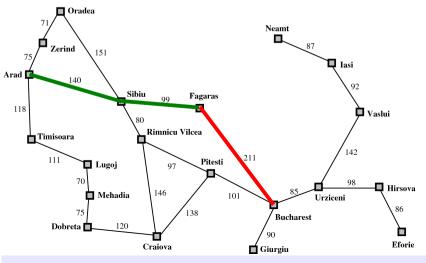


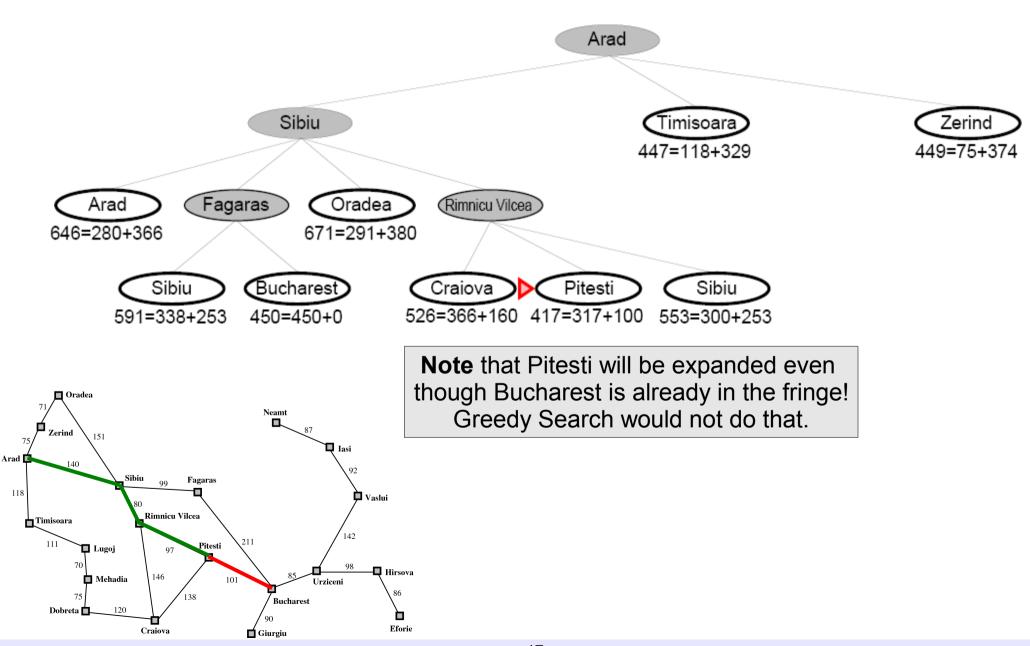


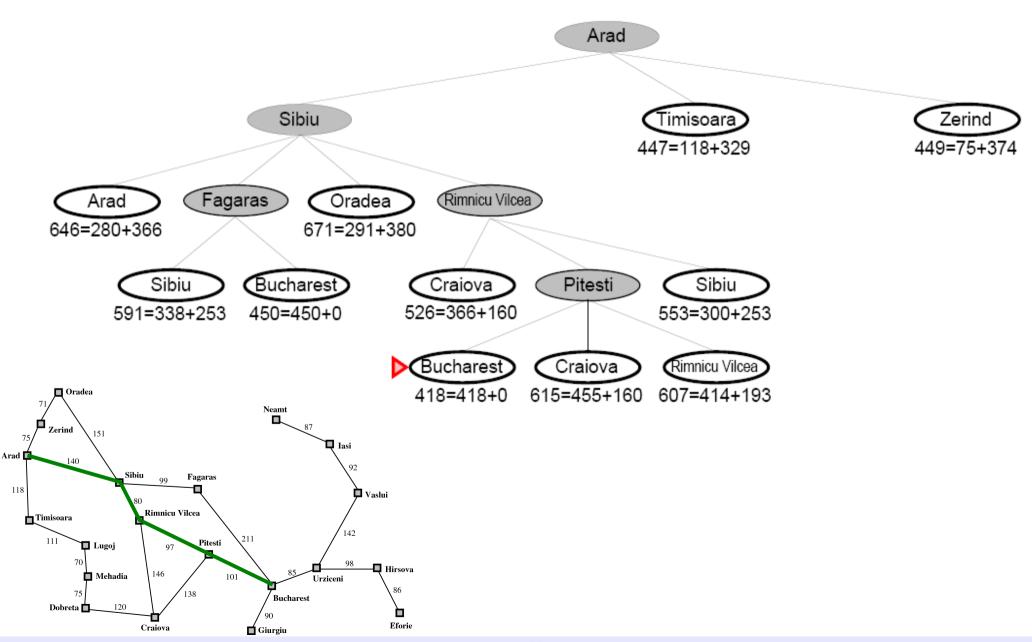












# **Properties of A\***

#### Completeness

- Yes
- unless there are infinitely many nodes with  $f(n) \le f(G)$

#### Time Complexity

it can be shown that the number of nodes grows exponentially unless the error of the heuristic *h*(*n*) is bounded by the logarithm of the value of the actual path cost *h*<sup>\*</sup>(*n*), i.e.

$$|h(n) - h^*(n)| \le O(\log h^*(n))$$

### Space Complexity

- keeps all nodes in memory
- typically the main problem with A\*
- Optimality
  - ???
  - $\rightarrow$  following pages

# **Admissible Heuristics**

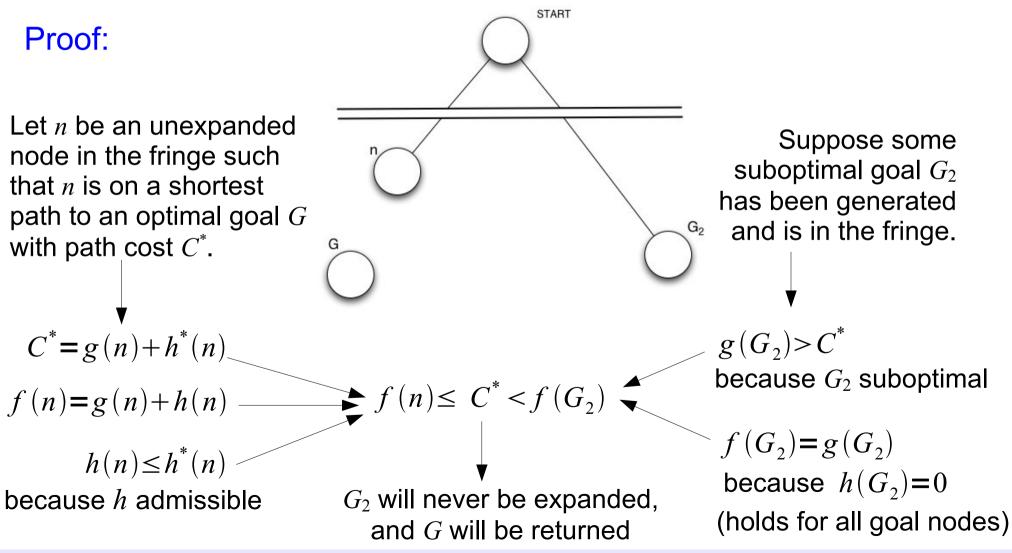
A heuristic is admissible if it *never* overestimates the cost to reach the goal

- Formally:
  - $h(n) \le h^*(n)$  if  $h^*(n)$  are the true cost from *n* to goal
- Example:
  - Straight-Line Distances  $h_{SLD}$  are an admissible heuristics for actual road distances  $h^*$
- Note:
  - $h(n) \ge 0$  must also hold, so that h(goal) = 0

© J. Fürnkranz

### Theorem

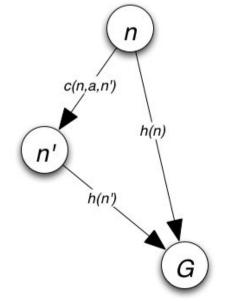
### If h(n) is admissible, A\* using TREE-SEARCH is optimal.



# **Consistent Heuristics**

- Graph-Search discards new paths to repeated state even though the new path may be cheaper
  - $\rightarrow$  Previous proof breaks down
- 2 Solutions
  - 1. Add extra bookkeeping to remove the more expensive path
  - Ensure that optimal path to any repeated state is always followed first
- Requirement for Solution 2:

A heuristic is consistent if for every node *n* and every successor *n*' generated by any action *a* it holds that  $h(n) \le c(n, a, n') + h(n')$ 



# Lemma 1

Every consistent heuristic is admissible.

