
Seminar aus maschinellem Lernen

Thema: BLOG: Probabilistic Models with Unkown objects

Vortraggeber: Di Wu

Datum: 02.12.2009

Outline

1. Introduction

2. Examples

3. Syntax and Semantics: Possible worlds

4. Syntax and Semantics: Probabilities

5. Evidence and Queries

6. Inference

1. Introduction

● The problem of unknown objects:
– Many AI problems involve making inferences about real-world objects that

underlie some data. In many cases, we do not know the number of underlying
objects or the mapping between obsevations and objects.

– The agent must infer the existence of objects that were not know initially to
exist.

– Population estimation , for example, involves counting a population by
sampling from it randomly and measuring how often the same object is
resampled.

● A probabilistic modeling language, called Bayesian logic(BLOG),
allows such scenarios to be represented in a natural way.

● A well-formed BLOG model fully defines a distribution over
model structures of a first-order logical language.

2. Examples

● Two typical scenarios with unknow objects – simplified versions
of the population estimation and multitarget tracking problems.

● In each case, we provide a short BLOG model.

● Example 1

– An urn contains an unknown number of balls. Balls are equally likely to be blue
or green. We draw some balls from the urn, observing the color of each and
replacing it. We cannot tell two identically colored balls apart; furthermore,
observed colors are wrong with probability 0.2. How many balls are in the urn?
was the same ball drawn twice?

BLOG model for example 1

1. type Color ; type Ball ; type Draw ;

2. random Color TrueColor(Ball) ;
3. random Ball BallDrawn(Draw) ;
4. random Color ObsColor(Draw) ;

5. guaranteed Color Blue , Green ;
6. guaranteed Draw Draw1 , Draw2 , Draw3 , Draw4 ;

7. #Ball ∽ Poisson[6]() ;

8. TrueColor(b) ∽ TabularCPD[[0.5 , 0.5]]() ;
9. BallDrawn(d) ∽ Uniform({Ball b}) ;
10. ObsColor(d)
11. if (BallDrawn(d) != null) then
12. ∽ TabularCPD[[0.8 , 0.2] , [0.2 , 0.8]](TrueColor(BallDrawn(d))) ;

(2)

● Example 2

– An unknown number of aircraft exist in some volume of airspace. An aircraft's
state (position and velocity) at each time step depends on its state at the
previous time step. We observe the area with radar : aircraft may appear as
identical blips on a radar screen. Each blip gives the approximate positions of
the aircraft that generated it. However, some blips may be false detections,
and some aircraft may not be detected. What aircraft exist and what are their
trajectories ?

BLOG model for example 2

1. Type Aircraft ; type Blip ;

2. random R6Vector State(Aircraft , NaturalNum) ;
3. random R3Vector ApparentPos(Blip) ;

4. nonrandom NaturalNum Pred(NaturalNum) = Predecessor ;

5. origin Aircraft Source(Blip) ;
6. origin NaturalNum Time(Blip) ;

7. #Aircraft ∽ NumAircraftPrior() ;
8 State(a,t)
9. if t = 0 then ∽ InitState() ;
10. else ∽ StateTransition(State(a , Pred(t))) ;
11. #Blip(Source = a, Time = t) ∽ DetectionCPD(State(a , t)) ;
12. #Blip(Time = t) ∽ NumFalseAlarmsPrior() ;
13. ApparentPos(b)
14. if (Source(b) = null) then ∽ FalseAlarmDistrib()
15. else ∽ ObsCPD(State(Source(b) , Time(b))) ;

3.Syntax and Semantics: Possible worlds

● A model structure ω of a typed, free, first order language
consists of an extension [τ]ω for each type τ, which may be an
arbitrary set, and an interpretation [f]ω for each function
symbol f . If f has return type τ

0
and argument types τ

1
. . . τ

k
,

then [f]ω is a function from [τ
1
]ω × . . . [τ

k
]ω to [τ

0
]ω ∪ {null}.

● Two model structures are shown as follows, the purpose of a
BLOG model is to difine a distribution over such structures.

Balls

Draws

Outcomes with fixed object sets

● BLOG models for fixed objects sets have five kinds of statments.
– Type declaration
– Random function declaration
– Nonrandom function declaration
– Guaranteed object statement (G

M
(τ))

– Dependency statement
● The first four kinds of statements listed above define a particular

typed first-order language L
M
 for a model M.

● The set of possible worlds of M, denoted Ω
M

, consist of those
model structures of L

M
, where the extension fo each type τ is

G
M
(τ), and all nonrandom function symbols have their given

interpretations.

(2)

● For each random function f and tuple of appropriately typed
guaranteed objects o

1
 , . . . , o

k
 , we can define a random variable

(RV) f [o
1
 , . . . , o

k
](ω) := [f]ω(o

1
 , . . . , o

k
)

● In a simplified version of example 1 where the urn contains a
known set of balls {Ball1, . . . , Ball8} and we make four draws,
the RVs are TrueColor[Draw1], . . . , TrueColor[Draw8],BallDrawn
[Draw1], . . . , BallDrawn[Draw4], and ObsColor[Draw1], . . . ,
ObsColor[Draw4].