#### Proof Sketch:

for all nodes n, in which an action a leads to goal G

 $h(n) \leq c(n, a, G) + h(G) = h^*(n)$ 

by induction on the path length from goal, this argument can be extended to all nodes, so that eventually

 $\forall n: h(n) \leq h^*(n)$ 

Note:

- not every admissible heuristic is consistent
- but most of them are
  - it is hard to find non-consistent admissible heuristics

### Lemma 2

If h(n) is consistent, then the values of f(n) along any path are non-decreasing.

Proof:

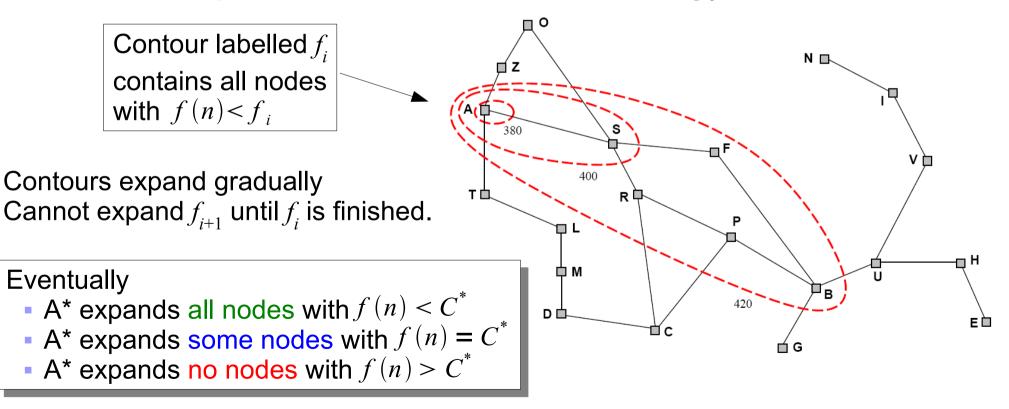
 $\begin{aligned} f(n) &= g(n) + h(n) \le g(n) + c(n, a, n') + h(n') = \\ g(n) + c(n, a, n') + h(n') = g(n') + h(n') = f(n') \end{aligned}$ 

### Theorem

If h(n) is consistent, A\* is optimal.

#### Proof:

A\* expands nodes in order of increasing *f* value

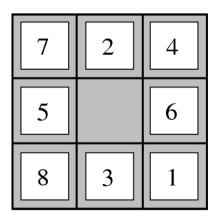


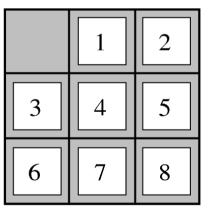
# Memory-Bounded Heuristic Search

- Space is the main problem with A\*
- Some solutions to A\* space problems (maintaining completeness and optimality)
  - Iterative-deepening A\* (IDA\*)
    - like iterative deepening
    - cutoff information is the *f*-cost (g + h) instead of depth
  - Recursive best-first search(RBFS)
    - recursive algorithm that attempts to mimic standard best-first search with linear space.
    - keeps track of the *f*-value of the best alternative path available from any ancestor of the current node
  - (Simple) Memory-bounded A\* ((S)MA\*)
    - drop the worst leaf node when memory is full

### Admissible Heuristics: 8-Puzzle

- $h_{\text{MIS}}(n) =$  number of misplaced tiles
  - admissible because each misplaced tile must be moved at least once
- $h_{\text{MAN}}(n) = \text{total Manhattan distance}$ 
  - i.e., no. of squares from desired location of each tile
  - admissible because this is the minimum distance of each tile to its target square
- Example:





 $h_{MIS}(start) = 8$ 

 $h_{MAN}(start) = 18$ 

$$h^*(start)=26$$

Start State

Goal State

### **Effective Branching Factor**

- Evaluation Measure for a search algorithm:
  - assume we searched *N* nodes and found solution in depth *d*
  - the effective branching factor b<sup>\*</sup> is the branching factor of a uniform tree of depth d with N+1 nodes, i.e.

$$1 + N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

- Measure is fairly constant for sufficiently hard problems.
  - Can thus provide a good guide to the heuristic's overall usefulness.
  - A good value of  $b^*$  is 1