● The possible worlds are in one-to-one correspondence with full
instantiations of these basic RVs. Thus, a joint distribution for
the RVs defines a distribution over possible worlds.

Unknown objects

● A BLOG model defines a generative process in which objects are
added iteratively to a world. To describe such processes, we first
introduce origin function declarations .

● An origin function must take a single argument of some type τ;
it is then called a τ-origin function.

● Generative steps that add objects to the world are described by
number statements .

– For example : #Blip(Source = a, Time = t) ∽ DetectionCPD(State(a , t)) ;
● The beginning of a number statement has the form:

– #τ(g
1
 = x

1
 , . . . , g

k
 = x

k
)

(2)

● Consider a number statement for type τ with origin functions
g

1
, . . . , g

k
. An object q ∈ [τ]ω satisfies this number statement

applied to o
1
, . . . , o

k
 in ω if [g

i
]ω(q) = o

i
 for i = 1, . . . ,k, and

[g]ω(q) = null.

● The generated objects are defined as follows: when a number
statement with type τ and origin functions g

1
, . . . , g

k
is applied

to generating objects o
1
, . . . , o

k
 , the generated objects are

tuples { (τ, (g
1
, o

1
), . . . , (g

k
, o

k
), n) : n = 1, . . . , N }, where N is

the number of objects generated.
– e.g. (Blip, (Source, (Aircraft, 2)), (Time,8), 1)

(3)

● The universe of a type τ in a BLOG model M, denoted U
M
(τ),

consists of the guaranteed objects of type τ and nested tuples
of type τ that can be generated from guaranteed objects
through finitely many recursive applications of number
statement.

● For a BLOG model M, the set of possible worlds Ω
M
 is the set of

model structures ω of L
M
 such that:

– For each type τ, G
M
(τ) ⊆ [τ]ω ⊆ U

M
(τ);

– Nonrandom functions have the specified interpretations;
– For each number statement in M with type τ, the set of objects in [τ]ω that

satisfy this number statement is { (τ, (g
1
, o

1
), . . . , (g

k
, o

k
), n) : n = 1, . . . , N } for

some number N.

(4)

– For every type τ , each element of [τ]ω satisfies some number statement.

● To archieve the same effect with unknown objects, we need two
kinds of basic RVs, for a BLOG model M , the set V

M
 of basic

random variables consists of:
– For each random function f, a function application RV f[o

1
, . . . , o

k
](ω) is

equal to [f]ω(o
1
, . . . , o

k
) if o

1
, . . . , o

k
all exist in ω, and null otherwise;

– For each number statement with type τ and origin functions g
1
, . . . , g

k
,

a number RV #τ[g
1
 = o

1
 , . . . , g

k
 = o

k
](ω) equal to the number of objects

that satisfy this number statement applied to o
1
, . . . , o

k
 in ω.

● For any BLOG model M and any complete Instantiation of V
M

there is at most one correspondent model structure in Ω
M

4.Syntax and Semantics:Probabilities

● Dependency and number statements specify exactly how the
steps are carried out in our generative process

– State(a,t)
 if t = 0 then ∽ InitState() ;
 else ∽ StateTransition(State(a , Pred(t))) ;

– Applied for every basic RV of the form State[a,t]
– Distribution for State[a,t] is given by the elementary CPD
– Syntax for the first clause : if cond then ∽ elem-cpd (arg1, . . . , argN)

● A BLOG model defines a certain Bayesian network(BN) over the
basic RVs.

● We write σ to denote an instantiation of a set of RVs vars(σ), and
σ

X
to denote the value that σ assigns to X. If a BN is finite, then

the probability it assigns to each complete instantiation σ is
P(σ) = ∏X∈vars(σ)pX(σX | σpa(X)) , where pX is the CPD for X.

(2)

● In an infinite BN, we can write a similar expression for each finite
σ that is closed unter the parent relation(X∈vars(σ) -> pa(X) ⊆ vars(σ))
If the BN is acyclic and each variable has finitely many ancestors,
then these probability assignments define a unique distribution.

● The difficulty is that in the BN corresponding to a BLOG model,
variables often have infinite parent sets. e.g.

TrueColor[(Ball,2)]

– ⊆

TrueColor[(Ball,1)]

BallDrawm[Draw1] BallDrawn[Draw4]

TrueColor[(Ball,3)]

ObsColor[Draw1] ObsColor[Draw4]

#Ball

...

...

(3)

● An instantiation σ supports a basic RV V of the form f[o1,...,ok] or
#τ[g1 = o1,...,gk = ok] if all possible worlds consistent with σ
agree on (1) whether all the objects o1,...,ok exist, and, if so, on(2)
the applicable clause in the dependency or number
statement for V and the values for the CPD arguments in that
clause.

– e.g the instantiation (BallDrawn[d] = (Ball,13), TrueColor[(Ball,13)] = Blue)
determines the value of the sole CPD argument TrueColor(BallDrawn(d)). it
supports the variable ObsColor[d],

– ObsColor(d)
 if (BallDrawn(d) != null) then
 ∽ TabularCPD[[0.8 , 0.2] , [0.2 , 0.8]](TrueColor(BallDrawn(d)))

(4)

● A finite instantiation σ is self-supporting if its instantiated
variables can be numbered X1,...,XN such that for each n≦N, the
restriction of σ to {X1,...,XN-1} supports XN.

● A distribution P over ΩM satisfies a BLOG model M if for every
finite, self-supporting instantiation σ with vars(σ) ⊆ VM:
P(Ωσ) = ∏n=1 to N pxn(σxn | σ{x1,...,xn-1}) where Ωσ is the set of
possible worlds consistent with σ and X1,...,XN is a numbering of
σ.

● A BLOG model is well-defined if there is exactly one probability
distribution that satisfies it.

(5)

● Theorem:
Let M be a BLOG model. Suppose that VM is at most countably
infinite, and for each V ∈ VM and ω ∈ ΩM, there is a self-
supporting instantiation that agrees with ω and includes V. Then
M is well-defined.

● Proof:
– Define a sequence of auxiliary random variables { Yn : 0 ≤ n ≤ |VM| } on ΩM
– Let Y0(ω) = X(ω) where X is the first basic RV that is supported by the empty

instantiation.
– For n ≧ 1, let σn(ω) be the instantiation (Y0 = Y0(ω),...,Yn-1 = Yn-1(ω)). then

let Yn(ω) = Z(ω) where Z is the first basic RV that is supported by σn(ω), but has
not already been used to define Ym(ω) for any m < n.

5. Evidence and Queries

● We can use arbitrary sentences of LM as evidence and queries
but sometimes such sentences are not enough.

● We allow the user to extend the language when evidence
arrives, adding constant symbols to refer to observed objects.

● e.g. given four radar blips at time 8,one can assert
– {Blip r : Time(r) = 8} = {Blip1, Blip2, Blip3, Blip4};
– This asserts that there are exactly four radar blips at time 8, and introduces new

constants in one-to-one correspondence with those blips.
● The macro augments the model with dependency statements

for new symbols. We have:
Blip1 ∽ Uniform({ Blip r : (Time(r) = 8) });
Blip2 ∽ Uniform({ Blip r : (Time(r) = 8) & (Blip1 != r) });
and so on.

6.Inference

● The generative process intuition suggests a rejection sampling
algorithm.

● Suppose we are given a partial instantiation e as evidence, and a
query variable Q. To generate each sample, our algorithm starts
with an empty instantiation σ. Then it repeats the following
steps:

– Enumerate the basic RVs in a fixed order until we reach the first RV V that is
supported by σ but not already instantiated in σ

– Sample a value v for V according to V's dependency statement; and augment σ
with V = v. The process continues until all the query and evidence variables
have been sampled.

– If the sample is consistent with the evidence e, then the program increments a
counter Nq , where q is the sampled value of Q, otherwise it rejects the sample.
after N accepted samples, the estimate of P (Q = q | e) is Nq / N.

(2)

● The algorithm requires a subroutine that determines whether a
partial instantiation σ supports a basic RV V.

– For a basic RV V of the form f[o1,...,ok] or #τ[g1=o1,...,gk=ok], the subroutine
begins by checking whether all of o1,...,ok exist.

– If some of these number variables are not instantiated,then σ does not support
V.

– If some of o1,...,ok do not exist, then return the default value for V.
– If they do exist, then the subroutine follows the semantics for dependency

statement. It iterates over the clauses until it reaches a clause whose condition
is either undetermined or determined to be true given σ.

– If the condition is undetermined ,then σ does not support V.
– If it is determined to be true, then the subroutine evaluates each of the CPD

arguments in this clause.
– If σ determines the values of all arguments then sample a value for V.

otherwise σ does not support V.

Termination Criteria

● When can we be sure that the algorithm will take a finite amout
of time?

– The first way this process could fail to terminate is if it goes into an infite loop
while checking whether a particular variable is supported.

– The sample generator also fails to terminate if it never constructs an
instantiation that supports a particular query or evidence variable.

● The solution is to define a symbol graph: the symbol graph for a
BLOG model M is a directed graph whose nodes are the types
and random function symbols of M, where the parents of a type
τ or function symbol f are

– The random function symbols that occur on the right hand side of the
dependency statement for f or some number statement for τ

– The types of variables that are quantified over in formulae or set expressions
on the right-hand side of such a statement.

(2)

– The types of the arguments for f or the return types of origin functions for τ.

ObsColor

BallDrawnTrueColor

Ball DrawBallColor

(3)

● Theorem : Suppose M is a BLOG model where
– 1 uncoutable built-in types do not serve as function arguments

or as the return types of origin functions;
– 2 each quantified formula and set expression ranges over a

finite set once origin function restrictions are taken into
account;

– 3 the symbol graph is acyclic.
Then M is well-defined

Experimental results

● Asserting that 10 balls were drawn and all appeared blue, and
querying the number of balls in the urn.

● Using a guided likelihood weighting algorithm described by
Milch et al.

Ball 1 to Ball 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1
2
3
4
5
6
7
8

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26