# Efficiency of A\* Search

- Comparison of number of nodes searched by A\* and Iterative Deepening Search (IDS)
  - average of 100 different 8-puzzles with different solutions
  - **Note:** heuristic  $h_2 = h_{MAN}$  is always better than  $h_1 = h_{MIS}$

| d  | Suchkosten |                |            | Effektiver Verzweigungsfaktor |            |                |
|----|------------|----------------|------------|-------------------------------|------------|----------------|
|    | IDS        | $A^{*}(h_{1})$ | $A^*(h_2)$ | IDS                           | $A^*(h_1)$ | $A^{*}(h_{2})$ |
| 2  | 10         | 6              | 6          | 2,45                          | 1,79       | 1,79           |
| 4  | 112        | 13             | 12         | 2,87                          | 1,48       | 1,45           |
| 6  | 680        | 20             | 18         | 2,73                          | 1,34       | 1,30           |
| 8  | 6384       | 39             | 25         | 2,80                          | 1,33       | 1,24           |
| 10 | 47127      | 93             | 39         | 2,79                          | 1,38       | 1,22           |
| 12 | 3644035    | 227            | 73         | 2,78                          | 1,42       | 1,24           |
| 14 |            | 539            | 113        |                               | 1,44       | 1,23           |
| 16 | _          | 1301           | 211        | - 1                           | 1,45       | 1,25           |
| 18 | -          | 3056           | 363        | _                             | 1,46       | 1,26           |
| 20 | -          | 7276           | 676        | _                             | 1,47       | 1,27           |
| 22 | -          | 18094          | 1219       | -                             | 1,48       | 1,28           |
| 24 |            | 39135          | 1641       | -                             | 1,48       | 1,26           |

# Dominance

If  $h_1$  and  $h_2$  are admissible,  $h_2$  dominates  $h_1$  if  $\forall n : h_2(n) \ge h_1(n)$ 

- if  $h_2$  dominates  $h_1$  it will perform better because it will *always* be closer to the optimal heuristic  $h^*$
- Example:
  - $h_{\rm MAN}$  dominates  $h_{\rm MIS}$  because if a tile is misplaced, its Manhattan distance is  $\geq 1$

#### Theorem: (Combining admissible heuristics)

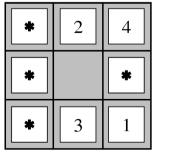
If  $h_1$  and  $h_2$  are two admissible heuristics than  $h(n) = max(h_1(n), h_2(n))$ is also admissible and dominates  $h_1$  and  $h_2$ 

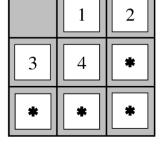
# **Relaxed Problems**

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- Examples:
  - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then  $h_{\rm MIS}$  gives the shortest solution
  - If the rules are relaxed so that a tile can move to any adjacent square, then h<sub>MAN</sub> gives the shortest solution
- Thus, looking for relaxed problems is a good strategy for inventing admissible heuristics.

### Pattern Databases

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
  - This cost is a lower bound on the cost of the real problem.
- Pattern databases store the exact solution (length) for every possible subproblem instance
  - constructed once for all by searching backwards from the goal and recording every possible pattern
- Example:
  - store exact solution costs for solving 4 tiles of the 8-puzzle
  - sample pattern:





Start State

Goal State

# Learning of Heuristics

- Another way to find a heuristic is through learning from experience
- Experience:
  - states encountered when solving lots of 8-puzzles
  - states are encoded using features, so that similarities between states can be recognized
- Features:
  - for the 8-puzzle, features could, e.g. be
    - the number of misplaced tiles
    - number of pairs of adjacent tiles that are also adjacent in goal

• ...

- An inductive learning algorithm can then be used to predict costs for other states that arise during search.
- No guarantee that the learned function is admissible!

# Summary

- Heuristic functions estimate the costs of shortest paths
- Good heuristics can dramatically reduce search costs
- Greedy best-first search expands node with lowest estimated remaining cost
  - incomplete and not always optimal
- A\* search minimizes the path costs so far plus the estimated remaining cost
  - complete and optimal, also optimally efficient:
    - no other search algorithm can be more efficient, because they all have search the nodes with  $f(n) < C^*$
    - otherwise it could miss a solution
- Admissible search heuristics can be derived from exact solutions of reduced problems
  - problems with less constraints
  - subproblems of the original problem